JPH0251956B2 - - Google Patents
Info
- Publication number
- JPH0251956B2 JPH0251956B2 JP20586784A JP20586784A JPH0251956B2 JP H0251956 B2 JPH0251956 B2 JP H0251956B2 JP 20586784 A JP20586784 A JP 20586784A JP 20586784 A JP20586784 A JP 20586784A JP H0251956 B2 JPH0251956 B2 JP H0251956B2
- Authority
- JP
- Japan
- Prior art keywords
- ammonium
- stripper
- ammonium water
- surplus
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 107
- 238000000034 method Methods 0.000 claims description 42
- 229910021529 ammonia Inorganic materials 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 18
- 239000000571 coke Substances 0.000 claims description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 7
- 230000002378 acidificating effect Effects 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 2
- 238000005345 coagulation Methods 0.000 claims description 2
- 230000015271 coagulation Effects 0.000 claims description 2
- 238000005188 flotation Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims 6
- 235000019270 ammonium chloride Nutrition 0.000 claims 3
- 239000000945 filler Substances 0.000 claims 1
- 238000000746 purification Methods 0.000 claims 1
- 238000004062 sedimentation Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 15
- 238000004821 distillation Methods 0.000 description 14
- 239000010802 sludge Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000010992 reflux Methods 0.000 description 7
- 239000002253 acid Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 239000002918 waste heat Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005292 vacuum distillation Methods 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000036284 oxygen consumption Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
- C02F1/586—Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing ammoniacal nitrogen
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Coke Industry (AREA)
- Industrial Gases (AREA)
Description
産業上の利用分野
本発明は、コークス炉ガス精製時に発生する余
剰安水の処理方法に関するものである。
従来の技術
コークス工場には、コークス炉のドライメーン
とタールデカンターを循環する70〜80℃の、アン
モニア、硫化水素、シアン化水素、二酸化炭素な
どの有害成分を含む熱安水が存在し、余剰安水は
常圧蒸留法または減圧蒸留法により処理されてい
る。
従来、特開昭54−107904号公報に示すように、
循環熱安水の保有する熱量を余剰安水のアンモニ
アストリツピングの熱源として利用する方法は既
に知られている。また特公昭58−58389号公報に
示されるように、コークス炉ガス液を多重効用蒸
留塔に供給して処理する方法が知られている。
従来の常圧蒸留法は第2図に示すように、50℃
程度の余剰安水を熱交換器1によつて加熱した
後、常圧安水ストリツパー2に導き、スチームを
ストリツパー2の塔底に直接吹き込むか、または
スチームによつてストリツパー2のボトム液をリ
ボイラー3にて間接的に加熱し、常圧でアンモニ
アなどを分離し、アンモニアなどが除去された処
理安水として活性汚泥設備などの次工程へ排出す
る方法である。この場合、常圧下ではストリツパ
ー2の温度は平均約100℃、またはそれ以上の温
度になるのが普通であり、ストリツパー2全体の
温度は高くなる。ストリツパー2内に吹き込まれ
たスチームは、塔頂において原液を沸点まで加熱
するための加熱スチームとしての役割と、さらに
塔頂より留出するアンモニアなどに同伴されるキ
ヤリヤースチームとしての役割を果たす。ストリ
ツパー2の塔頂から留出するアンモニア含有蒸気
は、コンデンサー4によつて90℃程度まで凝縮冷
却され、アンモニアが濃縮される。この濃縮され
たアンモニア含有蒸気は硫安設備などのアンモニ
ア回収工程へ送られる。またスチームでストリツ
パー2のボトム液を間接加熱する場合は、ストリ
ツパー2のボトム液中の水分が蒸発し、蒸発した
スチームは上記の直接吹込みの場合と同様の役割
を果たす。廃水量は塔内で蒸発した水分量だけ少
なくなるが、必要なスチーム量は両者とも大差は
ない。
また従来の減圧蒸留法の一例として、熱安水の
廃熱を利用する方法を説明する。第3図に示すよ
うに、70〜80℃の熱安水をリボイラー3の熱源と
して利用するため、減圧安水ストリツパー5の平
均操作温度を60℃程度としている。したがつてス
トリツパー5の塔頂から留出する蒸気温度は60℃
以下となり、コンデンサー4内で蒸気はさらに冷
却される。なお熱安水の廃熱が充分でない場合
は、ストリツパー5に補助スチームを供給する。
6は真空ポンプである。
発明が解決しようとする問題点
第2図に示す従来の常圧蒸留法においては、余
剰安水1m3当り150〜200Kgのスチームを必要とし
きわめて非経済的である。
また第3図に示す従来の減圧蒸留法において
は、還流操作を行つているので、減圧安水ストリ
ツパー5内のアンモニア負荷が増大し、熱安水の
熱量だけではアンモニアや酸性ガスを充分除去で
きない。したがつて補助スチームの消費量が増大
し省エネルギー効果が半減する。一例として後記
の第2表に示す性状の余剰安水70t/Hを処理し
た結果を示す。減圧安水ストリツパー5にテラレ
ツト充てん物を多段に充てんし、循環熱安水の熱
量だけで処理したところ、処理安水中のフリーア
