JPH025219A - Production of thin film magnetic head - Google Patents

Production of thin film magnetic head

Info

Publication number
JPH025219A
JPH025219A JP15726188A JP15726188A JPH025219A JP H025219 A JPH025219 A JP H025219A JP 15726188 A JP15726188 A JP 15726188A JP 15726188 A JP15726188 A JP 15726188A JP H025219 A JPH025219 A JP H025219A
Authority
JP
Japan
Prior art keywords
yoke
upper yoke
thin film
insulating layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15726188A
Other languages
Japanese (ja)
Inventor
Koji Otsuka
光司 大塚
Tomohisa Komoda
智久 薦田
Atsuo Mukai
向井 厚雄
Ryoji Namikata
量二 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15726188A priority Critical patent/JPH025219A/en
Publication of JPH025219A publication Critical patent/JPH025219A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To improve the sensitivity of a magneto-resistance element and to ensure the high output by applying a dry etching process to a prescribed area of an upper yoke positioned on an organic film after the forming process of the upper yoke and processing this yoke. CONSTITUTION:A ferromagnetic thin film serving as an upper yoke 18 is formed by a sputtering process over a magneto-resistance MR element 15. Then a resist film 19 is formed over the yoke 18 by the photolithography and then processed into a prescribed pattern. Then the sputtering method like a dry etching process is carried out to delete a prescribed area of the yoke 18 positioned on an organic film 17, and the physical processing is applied to the yoke 18. Thus the yoke 18 is processed with high accuracy and the sensitivity of the element 15 is improved to ensure the high output.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気抵抗効果素子(以下、MR素子と称する
)にて、磁気記録媒体に記録されている信号の検出を行
うようにした薄膜磁気ヘッド(以下、MRヘッドと称す
る)の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thin film that detects signals recorded on a magnetic recording medium using a magnetoresistive element (hereinafter referred to as an MR element). The present invention relates to a method of manufacturing a magnetic head (hereinafter referred to as an MR head).

〔従来の技術〕[Conventional technology]

MRヘッドは巻線型の磁気ヘッドと比較して多くの利点
を有することが知られている。すなわち、MRヘッドは
、磁化方向の変化に応じたMR素子の内部抵抗変化を外
部に取り出すことで磁気記録媒体に記録されている信号
の検出を行うようにした、所謂、磁束応答型のヘッドで
あるから、磁気記録媒体の移送速度に依存せずに信号を
再生できるという利点を有している。また、MRベツド
は半導体の微細加工技術を適用することで高集積化およ
び多素子化が容易であるという利点を有しているから、
高密度記録が行われる固定ヘッド弐PCM録音機の再生
用磁気ヘッドとして特に有望視されている。
It is known that MR heads have many advantages over wire-wound magnetic heads. In other words, the MR head is a so-called magnetic flux responsive head that detects signals recorded on a magnetic recording medium by extracting internal resistance changes of the MR element according to changes in the magnetization direction to the outside. This has the advantage that signals can be reproduced without depending on the transport speed of the magnetic recording medium. In addition, MR beds have the advantage of being easy to achieve high integration and multi-element by applying semiconductor microfabrication technology.
It is particularly promising as a magnetic head for reproduction in fixed head PCM recorders that perform high-density recording.

ただ、このようなMR素子は外部磁界に対して2乗変化
を示す感応特性をもつため、MR素子を再生ヘッドとし
て構成する場合、所定のバイアス磁界を印加する必要が
ある。このバイアス磁界を印加する方法としては、バイ
アス導体に直流電流を流してバイアス磁界を誘起させる
方法や、C0−P層などの高抗磁力薄膜を用いてバイア
ス磁界を印加する方法などが知られている。
However, since such an MR element has a sensitivity characteristic that shows a square change with respect to an external magnetic field, when the MR element is configured as a read head, it is necessary to apply a predetermined bias magnetic field. Known methods for applying this bias magnetic field include a method of inducing a bias magnetic field by flowing a direct current through a bias conductor, and a method of applying a bias magnetic field using a high coercive force thin film such as a C0-P layer. There is.

