JPH0252193B2 - - Google Patents

Info

Publication number
JPH0252193B2
JPH0252193B2 JP56014343A JP1434381A JPH0252193B2 JP H0252193 B2 JPH0252193 B2 JP H0252193B2 JP 56014343 A JP56014343 A JP 56014343A JP 1434381 A JP1434381 A JP 1434381A JP H0252193 B2 JPH0252193 B2 JP H0252193B2
Authority
JP
Japan
Prior art keywords
air
cooling
temperature
exhaust heat
air compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56014343A
Other languages
Japanese (ja)
Other versions
JPS57129367A (en
Inventor
Susumu Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56014343A priority Critical patent/JPS57129367A/en
Publication of JPS57129367A publication Critical patent/JPS57129367A/en
Publication of JPH0252193B2 publication Critical patent/JPH0252193B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Description

【発明の詳細な説明】 本発明は高炉用圧送空気の脱湿装置あるいは鉱
内空調空気の脱湿冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dehumidifying device for compressed air for blast furnaces or a dehumidifying and cooling device for air-conditioned air in mines.

省エネルギーをはかつた高炉用圧送空気脱湿装
置の従来技術を第1図を参照して説明する。
A conventional technology for an energy-saving pressurized air dehumidifier for blast furnaces will be explained with reference to FIG.

1は空気圧縮機で常温(約35℃)の吸込空気は
後述の空気脱湿器2にて冷却脱湿され、3℃〜10
℃の乾燥空気となつて空気圧縮機1に吸入され、
上記圧縮機1にて圧縮されて高炉へ送給される。
他方冷凍機用圧縮機3、凝縮機5、蒸発器4等に
て冷凍サイクルを形成し、蒸発器4で得られた低
温熱源を媒体を介し上記空気脱湿器2に導入し、
前述の冷却脱湿作用を行なう。6はクーリングタ
ワーを示す。また第2図は鉱内空調装置の従来例
を示し、空気圧縮機1は常温(約35℃)の空気を
吸込み、圧縮して100℃〜130℃に温度上昇された
圧縮空気をアフタークーラ7で約30℃〜50℃に冷
却し、次いで空気冷却器2′で脱湿冷却し、10℃
〜15℃の乾燥空気として鉱内へ送風する。上記空
気冷却器2′は冷凍サイクル(図示せず)の蒸発
器4で得られた低温熱源を媒体として導入し前述
の脱湿冷却作用を行なう。
1 is an air compressor, and the intake air at room temperature (approximately 35°C) is cooled and dehumidified in air dehumidifier 2, which will be described later, to a temperature of 3°C to 10°C.
It becomes dry air at ℃ and is sucked into the air compressor 1.
It is compressed by the compressor 1 and sent to the blast furnace.
On the other hand, a refrigeration cycle is formed by a refrigeration compressor 3, a condenser 5, an evaporator 4, etc., and a low-temperature heat source obtained by the evaporator 4 is introduced into the air dehumidifier 2 through a medium,
Performs the cooling and dehumidifying action described above. 6 indicates a cooling tower. Fig. 2 shows a conventional example of an air conditioner in a mine, where an air compressor 1 sucks air at room temperature (approximately 35°C), compresses it, and sends the compressed air, whose temperature has been raised to 100°C to 130°C, to an aftercooler 7. Cooled to approximately 30℃~50℃, then dehumidified and cooled with air cooler 2', and cooled to 10℃.
Dry air at ~15°C is blown into the mine. The air cooler 2' introduces as a medium a low-temperature heat source obtained from the evaporator 4 of a refrigeration cycle (not shown), and performs the dehumidifying and cooling action described above.

しかるに上記両装置共、圧縮空気の持つ熱エネ
ルギーは全く利用されず排熱されていた。また冷
却、脱湿用の冷凍機は別個の動力源にて駆動され
ていた。
However, in both of the above devices, the thermal energy of the compressed air is not utilized at all and is dissipated. In addition, the refrigerators for cooling and dehumidification were driven by separate power sources.

本発明は上記従来技術に鑑みて発明されたもの
で、圧縮空気の自己排熱を冷凍機に利用し、省エ
ネルギーをはかつた空気冷却、脱湿装置を提供す
ることを目的とする。
The present invention was invented in view of the above-mentioned prior art, and an object of the present invention is to provide an air cooling and dehumidification device that utilizes the self-exhausted heat of compressed air in a refrigerator and saves energy.