ンモニア濃度は約200ppmとなつた。次工程の活
性汚泥設備へ悪影響を与えないように、フリーア
ンモニアを50ppm程度までストリツピングするた
めには、補助スチームが約10t/H必要となり、
第2図に示す常圧蒸留法と大差ないことがわかつ
た。この時の減圧安水ストリツパー5の操作条件
は塔底で150mmHg abs.で60℃前後であつた。
また余剰安水中のナフタリンや油分が還流液ラ
インに蓄積し、還流液ラインの閉塞の原因とな
る。減圧安水ストリツパー5内で蒸発するナフタ
リンや油分がコンデンサー4で冷却されて凝縮
し、これらの成分が塔頂とコンデンサー4間を循
環する。この結果、還流液中の油分は30vol%ま
で達したこともあつた。還流液中の油分の蒸留試
験結果は第1表に示す通りであつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for treating surplus ammonium water generated during coke oven gas refining. Conventional technology In a coke factory, there is hot ammonium water containing harmful components such as ammonia, hydrogen sulfide, hydrogen cyanide, and carbon dioxide at a temperature of 70 to 80°C, which circulates through the coke oven's dry main and tar decanter. is processed by atmospheric distillation method or reduced pressure distillation method. Conventionally, as shown in Japanese Patent Application Laid-Open No. 54-107904,
A method is already known in which the heat contained in circulating hot ammonium water is used as a heat source for ammonia stripping of surplus ammonium water. Further, as shown in Japanese Patent Publication No. 58-58389, a method is known in which coke oven gas liquid is supplied to a multiple effect distillation column for treatment. In the conventional atmospheric distillation method, the temperature is 50°C, as shown in Figure 2.
After heating the excess ammonium water in the heat exchanger 1, it is led to the atmospheric pressure ammonium water stripper 2, and steam is blown directly into the bottom of the stripper 2, or the bottom liquid of the stripper 2 is reboiled with steam. In this method, the water is heated indirectly in Step 3, and ammonia and the like are separated under normal pressure, and the treated ammonium water from which ammonia and the like have been removed is discharged to the next process such as an activated sludge facility. In this case, under normal pressure, the temperature of the stripper 2 is usually about 100° C. or more on average, and the temperature of the stripper 2 as a whole becomes high. The steam blown into the stripper 2 serves as heating steam to heat the raw solution to the boiling point at the top of the column, and also as a carrier steam that is entrained by ammonia etc. distilled from the top of the column. The ammonia-containing vapor distilled from the top of the stripper 2 is condensed and cooled to about 90° C. by the condenser 4, and the ammonia is concentrated. This concentrated ammonia-containing vapor is sent to an ammonia recovery process such as an ammonium sulfate facility. When the bottom liquid of the stripper 2 is indirectly heated with steam, the moisture in the bottom liquid of the stripper 2 evaporates, and the evaporated steam plays the same role as in the case of direct blowing. Although the amount of wastewater decreases by the amount of water evaporated in the tower, the amount of steam required is not much different between the two. Furthermore, as an example of a conventional vacuum distillation method, a method using waste heat of hot ammonium water will be explained. As shown in FIG. 3, since hot ammonium water at 70 to 80°C is used as a heat source for the reboiler 3, the average operating temperature of the reduced pressure ammonium stripper 5 is set to about 60°C. Therefore, the temperature of the steam distilled from the top of stripper 5 is 60°C.