また、MR素子単体で構成したMRヘッドよりも、MR
素子をヘッド先端から離すとともに磁気記録媒体からの
信号磁界をMR素子まで導くように磁束導入路をヨーク
で構成したヨーク型MRヘッド(以下、YMRヘッドと
称する)の方が信号分解能力や耐久性の点で優れている
ことが知られている。
Furthermore, compared to an MR head composed of a single MR element, the MR
A yoke-type MR head (hereinafter referred to as a YMR head), in which the element is separated from the head tip and the magnetic flux introduction path is formed by a yoke to guide the signal magnetic field from the magnetic recording medium to the MR element, has better signal resolution ability and durability. It is known to be superior in terms of

YMRヘフドを製造するには、第3図(a)に示すよう
に、Ni−ZnフェライトやMn−Znフェライトなど
からなる下側ヨーク1上にSiOやSiO□などからな
る第1絶縁層2をRFスパフタ法や抵抗加熱法などによ
り形成した後、この第1絶縁層2上にA1、A1−Cu
、或いはCuなどの導電層をRFスパッタ法や抵抗加熱
法などにより形成し、さらに、この導電層をドライエツ
チング法やケミカルエツチング法などにより加工してバ
イアス磁界印加用のバイアス導体3を得る。次に、この
バイアス導体3を覆うようにして第2絶縁層4を形成す
る。
To manufacture a YMR heft, as shown in FIG. 3(a), a first insulating layer 2 made of SiO, SiO□, etc. is formed on a lower yoke 1 made of Ni-Zn ferrite or Mn-Zn ferrite. After forming by RF sputtering method, resistance heating method, etc., A1, A1-Cu
Alternatively, a conductive layer of Cu or the like is formed by RF sputtering, resistance heating, etc., and then this conductive layer is processed by dry etching, chemical etching, etc. to obtain a bias conductor 3 for applying a bias magnetic field. Next, a second insulating layer 4 is formed to cover this bias conductor 3.

次いで、同図(b)に示すように、第2絶縁層4上にM
R素子5となる強磁性薄膜を蒸着法やスパッタ法などに
より形成した後、これを所定の形状に加工する。
Next, as shown in FIG.
After forming a ferromagnetic thin film that will become the R element 5 by a vapor deposition method or a sputtering method, it is processed into a predetermined shape.

その後、同図(c)に示すように、第1および第2絶縁
層2・4をRlE (リアクティブ イオン エツチン
グ)法によりテーパエツチングを行った後、MR素子5
と後述の上側ヨーク7との間のスペーサ層として、且つ
、フロントギャップ部Aのギャップ層として機能する第
3絶縁層6を、SiOやS i O,などにより、RF
スパッタ法などで形成する。
Thereafter, as shown in FIG. 5(c), the first and second insulating layers 2 and 4 are taper-etched using the RlE (reactive ion etching) method, and then the MR element 5 is etched.
The third insulating layer 6, which functions as a spacer layer between the upper yoke 7 and the upper yoke 7 described later and as a gap layer of the front gap portion A, is made of SiO, SiO, etc.
It is formed by a sputtering method or the like.

次に、同図(d)に示すように、Ni−Fe合金膜から
なる上側ヨーク7をスパッタ法にて形成した後、同図(
e)に示すように、この上側ヨーク7をケミカルエツチ
ング法、若しくは、ドライエツチング法により所定のパ
ターンに加工することによりYMRヘッドを得る。
Next, as shown in FIG. 3(d), an upper yoke 7 made of a Ni-Fe alloy film is formed by sputtering, and then
As shown in e), a YMR head is obtained by processing this upper yoke 7 into a predetermined pattern by chemical etching or dry etching.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、MR素子5のトラック幅は、多トランク構成
をとる場合には、30〜200μm程度に設定される。
Incidentally, the track width of the MR element 5 is set to about 30 to 200 μm when a multi-trunk configuration is adopted.

一方、MR素子5の幅Wは、MR素子5のΔρ/ρ特性
の感度を上げて高出力を得るために、上記のトラック幅
に対し十分に狭(する必要がある。また、MR素子5は
、上側ヨーク7に対し、立体交差状に部分的に重なる必
要がある。
On the other hand, in order to increase the sensitivity of the Δρ/ρ characteristic of the MR element 5 and obtain high output, the width W of the MR element 5 must be sufficiently narrow (necessary) with respect to the above-mentioned track width. must partially overlap the upper yoke 7 in a three-dimensional intersection.