本発明は上記目的を達成するために、吸込空気
を圧縮して吐出する空気圧縮機と前記空気を冷却
すると共に脱湿する冷却脱湿手段とを備える空気
冷却脱湿装置において、前記冷却脱湿手段を前記
空気圧縮機の吸込側もしくは吐出側に配設し、こ
の冷却脱湿手段に吸込式冷凍機を接続して冷却脱
湿手段の冷熱源とし、前記空気圧縮機の吐出側に
は吐出空気の熱を回収する排熱回収器を設け、こ
の排熱回収器を前記吸収式冷凍機に接続し、排熱
回収器によつて得られる前記空気圧縮機の排熱を
吸収式冷凍機の動力源とするように構成したもの
である。
In order to achieve the above object, the present invention provides an air cooling and dehumidifying device comprising an air compressor that compresses and discharges intake air, and a cooling and dehumidifying means that cools and dehumidifies the air. A means is disposed on the suction side or the discharge side of the air compressor, a suction type refrigerator is connected to the cooling and dehumidifying means to serve as a cold heat source for the cooling and dehumidifying means, and a discharge means is provided on the discharge side of the air compressor. A waste heat recovery device is provided to recover heat from the air, and this waste heat recovery device is connected to the absorption refrigerator, and the waste heat of the air compressor obtained by the waste heat recovery device is transferred to the absorption refrigerator. It is configured to be used as a power source.

第3図は本発明を高炉脱湿装置に適用した一実
施例を示す。11は空気圧縮機で、吸込空気は一
次脱湿器12、二次脱湿器13を経て空気圧縮機
11に吸入され、圧縮空気は排熱回収器14を経
て脱湿され、次いで高炉へ送給される。上記一次
脱湿器12は低温作動の吸収式冷凍機15で得ら
れた冷水が循環される。二次脱湿器13は別動力
により駆動される冷凍機16で得られた冷熱が循
環される。排熱回収器14は空気圧縮機11の吐
出空気より排熱を回収し、低温作動の吸収式冷凍
機15の熱源として利用される。17は吸収式冷
凍機15の排熱用クーリングタワーである。上記
各機器は図示の如く配管接続されて上記脱湿装置
が形成される。
FIG. 3 shows an embodiment in which the present invention is applied to a blast furnace dehumidifier. Reference numeral 11 denotes an air compressor, and the suction air is sucked into the air compressor 11 through a primary dehumidifier 12 and a secondary dehumidifier 13, the compressed air is dehumidified through an exhaust heat recovery device 14, and then sent to the blast furnace. be provided. The primary dehumidifier 12 circulates cold water obtained by an absorption refrigerator 15 operating at a low temperature. The secondary dehumidifier 13 circulates cold heat obtained by a refrigerator 16 driven by a separate power. The exhaust heat recovery device 14 recovers exhaust heat from the air discharged from the air compressor 11 and is used as a heat source for the absorption refrigerator 15 operating at a low temperature. 17 is a cooling tower for exhaust heat of the absorption refrigerator 15. The above-mentioned respective devices are connected by piping as shown in the figure to form the above-mentioned dehumidification device.

次に上記脱湿装置の作用について説明する。図
に記載された温度は理解を容易にするための参考
温度を示す。
Next, the operation of the above dehumidification device will be explained. The temperatures shown in the figure are reference temperatures for easy understanding.