The steam is further cooled in the condenser 4. If the waste heat from the hot ammonium water is not sufficient, auxiliary steam is supplied to the stripper 5.
6 is a vacuum pump. Problems to be Solved by the Invention The conventional atmospheric distillation method shown in FIG. 2 requires 150 to 200 kg of steam per 1 m 3 of surplus ammonium water, which is extremely uneconomical. Furthermore, in the conventional vacuum distillation method shown in Figure 3, reflux operation is performed, so the ammonia load in the vacuum ammonium stripper 5 increases, and ammonia and acidic gases cannot be removed sufficiently with just the heat of hot ammonium water. . Therefore, the consumption of auxiliary steam increases and the energy saving effect is halved. As an example, the results of processing 70 t/h of surplus ammonium water having the properties shown in Table 2 below are shown. When the reduced-pressure ammonium water stripper 5 was filled with Terraret stuff in multiple stages and treated using only the heat of circulating hot ammonium water, the free ammonia concentration in the treated ammonium water was approximately 200 ppm. In order to strip free ammonia to about 50 ppm so as not to adversely affect the activated sludge equipment in the next process, approximately 10 t/h of auxiliary steam is required.
It was found that this method was not much different from the atmospheric distillation method shown in FIG. The operating conditions of the vacuum ammonium water stripper 5 at this time were 150 mmHg abs. and around 60°C at the bottom of the tower. In addition, naphthalene and oil in the surplus aqueous solution accumulate in the reflux liquid line, causing blockage of the reflux liquid line. Naphthalene and oil components evaporated in the vacuum ammonium water stripper 5 are cooled and condensed in the condenser 4, and these components circulate between the top of the column and the condenser 4. As a result, the oil content in the reflux liquid sometimes reached 30 vol%. The results of the distillation test for oil in the reflux liquid were as shown in Table 1.
【表】
さらに大量のアンモニア含有蒸気を真空ポンプ
6で常圧まで加圧する必要があるため、真空ポン
プ6が大型となり、きわめて広い設置スペースが
必要となる。またドライ方式の真空ポンプを使用
する必要があるので、型式が往復動式などに限定
され、液封式などの真空ポンプに比べてメインテ
ナンスコストが増大する。
なお多重効用蒸留法の場合は、従来の常圧蒸留
法に比べてスチーム消費量を削減できるが、省エ
ネルギー効果の割に設備が複雑となり設備費が嵩
むという問題点を有している。
本発明は上記の諸点に鑑みなされたもので、コ
ークス炉ガス精製時に発生する余剰安水の一次処
理法(安水ストリツピング法)において、省エネ
ルギーを図ることができる方法を提供することを
目的とするものである。
問題点を解決するための手段および作用
本発明の余剰安水の処理方法は、第1図におけ
る番号を用いて説明すれば、コークス炉ガス精製
時に発生する余剰安水を減圧安水ストリツパー7
に導入し、循環熱安水の保有する熱量を利用して
減圧下でストリツピングして余剰安水中のアンモ
ニア、酸性ガスを除去し、ついで減圧安水ストリ
ツパー7の塔頂蒸気を全量または大部分凝縮させ
た後、該凝縮液をコークス炉のドライメーン9に
導入することにより凝縮液中のアンモニア、酸性
ガスを除去することを特徴としている。
余剰安水の前処理として、余剰安水にCa
(OH)2、NaOHなどのアルカリを加えて反応さ
せ、沈殿物を除去した後、減圧安水ストリツパー
7に導入したり、フイルター処理、気体浮上処
理、軽油などの有機溶剤での洗浄または凝集沈殿
処理により余剰安水中の油分を除去した後、減圧
安水ストリツパー7に導入することもある。また
減圧安水ストリツパー7として、テラレツト充て
ん物などの低圧損型の充てん物を多段に充てんし
たものを使用するのが望ましい。
実施例
以下、本発明の実施例を第1図に基づいて説明
する。本実施例の方法は、余剰安水ストリツパー
7の凝縮液を循環熱安水中に混入し、コークス炉
8のドライメーン9でスプレーすることにより、
凝縮液中のNH3や酸性ガス(CO2、H2S、HCN
など)をコークス炉ガス中に放散させる方法であ
る。ドライメーン9でスプレーされた流量は再び
タールデカンター10をオーバーフローして減圧
安水ストリツパー7へ供給される。したがつて減
圧安水ストリツパー7へ供給される流量は、凝縮
液のリサイクル分だけ増加する。また凝縮液をド
ライメーン9でスプレーするため、ドライメーン
9から排出されるコークス炉ガス中のNH3や酸
性ガスは従来方法の場合より増加し、循環熱安水
や余剰安水(減圧安水ストリツパーフイード液)
中のNH3や酸性ガスの濃度も増加する。つぎに
一例を示す。
第2図に示す従来法において、発生量が70t/
H、組成が第2表に示す余剰安水を本発明の方法