ここで、前記の第3図(e)における上側ヨーク7の加
工において、サイドエツチング量Bが多いと、上記の重
なり部分が少なくなる。従って、重なり部分を大きくし
ようとすれば、上記の幅Wを大きくする必要があるから
、この幅Wの狭小化は上側ヨーク7の加工精度によって
制限を受けることになる。特に、ケミカルエツチングは
、サイドエツチング量が非常に多いから、上記の幅Wが
20μm以上必要になって高出力のMR素子5を得るこ
とができない。
Here, in the machining of the upper yoke 7 shown in FIG. 3(e), if the side etching amount B is large, the above-mentioned overlapping portion will be reduced. Therefore, in order to enlarge the overlapping portion, it is necessary to increase the above-mentioned width W, and therefore, the narrowing of the width W is limited by the processing accuracy of the upper yoke 7. In particular, chemical etching involves a very large amount of side etching, so the width W needs to be 20 μm or more, making it impossible to obtain a high-output MR element 5.

この点、ドライエツチング法、例えば、スパッタエツチ
ング法による上側ヨーク7の加工によれば、比較的良好
な加工精度が得られるから、上記の重なり部分を確保し
つつMR素子5の幅Wを5〜20μm程度に抑えること
が可能である。
In this regard, if the upper yoke 7 is processed by a dry etching method, for example, a sputter etching method, a relatively good processing accuracy can be obtained, so the width W of the MR element 5 can be increased from 5 to 50% while ensuring the above-mentioned overlapping area. It is possible to suppress the thickness to about 20 μm.

ところが、かかるドライエツチング法によるエツチング
では、被加工物と他の膜との選択性(エツチング速度比
率)が悪いため、別の問題を惹起し、YMRヘッドの性
能向上が」−分に図れないというのが実情である。
However, etching using such a dry etching method has poor selectivity (etching speed ratio) between the workpiece and other films, causing other problems and making it impossible to improve the performance of the YMR head. That is the reality.

すなわち、前記の第3絶縁層6の厚みは薄い方が、MR
素子5と上側ヨーク7との距離が近くなるとともに、ヘ
ッドの磁気抵抗が小さくなるから高い再生出力が得られ
、また、ギャップ長も小さくなるからヘッドの分解能向
上が図れるのであるが、前記ドライエツチング法による
上側ヨーク7のエツチングでは上記選択性の悪さに起因
して第3絶縁層6にもエツチングが進行し、この第3絶
縁層6の厚みが薄い場合にはMR素子5が部分的にエツ
チングされてしまうことになる。このため、第3絶縁層
6の厚みを十分に薄くすることができず、YMRヘフド
の性能向上が十分に図れないことになる。
That is, the thinner the third insulating layer 6 is, the better the MR
As the distance between the element 5 and the upper yoke 7 becomes shorter, the magnetic resistance of the head becomes smaller, so a higher reproduction output can be obtained, and the gap length also becomes smaller, which improves the resolution of the head. When the upper yoke 7 is etched by the etching method, the third insulating layer 6 is also etched due to the poor selectivity, and if the third insulating layer 6 is thin, the MR element 5 is partially etched. You will end up being rejected. For this reason, the thickness of the third insulating layer 6 cannot be made sufficiently thin, and the performance of the YMR head cannot be sufficiently improved.