常温(約35℃)で大気から吸入された空気は、
まず一次脱湿器12で吸収式冷凍機15から循環
される7℃〜10℃の冷水により15℃〜20℃程度に
冷却、脱湿され、二次脱湿器13に流入する。上
記作用により循環冷水は約15℃程度になり吸収式
冷凍機15に戻る。二次脱湿器13に流入した空
気は、冷凍機6で得られた冷熱より約3℃〜15℃
程度まで冷却、脱湿され、空気圧縮機11に吸入
される。空気圧縮機としては多段遠心式が一般的
であり、最終段を出た圧縮空気温度は通常約100
℃〜130℃程度となる。吐出空気は排熱回収器1
4で温水に排熱し、約100℃程度の脱湿空気とな
り高炉に送給される。吐出空気の上記排熱は排熱
回収器14で温水に回収し、約90℃の流入温水は
約100℃程度に加熱される。この加熱温水は低温
作動の吸収式冷凍機15に導入され、該冷凍機1
5の動力源として使用される。吸収式冷凍機の特
性として、得られる冷水の温度レベルを高くすれ
ばする程、低温の温水の利用が可能であり、冷水
出口温度10℃程度であれば、90℃程度の温水でも
運転入力として十分利用可能である。本実施例で
は常温の吸入空気温度に着目し、一次脱湿器と二
次脱湿器に分け、できるだけ低温温水の利用可能
なように、吸収式冷凍機を一次脱湿用として利用
している。一例として、常温空気条件として、35
℃、水分25gn/Nm3、風量10000m3/min、冷
却・脱湿後の空気状態値3℃、水分6.5gn/N
m3とした場合、必要冷凍機の容量は約4500冷凍ト
ン(13608000Kcal/h)となり、従来の方式で
冷却、脱湿すると冷凍機用圧縮機(遠心式)の必
要動力は約4000KWとなる。一方、圧縮機の吐出
ガス条件を圧力6Kg/cm2g、温度130℃として、
100℃まで排熱回収すれば、取得熱量は、約
3110400Kcal/h、これを吸収式冷凍機に使用す
ることにより約700冷凍トン(冷水出口温度10℃
として)相当分の省エネルギーが可能となる。概
略500KW、12%の省エネルギー効果が得られる。
Air inhaled from the atmosphere at room temperature (approximately 35℃)
First, in the primary dehumidifier 12 , the water is cooled to about 15° C. to 20° C. and dehumidified by cold water of 7° C. to 10° C. circulated from the absorption refrigerator 15 , and then flows into the secondary dehumidifier 13 . Due to the above action, the circulating cold water reaches a temperature of about 15° C. and returns to the absorption chiller 15. The air flowing into the secondary dehumidifier 13 is approximately 3°C to 15°C higher than the cold heat obtained by the refrigerator 6.
The air is cooled and dehumidified to a certain degree and then sucked into the air compressor 11. Multi-stage centrifugal air compressors are common, and the temperature of the compressed air leaving the final stage is usually around 100°C.
The temperature ranges from ℃ to 130℃. The discharge air is used as exhaust heat recovery device 1
At step 4, the heat is exhausted into hot water, which becomes dehumidified air at a temperature of approximately 100°C and is sent to the blast furnace. The exhaust heat of the discharged air is recovered into hot water by the exhaust heat recovery device 14, and the incoming hot water of about 90°C is heated to about 100°C. This heated hot water is introduced into an absorption refrigerator 15 operating at a low temperature.
5 is used as a power source. As a characteristic of absorption chillers, the higher the temperature level of the obtained cold water, the more low-temperature hot water can be used.If the chilled water outlet temperature is about 10℃, even hot water of about 90℃ can be used as operational input. It is fully available. In this example, we focused on the intake air temperature at room temperature, divided it into a primary dehumidifier and a secondary dehumidifier, and used an absorption refrigerator for primary dehumidification so that we could use as low-temperature hot water as possible. . As an example, under normal temperature air condition, 35
℃, moisture 25gn/Nm 3 , air volume 10000m 3 /min, air condition value after cooling and dehumidification 3℃, moisture 6.5gn/N
m3 , the required capacity of the refrigerator is approximately 4,500 refrigeration tons (1,360,8000Kcal/h), and if the conventional method is used for cooling and dehumidification, the required power of the refrigerator compressor (centrifugal type) is approximately 4,000KW. On the other hand, assuming that the discharge gas conditions of the compressor are a pressure of 6 kg/cm 2 g and a temperature of 130°C,
If exhaust heat is recovered up to 100℃, the amount of heat obtained will be approximately
3110400Kcal/h, by using this in an absorption chiller, approximately 700 refrigeration tons (chilled water outlet temperature 10℃)
), it is possible to save a considerable amount of energy. Approximately 500KW, 12% energy saving effect.

第4図は鉱内空調用圧送空気の脱湿、冷却装置
の一実施例を示す。
FIG. 4 shows an embodiment of a dehumidifying and cooling device for compressed air for in-mine air conditioning.