により処理した。[Table] Furthermore, since it is necessary to pressurize a large amount of ammonia-containing vapor to normal pressure using the vacuum pump 6, the vacuum pump 6 becomes large and requires an extremely large installation space. Furthermore, since it is necessary to use a dry type vacuum pump, the type is limited to a reciprocating type, etc., and maintenance costs are higher than a liquid ring type vacuum pump. In the case of the multiple effect distillation method, the amount of steam consumed can be reduced compared to the conventional atmospheric distillation method, but the problem is that the equipment is complicated and the equipment cost increases in spite of the energy saving effect. The present invention has been made in view of the above points, and an object of the present invention is to provide a method that can save energy in a primary treatment method (ammonium water stripping method) of surplus ammonium water generated during coke oven gas refining. It is something. Means and Effects for Solving the Problems The method for treating surplus ammonium water of the present invention will be explained using the numbers in FIG. 1.
The circulating hot ammonium water is stripped under reduced pressure using the heat it possesses to remove ammonia and acidic gases from the excess ammonium water, and then all or most of the vapor at the top of the vacuum ammonium stripper 7 is condensed. After that, the condensate is introduced into the dry main 9 of the coke oven to remove ammonia and acid gas from the condensate. As a pretreatment of surplus ammonium water, Ca is added to surplus ammonium water.
(OH) 2 , react with an alkali such as NaOH, remove the precipitate, and then introduce it into a vacuum ammonium water stripper 7, filter treatment, gas flotation treatment, washing with an organic solvent such as light oil, or coagulation and precipitation. After the oil content in the surplus ammonium water is removed by treatment, it may be introduced into the reduced pressure ammonium water stripper 7. Further, as the reduced pressure ammonium water stripper 7, it is desirable to use one filled with a low pressure loss type filling material such as a terraret filling material in multiple stages. Embodiment Hereinafter, an embodiment of the present invention will be described based on FIG. The method of this embodiment involves mixing the condensate from the excess ammonium water stripper 7 into circulating hot ammonium water and spraying it with the dry main 9 of the coke oven 8.
NH3 and acid gases ( CO2 , H2S , HCN) in the condensate
) is diffused into coke oven gas. The flow rate sprayed by the dry main 9 overflows the tar decanter 10 again and is supplied to the reduced pressure ammonium water stripper 7. Therefore, the flow rate supplied to the vacuum ammonium water stripper 7 increases by the amount of recycled condensate. In addition, since the condensate is sprayed in the dry main 9, the amount of NH 3 and acid gas in the coke oven gas discharged from the dry main 9 increases compared to the conventional method. stripper feed liquid)
The concentration of NH 3 and acid gases inside also increases. An example is shown below. In the conventional method shown in Figure 2, the amount generated was 70t/
H, surplus ammonium water having the composition shown in Table 2 was treated by the method of the present invention.
【表】
減圧安水ストリツパー7のフイード量は
86.6t/Hとなり、フイード液中のNH3や酸性ガ
スの濃度は第3表に示すようになつた。なお減圧
安水ストリツパー7として、テラレツト充てん物
を多段に充てんした型式のものを用いた。[Table] Feed amount of reduced pressure ammonium water stripper 7 is
It became 86.6t/H, and the concentration of NH 3 and acid gas in the feed liquid became as shown in Table 3. The reduced-pressure ammonium water stripper 7 used was of the type filled with terarets in multiple stages.