具体的には、上側ヨーク7の膜厚は、YMRヘッドの周
波数特性および再生出力を考慮すると、0.5μm以上
に設定される。また、MR素子5の膜厚は200〜50
0人と非常に薄い。この場合、上側ヨーク7の膜厚分布
のばらつき、および、エツチングの不均一性を考慮する
と、第3絶縁層6の膜厚が0.3μm以下である場合に
上記MR素子5が部分的にエツチングされる虞れがある
Specifically, the film thickness of the upper yoke 7 is set to 0.5 μm or more in consideration of the frequency characteristics and reproduction output of the YMR head. Further, the film thickness of the MR element 5 is 200 to 50
Very thin with 0 people. In this case, considering variations in the thickness distribution of the upper yoke 7 and non-uniformity of etching, the MR element 5 may be partially etched when the thickness of the third insulating layer 6 is 0.3 μm or less. There is a risk that this will happen.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る薄膜磁気ヘッドの製造方法は、上記の課題
を解決するために、印加される信号磁界の変化を、一軸
磁気異方性を有する強磁性薄膜の電気抵抗変化として検
出する磁気抵抗効果素子と、上記の信号磁界を磁気抵抗
効果素子に導く磁束4人路をなす上側および下側ヨーク
とを備えた薄膜磁気ヘッドの製造方法において、上記の
磁気抵抗効果素子上に絶縁層を形成する工程と上記の上
側ヨークを形成する工程との間に、上記絶縁層上に有機
膜を形成する工程を有し、且つ、上記の上側ヨークを形
成する工程の後に上側ヨークにおける上記有機膜上に位
置する所定部分にドライエツチングを施してこの上側ヨ
ークを加工する工程を有することを特徴としている。
In order to solve the above problems, a method for manufacturing a thin film magnetic head according to the present invention provides a magnetoresistive effect in which a change in an applied signal magnetic field is detected as a change in electrical resistance of a ferromagnetic thin film having uniaxial magnetic anisotropy. In a method of manufacturing a thin film magnetic head comprising an element and upper and lower yokes forming four magnetic flux paths for guiding the signal magnetic field to the magnetoresistive element, an insulating layer is formed on the magnetoresistive element. a step of forming an organic film on the insulating layer between the step and the step of forming the upper yoke; and after the step of forming the upper yoke, forming an organic film on the upper yoke. The method is characterized in that it includes a step of processing the upper yoke by performing dry etching on a predetermined portion thereof.

〔作 用〕[For production]

上記の構成によれば、上側ヨークの加工をドライエツチ
ングにより行っているので、精度良(上側ヨークの加工
を行うことができる。よって、磁気抵抗効果素子の幅の
狭小化を図ることが可能となり、磁気抵抗効果素子の感
度を上げて高出力化を図ることができる。
According to the above configuration, since the upper yoke is processed by dry etching, the upper yoke can be processed with high precision.Therefore, it is possible to reduce the width of the magnetoresistive element. , it is possible to increase the sensitivity of the magnetoresistive element and achieve high output.

一方、ドライエツチングにおける選択性の悪さに起因す
る磁気抵抗効果素子に対する部分的なエツチングは、前
記の有機膜がストッパーの役割を発揮することにより確
実に防止される。ゆえに、磁気抵抗効果素子上に形成す
る絶縁層の厚みを薄(することが許容され、再生出力の
向上および分解能の向上を図ることができる。
On the other hand, partial etching of the magnetoresistive element due to poor selectivity in dry etching is reliably prevented because the organic film acts as a stopper. Therefore, it is permissible to reduce the thickness of the insulating layer formed on the magnetoresistive element, and it is possible to improve reproduction output and resolution.

〔実施例〕〔Example〕

本発明の一実施例を第1図および第2図に基づいて説明
すれば、以下の通りである。
An embodiment of the present invention will be described below based on FIGS. 1 and 2.

本発明に係る薄膜磁気ヘッドの製造方法により製造され
るヨーク型の磁気抵抗効果素子型薄膜磁気ヘッド(以下
、YMRヘッドと称する)は、第2図に示すように、下
側ヨーク11と、第1緯縁層12と、バイアス磁界を誘
起するバイアス導体13と、第2絶縁層14と、印加さ
れる信号磁界の変化を一軸磁気異方性を有する強磁性薄
膜の電気抵抗変化として検出する磁気抵抗効果素子(以
下、MR素子と称する)15と、第3絶縁層16と、レ
ジスト(なお、レジストの場合は最終的に除去されるこ
とが望ましい)やPIQ(ポリイミド樹脂)などの有機
膜17、上記の下側ヨーク11とで上記の信号磁界をM
R素子15に導<磁束導入路をなす上側ヨーク18とを
備えて構成される。
As shown in FIG. 2, a yoke-type magnetoresistive element type thin-film magnetic head (hereinafter referred to as a YMR head) manufactured by the method for manufacturing a thin-film magnetic head according to the present invention has a lower yoke 11 and a lower yoke 11. a first latitudinal edge layer 12, a bias conductor 13 that induces a bias magnetic field, a second insulating layer 14, and a magnetic field that detects changes in the applied signal magnetic field as changes in electrical resistance of a ferromagnetic thin film having uniaxial magnetic anisotropy. A resistive effect element (hereinafter referred to as an MR element) 15, a third insulating layer 16, and an organic film 17 such as a resist (in the case of resist, it is desirable to remove it eventually) or PIQ (polyimide resin). , and the lower yoke 11 to reduce the signal magnetic field to M.
The R element 15 is provided with an upper yoke 18 that forms a magnetic flux introduction path.