21は空気圧縮機、24は排熱回収器、23は
アフタークーラ、22は空気冷却器、25は吸収
式冷凍機、27はクーリングタワーで図示の如く
配管接続され冷却、脱湿装置が形成されている。
上記装置は、従来の別動力による冷凍機を、自己
排熱を動力源とする吸収式冷凍機に置きかえたと
ころに特徴があり、図示の温度レベルは理解を容
易にするための参考値を示す。約25℃程度の吸込
空気は空気圧縮機21にて圧縮され、120℃〜130
℃程度まで温度上昇する。この圧縮空気は排熱回
収器24に放熱し、約100℃程度に低下し、次い
でアフタークーラ23にて約30℃程度に冷却さ
れ、更に、空気冷却器22にて約15℃程度まで冷
却され、鉱内へ空調空気として送給される。排熱
回収器24で約90℃の温水は約100℃程度まで加
熱され、この温水は吸収式冷凍機25の動力源と
して使用され、この吸収式冷凍機25で得られた
約5℃程度の冷水が前述の空気冷却器22に流入
し、圧縮空気を前述のように冷却し、冷水自身は
約10℃程度になり吸収式冷凍機25に戻る。
21 is an air compressor, 24 is an exhaust heat recovery device, 23 is an aftercooler, 22 is an air cooler, 25 is an absorption refrigerator, and 27 is a cooling tower, which is connected to piping as shown in the figure to form a cooling and dehumidifying device. There is.
The above device is characterized by replacing the conventional separately powered refrigerator with an absorption refrigerator powered by self-exhausted heat, and the temperature levels shown are reference values for ease of understanding. . The intake air at about 25°C is compressed by the air compressor 21, and the air is compressed to 120°C to 130°C.
The temperature rises to about ℃. This compressed air radiates heat to the exhaust heat recovery device 24 and is cooled to about 100°C, then cooled to about 30°C by the aftercooler 23, and further cooled to about 15°C by the air cooler 22. , which is sent into the mine as conditioned air. The hot water of about 90°C is heated to about 100°C in the exhaust heat recovery device 24, and this hot water is used as a power source for the absorption chiller 25. The cold water flows into the air cooler 22 described above, cools the compressed air as described above, and the cold water itself reaches a temperature of about 10° C. and returns to the absorption chiller 25.

以上説明したように本発明によれば、圧縮空気
の自己排熱エネルギー動力源として低温作動の吸
収式冷凍機を駆動し、得られた低温熱源により、
圧縮空気を冷却、脱湿することができる効果を有
する。
As explained above, according to the present invention, a low-temperature operation absorption refrigerator is driven as a self-exhaust heat energy power source of compressed air, and the obtained low-temperature heat source is used to
It has the effect of cooling and dehumidifying compressed air.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高炉用脱湿空気供給装置の系統
図、第2図は同じく鉱内空調用冷却空気供給装置
の系統図、第3図は本発明の一実施例を示す高炉
用脱湿空気供給装置の系統図、第4図は同じく鉱
内空調用冷却空気供給装置の系統図である。 11……空気圧縮機、12……一次脱湿器、1
3……二次脱湿器、14……排熱回収器、15…
…吸収式冷凍機、16……冷凍機、21……空気
圧縮機、22……空気冷却器、23……アフター
クーラ、24……排熱回収器、25……吸収式冷
凍機。
Figure 1 is a system diagram of a conventional dehumidified air supply system for blast furnaces, Figure 2 is a system diagram of a cooling air supply system for air conditioning in mines, and Figure 3 is a system diagram of a dehumidified air supply system for blast furnaces showing an embodiment of the present invention. FIG. 4 is a system diagram of the air supply system. Similarly, FIG. 4 is a system diagram of the cooling air supply system for air conditioning in the mine. 11...Air compressor, 12...Primary dehumidifier, 1
3...Secondary dehumidifier, 14...Exhaust heat recovery device, 15...
...Absorption chiller, 16... Refrigerator, 21... Air compressor, 22... Air cooler, 23... After cooler, 24... Exhaust heat recovery device, 25... Absorption chiller.

Claims (1)