【表】
減圧安水ストリツパー7内において、NH3や
酸性ガス成分がストリツプされた塔頂から留出し
た。リボイラー11では循環熱安水によつてボト
ム液が加熱され、ストリツピングの熱源となつ
た。ストリツパー7の塔頂蒸気はコンデンサー1
2にて全凝縮され、該凝縮液は一旦、コンデンセ
ートタンク13に貯留された後、循環熱安水に混
入されドライメーン9で再びスプレーされた。真
空ポンプ14により、減圧安水ストリツパー7の
塔底液と70〜80℃の循環熱安水との熱交換が可能
となるように、減圧安水ストリツパー7の真空度
を150mmHg abs.程度に維持した。この時の減圧
安水ストリツパー7の塔底温度は約60℃であつ
た。また上記の凝縮液量は16.6t/Hであつた。
フリーNH3濃度が50ppm程度まで低下した減圧
安水ストリツパーボトム液はクーラー15で冷却
された後、活性汚泥設備などの次工程へ排出され
た。
なお本実施例は、減圧安水ストリツピングの熱
源として、循環熱安水の廃熱のみを利用する場合
であるが、循環熱安水の廃熱のみでは不足する場
合は、減圧安水ストリツパー7に直接、補助スチ
ームを吹き込む。
つぎに第2図に示す従来の常圧蒸留法で処理さ
れた安水と、本発明の方法で処理された安水につ
いて、活性汚泥へ与える影響を試験した。試験方
法として、同一活性汚泥の酸素消費速度を測定
し、比較した。結果は第4表の如くであつた。[Table] In the vacuum ammonium water stripper 7, NH 3 and acidic gas components were distilled from the top of the stripped column. In the reboiler 11, the bottom liquid was heated by circulating hot ammonium water and served as a heat source for stripping. The top steam of stripper 7 is transferred to condenser 1
2, the condensate was once stored in a condensate tank 13, mixed with circulating hot ammonium water, and sprayed again in a dry main 9. The vacuum pump 14 maintains the degree of vacuum in the vacuum ammonium water stripper 7 at approximately 150 mmHg abs. to enable heat exchange between the bottom liquid of the vacuum ammonium water stripper 7 and circulating hot ammonium water at 70 to 80°C. did. At this time, the bottom temperature of the vacuum ammonium water stripper 7 was about 60°C. The amount of condensed liquid was 16.6t/H.
The reduced pressure ammonium water stripper bottom liquid, in which the free NH 3 concentration was reduced to about 50 ppm, was cooled in cooler 15 and then discharged to the next process such as activated sludge equipment. In this embodiment, only the waste heat of circulating hot ammonium water is used as the heat source for the reduced pressure ammonium water stripping, but if the waste heat of circulating hot ammonium water alone is insufficient, the reduced pressure ammonium water stripper 7 may be used. Inject auxiliary steam directly. Next, ammonium water treated by the conventional atmospheric distillation method shown in FIG. 2 and ammonium water treated by the method of the present invention were tested for their effects on activated sludge. As a test method, the oxygen consumption rate of the same activated sludge was measured and compared. The results were as shown in Table 4.
【表】
第4表から明らかなように、本発明の方法で処
理した安水の方が酸素消費速度が大きく、活性汚
泥へ与える影響が改善されていることがわかる。
また第2図に示す従来の常圧蒸留法と、本発明
の方法の塔頂部の腐食環境を比較する試験を行つ
た。結果は第5表の如くであつた。[Table] As is clear from Table 4, the ammonium water treated by the method of the present invention has a higher oxygen consumption rate and has an improved effect on activated sludge. Further, a test was conducted to compare the corrosive environment at the top of the column between the conventional atmospheric distillation method shown in FIG. 2 and the method of the present invention. The results were as shown in Table 5.