YMRヘフドを製造するには、第1図(a)に示すよう
に、Ni−ZnフェライトやMn−Znフェライトなど
からなる下側ヨーク11上にStOやSt、、などから
なる第1絶縁層12をRFスパッタ法や抵抗加熱法など
により形成した後、この第1絶縁N12上にAt、、A
/−Cu、或いはCuなどの導電層をRFスパッタ法や
抵抗加熱法などにより形成し、さらに、この導電層をド
ライエツチング法やケミカルエツチング法などにより加
工してバイアス磁界印加用のバイアス導体13を得る。
To manufacture a YMR heft, as shown in FIG. 1(a), a first insulating layer 12 made of StO, St, etc. is placed on a lower yoke 11 made of Ni-Zn ferrite, Mn-Zn ferrite, etc. is formed by an RF sputtering method, a resistance heating method, etc., and then At, , A are formed on this first insulation N12.
A conductive layer of /-Cu or Cu is formed by RF sputtering, resistance heating, etc., and then this conductive layer is processed by dry etching, chemical etching, etc. to form a bias conductor 13 for applying a bias magnetic field. obtain.

次に、このバイアス古体13を覆うようにして第2絶縁
層14を形成する。次いで、第2絶縁層14上にMR素
子15となる強磁性薄膜を蒸着法やスパッタ法などによ
り形成した後、これの幅W1が5〜20μmの範囲内に
納まるように加工する。その後、第1および第2絶縁層
12・14をRIE (リアクティブ イオン エツチ
ング)法によりテーパエツチングを行った後、MR素子
15と後述の上側ヨーク18との間のスペーサ層として
、且つ、フロントギャップ部A1のギャップ層として機
能する第3絶縁層16を、SiOや5i02などにより
、RFスパッタ法やP−CVD法などで膜厚が0.1〜
0.3μm程度となるように形成する。
Next, a second insulating layer 14 is formed to cover this old bias body 13. Next, a ferromagnetic thin film that will become the MR element 15 is formed on the second insulating layer 14 by vapor deposition, sputtering, or the like, and then processed so that its width W1 falls within the range of 5 to 20 μm. Thereafter, the first and second insulating layers 12 and 14 are taper-etched by RIE (reactive ion etching), and then used as a spacer layer between the MR element 15 and an upper yoke 18, which will be described later, and as a front gap. The third insulating layer 16, which functions as a gap layer in part A1, is made of SiO, 5i02, etc., and is formed with a film thickness of 0.1 to 0.1 by RF sputtering or P-CVD.
It is formed to have a thickness of about 0.3 μm.

次いで、同図(b)に示すように、MR素子15上の第
3絶縁N16上に、ポジレジスト、ネガレジスト、若し
くはPIQなどの有機膜17をフォトリソグラフィ技術
にて形成する。を機成17の幅は、YMRヘッドの再生
出力および周波数特性の観点から、MR素子15の幅W
1の約40〜90%程度に設定される。また、有機膜1
7の膜厚は、0.3〜3μmに設定される。なお、レジ
ストは、通常200℃以上になると変質するため、後述
の上側ヨーク18の加工後に剥離する方が望ましい。一
方、PIQは200℃以上でも変質しないから、上側ヨ
ーク18の加工後に剥離せずとも良く、この剥離の手間
を省くことができる。
Next, as shown in FIG. 3B, an organic film 17 such as a positive resist, a negative resist, or PIQ is formed on the third insulating layer N16 on the MR element 15 by photolithography. The width of the structure 17 is determined by the width W of the MR element 15 from the viewpoint of the reproduction output and frequency characteristics of the YMR head.
It is set to about 40 to 90% of 1. In addition, organic film 1
The film thickness of No. 7 is set to 0.3 to 3 μm. Note that since the resist normally deteriorates at temperatures above 200° C., it is preferable to peel it off after processing the upper yoke 18, which will be described later. On the other hand, since PIQ does not change in quality even at 200° C. or higher, it does not need to be peeled off after processing the upper yoke 18, and the effort of this peeling can be saved.