【特許請求の範囲】[Claims] 1 吸込空気を圧縮して吐出する空気圧縮機と前
記空気を冷却すると共に脱湿する冷却脱湿手段と
を備える空気冷却脱湿装置において、前記冷却脱
湿手段を前記空気圧縮機の吸込側もしくは吐出側
に配設し、この冷却脱湿手段に吸収式冷凍機を接
続して冷却脱湿手段の冷熱源とし、前記空気圧縮
機の吐出側には吐出空気の熱を回収する排熱回収
器を設け、この排熱回収器を前記吸収式冷凍機に
接続し、排熱回収器によつて得られる前記空気圧
縮機の排熱を吸収式冷凍機の動力源とするように
構成したことを特徴とする空気冷却脱湿装置。
1. In an air cooling and dehumidifying device comprising an air compressor that compresses and discharges suction air and a cooling and dehumidifying means that cools and dehumidifies the air, the cooling and dehumidifying means is installed on the suction side of the air compressor or An absorption refrigerator is provided on the discharge side of the air compressor, and an absorption refrigerator is connected to the cooling and dehumidifying means to serve as a cold heat source for the cooling and dehumidifying means, and an exhaust heat recovery device is provided on the discharge side of the air compressor to recover the heat of the discharged air. and the exhaust heat recovery device is connected to the absorption refrigerator, and the exhaust heat of the air compressor obtained by the exhaust heat recovery device is used as a power source for the absorption refrigerator. Features: Air cooling and dehumidification equipment.
JP56014343A 1981-02-04 1981-02-04 Air cooling dehumidifier Granted JPS57129367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56014343A JPS57129367A (en) 1981-02-04 1981-02-04 Air cooling dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56014343A JPS57129367A (en) 1981-02-04 1981-02-04 Air cooling dehumidifier

Publications (2)

Publication Number Publication Date
JPS57129367A JPS57129367A (en) 1982-08-11
JPH0252193B2 true JPH0252193B2 (en) 1990-11-09

Family

ID=11858418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56014343A Granted JPS57129367A (en) 1981-02-04 1981-02-04 Air cooling dehumidifier

Country Status (1)

Country Link
JP (1) JPS57129367A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155500A (en) * 1984-08-28 1986-03-19 Tokyo Gas Co Ltd Compressing and cooling device of gas in its transporting process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997347A (en) * 1973-01-22 1974-09-13
JPS5210946A (en) * 1975-07-15 1977-01-27 Matsushita Electric Ind Co Ltd Cooling and heating device
JPS5269041A (en) * 1975-12-08 1977-06-08 Mayekawa Mfg Co Ltd Combination heat pump
JPS5312542A (en) * 1976-07-20 1978-02-04 Nippon Air Brake Co Refrigeration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997347A (en) * 1973-01-22 1974-09-13
JPS5210946A (en) * 1975-07-15 1977-01-27 Matsushita Electric Ind Co Ltd Cooling and heating device
JPS5269041A (en) * 1975-12-08 1977-06-08 Mayekawa Mfg Co Ltd Combination heat pump
JPS5312542A (en) * 1976-07-20 1978-02-04 Nippon Air Brake Co Refrigeration system

Also Published As

Publication number Publication date
JPS57129367A (en) 1982-08-11

Similar Documents

Publication Publication Date Title
CN100552311C (en) Energy-saving-type dehumidifying air-conditioning system
CN110173776B (en) Pre-cooling type runner humidifying fresh air treatment device
CN102506475A (en) Heat pump system of heat humidity independent control driven by condensation waste heat and based on solid dehumidification
CN206469445U (en) A kind of big enthalpy difference type condensing units air-conditioner set of all-fresh air
CN103673113A (en) Double-grade regenerating rotary-wheel dehumidification system and air processing method thereof
CN2932185Y (en) Air-condition
CN103075767B (en) Two low-temperature receiver Fresh air handling units
KR19990069708A (en) Air conditioner
CN202709344U (en) Ice storage heat pump coupling multistage total heat recovery fresh air processor
CN201391956Y (en) Household fresh air dehumidifier
CN201255472Y (en) Energy accumulation type air conditioning dehumidification system
CN211822851U (en) Deep temperature-adjusting dehumidifying fresh air handling unit with cascade energy utilization
CN111536608A (en) Circulating type rotating wheel dehumidification device and dehumidification method
CN203083033U (en) Double-cold-source dehumidification air conditioner unit
CN202993383U (en) Solution-type constant temperature dehumidifier
JPH0252193B2 (en)
CN212204822U (en) Circulating runner dehydrating unit
CN1207516C (en) Air dehumidifying and cooling device with haet recovery
CN203083044U (en) Double-cold-resource fresh air handling unit
CN201917008U (en) Composite dehumidifier
CN202927986U (en) Fresh air dehumidifier
JP2007155195A (en) Cooling facility
CN2593094Y (en) Air dehumidifying and cooling apparatus with heat recovery
CN102997343A (en) Solution type constant-temperature dehumidifier and control method thereof
JPS5852924A (en) Air conditioner utilizing condensing heat of coolant