【表】
発明の効果
本発明は上記のように構成されているので、つ
ぎのような効果を有している。
(1) 設備が簡単であり低コスト化を図ることがで
き、また循環熱安水の保有する熱量を利用し
て、次工程の活性汚泥設備へ悪影響を与えない
までに処理することができる。循環熱安水から
の回収熱量が充分であれば、スチームは不要と
なる。
(2) 従来の常圧蒸留還流方法(第2図)で処理さ
れた安水と比較すると、本発明の方法で処理さ
れた安水は、活性汚泥へ与える影響が改善され
る。
(3) 真空ポンプは減圧安水ストリツパーを所定の
真空度に維持するための容量でよく、かなり小
型となり、さらにメインテナンスの容易な液封
式真空ポンプが使用できる。
(4) 減圧安水ストリツパーの操作温度は60℃前後
であり、従来の常圧蒸留法における運転温度
100〜110℃に比べて低く、また塔頂蒸気の凝縮
液は減圧安水ストリツパーへ還流として戻さな
いので、腐食性成分が濃縮されない(第5表参
照)。このため減圧安水ストリツパーは高価な
材料を使用する必要がない。[Table] Effects of the Invention Since the present invention is configured as described above, it has the following effects. (1) The equipment is simple and costs can be reduced, and the heat content of the circulating hot ammonium water can be used to process the activated sludge without adversely affecting the activated sludge equipment in the next process. If the amount of heat recovered from circulating hot ammonium water is sufficient, steam will not be necessary. (2) Compared to ammonium water treated by the conventional atmospheric distillation reflux method (Figure 2), ammonium water treated by the method of the present invention has an improved effect on activated sludge. (3) The capacity of the vacuum pump is sufficient to maintain the decompressed ammonium water stripper at a predetermined degree of vacuum, and a liquid-ring vacuum pump can be used, which is quite compact and easy to maintain. (4) The operating temperature of the vacuum ammonium water stripper is around 60℃, which is the operating temperature of the conventional atmospheric distillation method.
The temperature is lower than that of 100 to 110°C, and since the condensate of the top vapor is not returned as reflux to the vacuum ammonium water stripper, corrosive components are not concentrated (see Table 5). Therefore, the vacuum ammonium water stripper does not require the use of expensive materials.
第1図は本発明の余剰安水の処理方法の一例を
示すフローシート、第2図は従来の常圧蒸留法を
示すフローシート、第3図は従来の減圧蒸留法を
示すフローシートである。
1…熱交換器、2…常圧安水ストリツパー、3
…リボイラー、4…コンデンサー、5…減圧安水
ストリツパー、6…真空ポンプ、7…減圧安水ス
トリツパー、8…コークス炉、9…ドライメー
ン、10…タールデカンター、11…リボイラ
ー、12…コンデンサー、13…コンデンセート
タンク、14…真空ポンプ、15…クーラー。
Figure 1 is a flow sheet showing an example of the method for treating surplus ammonium water of the present invention, Figure 2 is a flow sheet showing a conventional atmospheric distillation method, and Figure 3 is a flow sheet showing a conventional vacuum distillation method. . 1...Heat exchanger, 2...Normal pressure ammonium water stripper, 3
... Reboiler, 4... Condenser, 5... Vacuum pump, 7... Vacuum ammonium water stripper, 8... Coke oven, 9... Dry main, 10... Tar decanter, 11... Reboiler, 12... Condenser, 13 ...Condensate tank, 14...Vacuum pump, 15...Cooler.