次に、同図(C)に示すように、MR素子15を跨ぐよ
うに、上側ヨーク18となる強磁性薄膜(Ni−Fe合
金膜など)をスパッタ法などにより形成する。上側ヨー
ク18の膜厚は、YMRヘッドの再生出力および周波数
特性の観点から、0.5μm以上に設定される。
Next, as shown in FIG. 3C, a ferromagnetic thin film (such as a Ni--Fe alloy film) that will become the upper yoke 18 is formed by sputtering or the like so as to straddle the MR element 15. The thickness of the upper yoke 18 is set to 0.5 μm or more from the viewpoint of the reproduction output and frequency characteristics of the YMR head.

その後、フォトリソグラフィ技術にて、上記の上側ヨー
ク18を覆うようにしてレジスト膜19を成膜し、これ
を所定のパターンに加工する。次いで、上側ヨーク18
における上記有機膜17上に位置する所定部分を、ドラ
イエツチングであるスバ・7タ法やイオンミリング法な
どを用いて除去し、上側ヨーク18を物理的に加工する
Thereafter, a resist film 19 is formed by photolithography to cover the upper yoke 18, and is processed into a predetermined pattern. Next, the upper yoke 18
The upper yoke 18 is physically processed by removing a predetermined portion located on the organic film 17 using a dry etching method such as a sputtering method or an ion milling method.

イオンミリング法で加工する場合において、その導入ガ
スとして純アルゴンガスを使用し、流量を8.53CC
M、真空度I X 10−’To r r、基板に対す
るアルゴンビームの照射角度を30’出力350■、0
.3Aの条件を設定すると、上側ヨークとなるNi−F
e合金膜のエツチング速度は約30人/分となり、また
、サイドエツチング量を−0,5μm以内に抑えること
ができる。
When processing using the ion milling method, pure argon gas is used as the introduced gas, and the flow rate is 8.53CC.
M, degree of vacuum I
.. When the condition of 3A is set, Ni-F becomes the upper yoke.
The etching speed of the e-alloy film is approximately 30 people/min, and the amount of side etching can be suppressed to within -0.5 .mu.m.

ドライエツチングが終了したら、レジスト膜19の剥離
を行うが、前記有機膜17としてレジストを用いた場合
には、レジスト膜19の剥離と同時に、レジストも剥離
する。一方、有機膜17としてPIQを用いた場合には
、レジスト膜19のみ剥離する。
When the dry etching is completed, the resist film 19 is peeled off. If a resist is used as the organic film 17, the resist is also peeled off at the same time as the resist film 19 is peeled off. On the other hand, when PIQ is used as the organic film 17, only the resist film 19 is removed.

このように、本発明に係る薄膜磁気ヘッドの製造方法に
よれば、上側ヨーク18の加工をドライエツチングによ
り行うから、上側ヨーク18を精度良く加工を行うこと
ができる。すなわち、上述のごとく、サイドエツチング
ff1B1を0.5μm以内に抑えることができる。こ
れにより、MR素子15の幅W1を5〜20μm程度に
設定することが可能になり、これによって、MR素子1
5のΔρ/ρ特性の感度を上げて高出力化を図ることが
できる。
As described above, according to the method for manufacturing a thin film magnetic head according to the present invention, the upper yoke 18 is processed by dry etching, so that the upper yoke 18 can be processed with high precision. That is, as described above, side etching ff1B1 can be suppressed to within 0.5 μm. This makes it possible to set the width W1 of the MR element 15 to approximately 5 to 20 μm.
By increasing the sensitivity of the Δρ/ρ characteristic of No. 5, high output can be achieved.

一方、ドライエツチングにおける選択性の悪さに起因す
るMR素子15に対する部分的なエツチングは、前記の
有機膜17がストッパーの役割を発揮することにより確
実に防止される。従って、前記の第3絶縁層16の厚み
を薄くすることが許容され、YMRヘフドにおいて再生
出力の向上および分解能の向上を図ることができる。
On the other hand, partial etching of the MR element 15 due to poor selectivity in dry etching is reliably prevented because the organic film 17 functions as a stopper. Therefore, it is permissible to reduce the thickness of the third insulating layer 16, and it is possible to improve the reproduction output and the resolution in the YMR head.

〔発明の効果〕〔Effect of the invention〕

本発明に係る薄膜磁気ヘッドの製造方法は、以上のよう
に、印加される信号磁界の変化を、一軸磁気異方性を有
する強磁性薄膜の電気抵抗変化として検出する磁気抵抗
効果素子と、上記の信号磁界を磁気抵抗効果素子に導く
磁束導入路をなす上側および下側ヨークとを備えた薄膜
磁気ヘッドの製造方法において、上記の磁気抵抗効果素
子上に絶縁層を形成する工程と上記の上側ヨークを形成
する工程との間に、上記絶縁層上に有機膜を形成する工
程を有し、且つ、上記の上側ヨークを形成する工程の後
に上側ヨークにおける上記有機膜上に位置する所定部分
にドライエツチングを施してこの上側ヨークを加工する
工程を有する構成である。
As described above, the method for manufacturing a thin film magnetic head according to the present invention includes a magnetoresistive element that detects a change in an applied signal magnetic field as a change in electrical resistance of a ferromagnetic thin film having uniaxial magnetic anisotropy; A method for manufacturing a thin film magnetic head comprising upper and lower yokes forming a magnetic flux introduction path for guiding a signal magnetic field to a magnetoresistive element, the step of forming an insulating layer on the magnetoresistive element, and the step of forming an insulating layer on the magnetoresistive element; a step of forming an organic film on the insulating layer between the step of forming the yoke, and a predetermined portion of the upper yoke located on the organic film after the step of forming the upper yoke; The structure includes a step of processing the upper yoke by dry etching.

これにより、磁気抵抗効果素子の幅の狭小化を図ること
ができ、磁気抵抗効果素子の感度を上げて高出力化を図
ることができる。その上、磁気抵抗効果素子上に形成さ
れる絶縁層の厚みを薄くすることが許容されるから、薄
膜磁気ヘッドの再生出力の向上および分解能の向上を図
ることができるという効果も併せて奏する。
Thereby, the width of the magnetoresistive element can be reduced, and the sensitivity of the magnetoresistive element can be increased to achieve high output. Furthermore, since it is permissible to reduce the thickness of the insulating layer formed on the magnetoresistive element, it is also possible to improve the reproduction output and resolution of the thin-film magnetic head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示すものであ
って、第1図(a)ないしくd)はそれぞれY M R
ヘッドの製造工程の各段階を示す断面図、第2図はYM
Rヘッドの断面図、第3図は従来例を示すものであって
、第3図(a)ないしくe)はそれぞれYMRヘッドの
製造工程の各段階を示す断面図である。 11は下側ヨーク、12は第1絶縁層、13はバイアス
導体、14は第2絶縁層、15は磁気抵抗効果素子(M
R素子)、16は第3絶縁層、17は有機膜、18は上
側ヨークである。 第 図(a) 弔 3VA(b) 石 図(C) 嬉 図 (d) 弔 図(e)
FIGS. 1 and 2 show an embodiment of the present invention, and FIGS. 1(a) to d) respectively show Y M R
A cross-sectional view showing each stage of the head manufacturing process, Figure 2 is YM
A cross-sectional view of the R head, FIG. 3, shows a conventional example, and FIGS. 3(a) to 3(e) are cross-sectional views showing each stage of the manufacturing process of the YMR head. 11 is a lower yoke, 12 is a first insulating layer, 13 is a bias conductor, 14 is a second insulating layer, and 15 is a magnetoresistive element (M
R element), 16 is a third insulating layer, 17 is an organic film, and 18 is an upper yoke. Diagram (a) Funeral diagram 3VA (b) Stone diagram (C) Happy diagram (d) Funeral diagram (e)

Claims (1)

【特許請求の範囲】 1、印加される信号磁界の変化を、一軸磁気異方性を有
する強磁性薄膜の電気抵抗変化として検出する磁気抵抗
効果素子と、上記の信号磁界を磁気抵抗効果素子に導く
磁束導入路をなす上側および下側ヨークとを備えた薄膜
磁気ヘッドの製造方法において、 上記の磁気抵抗効果素子上に絶縁層を形成する工程と上
記の上側ヨークを形成する工程との間に、上記絶縁層上
に有機膜を形成する工程を有し、且つ、上記の上側ヨー
クを形成する工程の後に上側ヨークにおける上記有機膜
上に位置する所定部分にドライエッチングを施してこの
上側ヨークを加工する工程を有することを特徴とする薄
膜磁気ヘッドの製造方法。
[Claims] 1. A magnetoresistive element that detects a change in an applied signal magnetic field as a change in electrical resistance of a ferromagnetic thin film having uniaxial magnetic anisotropy; In a method of manufacturing a thin film magnetic head having upper and lower yokes forming a guiding magnetic flux introduction path, between the step of forming an insulating layer on the magnetoresistive element and the step of forming the upper yoke, , comprising the step of forming an organic film on the insulating layer, and after the step of forming the upper yoke, dry etching is performed on a predetermined portion of the upper yoke located on the organic film to form the upper yoke. 1. A method of manufacturing a thin film magnetic head, comprising a processing step.
JP15726188A 1988-06-23 1988-06-23 Production of thin film magnetic head Pending JPH025219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15726188A JPH025219A (en) 1988-06-23 1988-06-23 Production of thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15726188A JPH025219A (en) 1988-06-23 1988-06-23 Production of thin film magnetic head

Publications (1)

Publication Number Publication Date
JPH025219A true JPH025219A (en) 1990-01-10

Family

ID=15645785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15726188A Pending JPH025219A (en) 1988-06-23 1988-06-23 Production of thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH025219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646804A (en) * 1991-05-21 1997-07-08 Philips Electronics North America Corporation Thin film magnetic head having polymer on broken flux guide sections, method of producing and integrated structure incorporating same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646804A (en) * 1991-05-21 1997-07-08 Philips Electronics North America Corporation Thin film magnetic head having polymer on broken flux guide sections, method of producing and integrated structure incorporating same

Similar Documents

Publication Publication Date Title
US6230390B1 (en) Canted longitudinal patterned exchange biased dual-stripe magnetoresistive (DSMR) sensor element and method for fabrication thereof
US5996213A (en) Thin film MR head and method of making wherein pole trim takes place at the wafer level
JP5570757B2 (en) Magnetoresistive head and magnetic recording / reproducing apparatus
US6785954B2 (en) Method for fabricating lead overlay (LOL) on the bottom spin valve GMR read sensor
US5923505A (en) Magnetoresistive sensor having a pinned soft magnetic layer
US7158352B2 (en) Magnetoresistive device and method of manufacturing same, and thin-film magnetic head and method of manufacturing same
US6228276B1 (en) Method of manufacturing magnetoresistive (MR) sensor element with sunken lead structure
US6310751B1 (en) Anti-parallel longitudinal patterned exchange biased dual stripe magnetoresistive (DSMR) sensor element and method for fabrication thereof
JP2849354B2 (en) Magnetic transducer and thin-film magnetic head
JP2000113421A (en) Magnetic tunnel junction magneto-resistive head
JPH025219A (en) Production of thin film magnetic head
US6842314B2 (en) Magnetoresistive device and method of manufacturing same, and thin-film magnetic head and method of manufacturing same
US6798622B2 (en) Magnetoresistive (MR) sensor element with sunken lead structure
JP2002216317A (en) Thin film magnetic recording head and its manufacturing method
JPH0447890B2 (en)
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JP3089886B2 (en) Method of manufacturing magnetoresistive head
US7141508B2 (en) Magnetoresistive effect thin-film magnetic head and manufacturing method of magnetoresistive effect thin-film magnetic head
JPH11191206A (en) Thin film magnetic head
JP3036587B2 (en) Magnetoresistive head and method of manufacturing the same
JPS5987616A (en) Magnetic thin film head
JP3164050B2 (en) Manufacturing method of magnetoresistive composite head
JPS63117308A (en) Magneto-resistance effect type magnetic head and its manufacture
JP4010702B2 (en) Manufacturing method of thin film magnetic head
JPH09153652A (en) Magnetoresistive effect element