Claims (1)
減圧安水ストリツパーに導入し、循環熱安水の保
有する熱量を利用して減圧下でストリツピングし
て余剰安水中のアンモニア、酸性ガスを除去し、
ついで減圧安水ストリツパーの塔頂蒸気を凝縮さ
せた後、該凝縮液をコークス炉のドライメーンに
導入することにより凝縮液中のアンモニア、酸性
ガスを除去することを特徴とする余剰安水の処理
方法。 2 余剰安水にアルカリを加えて反応させ沈殿物
を除去した後、減圧安水ストリツパーに導入する
特許請求の範囲第1項記載の余剰安水の処理方
法。 3 フイルター処理、気体浮上処理、有機溶剤で
の洗浄または凝集沈殿処理により余剰安水中の油
分を除去した後、減圧安水ストリツパーに導入す
る特許請求の範囲第1項記載の余剰安水の処理方
法。 4 減圧安水ストリツパーとして低圧損型の充て
ん物を多段に充てんしたものを使用する特許請求
の範囲第1項記載の余剰安水の処理方法。[Claims] 1. Surplus ammonium chloride generated during coke oven gas purification is introduced into a reduced pressure ammonium stripper, and stripping is carried out under reduced pressure using the heat content of the circulating hot ammonium water to remove ammonia from the surplus ammonium, removes acidic gases,
A process for treating excess ammonium water, which is characterized by condensing the vapor at the top of the vacuum ammonium stripper and then introducing the condensate into the dry main of a coke oven to remove ammonia and acidic gases from the condensate. Method. 2. The method for treating surplus ammonium chloride according to claim 1, which comprises adding an alkali to the surplus ammonium chloride, reacting it, removing precipitates, and then introducing the mixture into a vacuum ammonium stripper. 3. The method for treating surplus ammonium water according to claim 1, which comprises removing the oil content in the surplus ammonium water by filter treatment, gas flotation treatment, washing with an organic solvent, or coagulation sedimentation treatment, and then introducing the excess ammonium water into a vacuum ammonium stripper. . 4. A method for treating surplus ammonium water according to claim 1, which uses a reduced-pressure ammonium water stripper filled with a low pressure loss type filler in multiple stages.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20586784A JPS6183291A (en) | 1984-10-01 | 1984-10-01 | Treatment of surplus ammonia water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20586784A JPS6183291A (en) | 1984-10-01 | 1984-10-01 | Treatment of surplus ammonia water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6183291A JPS6183291A (en) | 1986-04-26 |
JPH0251956B2 true JPH0251956B2 (en) | 1990-11-09 |
Family
ID=16514033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20586784A Granted JPS6183291A (en) | 1984-10-01 | 1984-10-01 | Treatment of surplus ammonia water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6183291A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4543425B2 (en) * | 2005-06-16 | 2010-09-15 | 三浦工業株式会社 | Highly functional water generation and utilization system |
JP4964283B2 (en) * | 2009-10-09 | 2012-06-27 | 川崎エンジニアリング株式会社 | Surplus water treatment method and equipment |
JP6547786B2 (en) * | 2017-03-13 | 2019-07-24 | Jfeスチール株式会社 | Operating method of depressurization type surplus excess water distillation facility and sealing liquid temperature control device |
-
1984
- 1984-10-01 JP JP20586784A patent/JPS6183291A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6183291A (en) | 1986-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2078054C1 (en) | Method of treating aqueous solutions containing hydrogen sulfide, hydrogen cyanide, and ammonia | |
US4594131A (en) | Process for removing ammonia and acid gases from process streams | |
US3972693A (en) | Process for the treatment of phenol-containing waste water from coal degassing or gasification processes | |
US4025423A (en) | Process for removing monohydric and polyhydric phenols from waste water | |
US4162902A (en) | Removing phenols from waste water | |
US4657680A (en) | Wastewater treatment | |
US4260462A (en) | Process for separating acid gases and ammonia from dilute aqueous solutions thereof | |
US3635664A (en) | REGENERATION OF HYDROCHLORIC ACID PICKLING WASTE BY H{11 SO{11 {0 ADDITION, DISTILLATION AND FeSO{11 {0 Precipitation | |
CA1090281A (en) | Process for separating acid gases and ammonia from dilute aqueous solutions thereof | |
EP0029536A1 (en) | Process for removing and recovering ammonia from aqueous liquors | |
US4323430A (en) | Process for separating ammonia and acid gases from streams containing fixed ammonia salts | |
US4140586A (en) | Method and apparatus for distillation | |
US3024090A (en) | Method of recovering ammonia from coke-oven gases | |
US3985863A (en) | Process for the separation and recovery of ammonia and acid gases | |
JP4043127B2 (en) | Coke oven gas purification method | |
US4499060A (en) | Process for removing hydrogen sulfide from gases, particularly coal distillation gases | |
JP2016210855A (en) | Method for refining coke-oven gas | |
JPH0251956B2 (en) | ||
US6387348B1 (en) | Method for treating spent caustic streams | |
US4277311A (en) | Apparatus for distillation | |
US3804757A (en) | Process for treating waste water from industrial processes | |
JP6149821B2 (en) | Coke oven gas purification method | |
JPH0251955B2 (en) | ||
US3096156A (en) | Multi-stage process for the separation and recovery of hcn and h2s from waste product gases containing ammonia | |
CA1109231A (en) | Method of stripping ammonia from ammoniacal solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |