JPH0251898A - Plasma spray gun - Google Patents

Plasma spray gun

Info

Publication number
JPH0251898A
JPH0251898A JP63201039A JP20103988A JPH0251898A JP H0251898 A JPH0251898 A JP H0251898A JP 63201039 A JP63201039 A JP 63201039A JP 20103988 A JP20103988 A JP 20103988A JP H0251898 A JPH0251898 A JP H0251898A
Authority
JP
Japan
Prior art keywords
plasma
spray gun
flame
coated
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63201039A
Other languages
Japanese (ja)
Inventor
Tetsuo Nakamura
中村 鉄男
Koji Hirata
平田 光二
Masamichi Koga
古賀 正実知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63201039A priority Critical patent/JPH0251898A/en
Publication of JPH0251898A publication Critical patent/JPH0251898A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Nozzles (AREA)

Abstract

PURPOSE:To obtain film having good adhesive strength and strongly resisting thermal and mechanical shock by changing the position of a supply port of a material to be flame-coated or the angle of supply thereof to plasma flame according to physical differences between materials to be flame-coated. CONSTITUTION:The positions of supply ports of a material to be flame-coated 5 and 6 are differentiated referring to the center-line direction of a plasma spray gun 1, or the angle of a supply passage of the material to be flame-coated is differentiated referring to the center-line direction of the plasma spray gun 1, or the positions of supply ports of a material to be flame-coated 5 and 6 are differentiated referring to the center-line direction of the plasma spray gun 1 and also the angle of a supply passage of the material to be flame-coated is differentiated referring to the center-line direction of the plasm spray gun. Thus, a plurality of materials to be flame-coated are supplied by changing the positions of supply ports of a material to be flame-coated or an angle of a supply passage thereof or a combination of the positions of supply ports and the angle of a supply passage thereof to carry out flame-coating at an arbitrary mixing rate with the result that it is possible to form film having good adhesive strength and strongly resisting thermal and mechanical shocks.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、異種材質の溶射材料を同時供給し、任意の混
合比率の被膜層を形成することで、母材上の接着強度が
優れた溶射被膜を得るためのプラズマ溶射ガンに関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a coating layer with excellent adhesive strength on a base material by simultaneously supplying thermal spraying materials of different materials and forming a coating layer with an arbitrary mixing ratio. The present invention relates to a plasma spray gun for obtaining a sprayed coating.

〔従来技術] 一般に、プラズマ溶射法は、部品材料表面に耐摩耗性、
耐熱性、耐食性を与えるための金属、セラミックあるい
はサーメットを被覆する方法とし載されている。プラズ
マ溶射ガンは、通常第8図に示す通りで後述するような
態様で行なわれている。第8図において土はプラズマ溶
射ガン本体で、主にカソード(以下タングステン電極)
2と、アノード(以下水冷銅電極)3とプラズマガス供
給口4及び溶射材料供給口5.′6で構成される。タン
グステン電極2と水冷銅電極3は絶縁体7により電気的
に分離され、タングステン電極2は直流型6tXSの負
極に、水冷銅電極3は正極にそれぞれ接続されている。
[Prior art] In general, plasma spraying provides abrasion resistance and
It is described as a method for coating metals, ceramics, or cermets to provide heat resistance and corrosion resistance. The plasma spray gun is normally operated in the manner shown in FIG. 8 and described below. In Figure 8, the soil is the main body of the plasma spray gun, mainly the cathode (hereinafter referred to as tungsten electrode).
2, an anode (hereinafter referred to as a water-cooled copper electrode) 3, a plasma gas supply port 4, and a thermal spray material supply port 5. '6. The tungsten electrode 2 and the water-cooled copper electrode 3 are electrically separated by an insulator 7, and the tungsten electrode 2 is connected to the negative electrode of the DC type 6tXS, and the water-cooled copper electrode 3 is connected to the positive electrode.

9はプラズマガス(通常はアルゴン、ヘリウム、水素、
窒素等)を貯蔵し、プラズマガス供給口に送給するガス
ボンベであり、10及び12は材質の異なる溶射材料A
及びBをそれぞれためてお(気密性のホッパー、11,
13はそれぞれの溶射材料をそれぞれの溶射材料供給口
5.6へ送給するための不活性ガス(Ar等)ボンベで
ある。
9 is a plasma gas (usually argon, helium, hydrogen,
10 and 12 are thermal spray materials A of different materials.
and B (airtight hopper, 11,
13 is an inert gas (Ar, etc.) cylinder for feeding each thermal spraying material to each thermal spraying material supply port 5.6.

先ず、ガスボンベ9からガス供給口4を通してプラズマ
ガスを供給し、タングステン電極2と水冷銅電極3の間
に直流型tX8によりプラズマアークを発生させる。こ
のアークとプラズマガス七の熱交換により、プラズマフ
レームI7となってプラズマ溶射ガン上より噴出する。
First, plasma gas is supplied from the gas cylinder 9 through the gas supply port 4, and a plasma arc is generated between the tungsten electrode 2 and the water-cooled copper electrode 3 by the DC type tX8. Due to the heat exchange between the arc and the plasma gas 7, a plasma flame I7 is formed and is ejected from above the plasma spray gun.

被溶射母材工4は予めその被溶射面をブラスト等を施し
、所定の位置に設置する。その後、溶射粉末供給口5か
らは、ホッパー10内の溶射粉末Aを不活性ガスボンへ
11からの不活性ガスにより上記のプラズマフレーム1
7中に供給する一方、溶射材料供給口6からは、ホッパ
ー12の溶射材料Bを不活性ガスボンへ12からの不活
性ガスにより、同様にプラズマフレームエフ中に供給し
、被溶射母材14に溶射する方法が知られている。
The base material 4 to be thermally sprayed has its surface to be thermally sprayed subjected to blasting or the like in advance, and is installed at a predetermined position. Thereafter, from the thermal spraying powder supply port 5, the thermal spraying powder A in the hopper 10 is transferred to the inert gas cylinder 11 to form the plasma flame 1.
At the same time, from the thermal spraying material supply port 6, the thermal spraying material B in the hopper 12 is similarly supplied to the plasma flame F using the inert gas from the inert gas bomb 12, and onto the base material 14 to be thermally sprayed. A method of thermal spraying is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記のプラズマ溶射法はその欠点として
、物性の異なる溶射材料、例えば融点が顕著に異なるセ
ラミックス系(・A材料)とメタル系(・B材料)の溶
射材料をそれぞれの材料供給口5.6から投入して溶射
した場合、溶射材料供給口はプラズマフレームの流れに
対し同じ位置に、タングステン電極2を中心として対称
に配設しているため投入した両熔射粉末は同時に同一温
度領域のプラズマフレーム中を通過する。このため、高
融点のセラミックス系材料を(例えばプラズマアーク電
流を増加し、プラズマエネルギー密度を高めて)溶融し
た場合、低融点のメタル系材料は蒸発して所望の混合被
覆が得られない。又、プラズマエネルギー密度を減少し
て、メタル系材料を熔融状態にするとセラミックス系材
料は溶けず、その結果、母材と被膜との接着強度が低く
、機械的衝窄、熱的衝窄を受けた場合、剥離を生ずるこ
とが挙げられる。
However, the drawback of the plasma spraying method described above is that spraying materials with different physical properties, for example, ceramic-based (・A material) and metal-based (・B material) thermal spraying materials with significantly different melting points, are used at the respective material supply ports 5. When thermal spraying is performed by charging from 6, the spray material supply ports are placed at the same position with respect to the flow of the plasma flame and symmetrically with the tungsten electrode 2 as the center, so both of the spray powders charged are in the same temperature range at the same time. Pass through the plasma flame. For this reason, when a ceramic material with a high melting point is melted (for example, by increasing the plasma arc current and increasing the plasma energy density), the metal material with a low melting point evaporates and the desired mixed coating cannot be obtained. Furthermore, if the plasma energy density is reduced to melt the metal material, the ceramic material will not melt, and as a result, the adhesive strength between the base material and the coating will be low, and it will be susceptible to mechanical stress and thermal stress. If this happens, peeling may occur.

又、他の溶射材物性として、比重1粒径、熱伝導率等が
顕著に異なるため溶けやすさが違う場合も同様な問題点
があった。
In addition, similar problems occur when other thermal spray materials have significantly different properties such as specific gravity, particle size, thermal conductivity, etc., and therefore differ in solubility.

[問題点を解決するための手段] 本発明は接着強度が太き(、熱的および機械的衝窄に対
して優れた抵抗を有する金属、セラミックスあるいはサ
ーメット被膜が得られるプラズマ溶射ガンを提供するも
のである。
[Means for Solving the Problems] The present invention provides a plasma spray gun capable of producing metal, ceramic or cermet coatings with high adhesive strength (and excellent resistance to thermal and mechanical impact). It is something.

即ち本発明の特徴は、カソードと該カソードの外側に設
けた筒状のアノードとプラズマガスをカソードとアノー
ドの間に噴出させるプラズマガス供給口及びプラズマフ
レームに向けて複数種の溶射材料を同時に噴出させる溶
射材料供給口を複数個設けたプラズマ溶射ガンにおいて
、溶射材料供給口の位置をプラズマ溶射ガンの中心線方
向で差をつけて設けるか又は、溶射材料供給流路の角度
をプラズマ溶射ガンの中心線に対して差をつけて設ける
か又は、溶射材料供給口の位置をプラズマ溶射ガンの中
心線方向で差をつけて設けると共に溶射材料供給流路の
角度をプラズマ溶射ガンの中心線に対して差をつけて設
けたプラズマ溶接ガンにある。
That is, the features of the present invention include a cathode, a cylindrical anode provided on the outside of the cathode, a plasma gas supply port for ejecting plasma gas between the cathode and the anode, and a plasma flame in which a plurality of types of thermal spray materials are simultaneously ejected. In a plasma spray gun equipped with multiple spray material supply ports, the spray material supply ports may be placed at different positions in the direction of the center line of the plasma spray gun, or the angle of the spray material supply channel may be adjusted to Alternatively, the spray material supply ports may be provided at different positions in the direction of the center line of the plasma spray gun, and the angle of the spray material supply flow path may be set relative to the center line of the plasma spray gun. There is a plasma welding gun with a difference.

[作 用] ここで、溶射材料の物性の違いによって、プラズマフレ
ームに対する溶射材料供給口位置あるいは供給角度を違
えることによってもたらされる作用について第7図を参
照しながら説明する。
[Function] Here, the effect brought about by changing the position or supply angle of the spray material supply port relative to the plasma flame depending on the physical properties of the spray material will be explained with reference to FIG.

第7図は溶射材料供給口付近のプラズマフレーム中心軸
上の温度分布例示す。
FIG. 7 shows an example of the temperature distribution on the central axis of the plasma flame near the thermal spray material supply port.

この温度分布特性は一般的に、図に示す様に、プラズマ
フレーム流れ方向に従い温度は低下し、温度勾配ば溶射
粉末供給口付近で顕著な傾向を示す。
As shown in the figure, this temperature distribution characteristic generally shows that the temperature decreases along the flow direction of the plasma flame, and if there is a temperature gradient, it shows a remarkable tendency near the thermal spray powder supply port.

一方、プラズマフレームの下流位置からの溶射材料供給
はど、被溶射母材に到達するまでの時間が短かくなり、
溶射材料の大熱量は減少する。
On the other hand, when spraying material is supplied from a position downstream of the plasma flame, it takes less time to reach the base material to be sprayed.
The large heat content of the sprayed material is reduced.

従って、例えば溶射材料の融点が異なる場合は、高1.
独点材料はどプラズマフレームの上流位置に溶射材料供
給口を配設することで融点の異なる異種材料をともに溶
融状態にし、混合され良好な被覆を形成することができ
る。又、溶射材料供給角度を具備することも以上の様な
作用をより効果的に司化にするものである。
Therefore, for example, if the melting points of thermal spray materials are different, a high 1.
By arranging the spray material supply port upstream of the plasma flame, different materials with different melting points can be brought into a molten state and mixed to form a good coating. Further, providing a thermal spraying material supply angle also makes the above-described effects more effective.

又、実施例2(第3図1第4図参照)のタングステン電
極2を中心として対称に1対の供給口を具備することは
、片側1箇所の供給口に比べ、プラズマフレーム中の材
料の分布ムラが改善されJ。
Furthermore, the provision of a pair of supply ports symmetrically around the tungsten electrode 2 in Example 2 (see FIGS. 3 and 4) makes it possible to increase the amount of material in the plasma flame compared to a single supply port on one side. Distribution unevenness has been improved.

果として、被膜厚ムラを改善する作用が実験的に確認さ
れている。
As a result, the effect of improving coating thickness unevenness has been experimentally confirmed.

(実施例〕 第1図〜第6図に実施例を挙げ、本発明の特徴を具体的
に説明する。
(Example) Examples are shown in FIGS. 1 to 6 to specifically explain the features of the present invention.

第1例として、第1図は本発明の一実施態様を示す溶射
ガンの断面図を示し、第2図は第1図溶射ガンのA−A
矢視図を示す。
As a first example, FIG. 1 shows a sectional view of a thermal spray gun showing one embodiment of the present invention, and FIG. 2 shows a cross-sectional view of the thermal spray gun shown in FIG.
An arrow view is shown.

第1図において上はプラズマ溶射ガン本体で、主にタン
グステン電極2と水冷銅電極3とプラズマガス供給口4
及び溶射材料供給口5,6で構成される。本実施例の特
徴は溶射材料供給口5,6をプラズマフレームに対して
プラズマ溶射ガンの中心線方向にずらして配置し、例え
ば溶射材料の物性として融点が顕著に異なる2種の材料
を使用する場合、高融点の材料をプラズマアーク発生点
に近い供給口5から供給し、低融点の材料はその逆で、
プラズマフレームの下流域の供給口6から供給している
In Figure 1, the upper part is the main body of the plasma spray gun, which mainly consists of a tungsten electrode 2, a water-cooled copper electrode 3, and a plasma gas supply port 4.
and thermal spray material supply ports 5 and 6. The feature of this embodiment is that the thermal spray material supply ports 5 and 6 are arranged to be shifted from the plasma flame in the direction of the center line of the plasma spray gun, and that, for example, two types of materials with significantly different melting points are used as the physical properties of the thermal spray materials. In this case, the material with a high melting point is supplied from the supply port 5 close to the plasma arc generation point, and vice versa, the material with a low melting point is supplied.
It is supplied from the supply port 6 in the downstream region of the plasma flame.

次に第2例として、第3図は第1図の溶射ガンより溶射
材料供給口の数を増した例の溶射ガンの断面図を示し、
第4図は第3図溶射ガンのB−B矢視図を示す。
Next, as a second example, FIG. 3 shows a cross-sectional view of a thermal spray gun with an increased number of spray material supply ports compared to the thermal spray gun shown in FIG.
FIG. 4 shows a BB arrow view of the thermal spray gun shown in FIG.

第3図において上はプラズマ溶射ガン本体で主にタング
ステン電極2と水冷銅電極3とプラズマガス供給口4及
び溶射材料供給口5.6.15.16で構成される。本
実施例の特徴は溶射材料供給口をタングステン電極2を
中心として対称に2対具備し、それぞれの材料供給口の
対をプラズマフレームに対してプラズマ溶射ガンの中心
線方向にずらして配置し、例えば溶射材料の物性として
、融点が顕著に異なる2種の材料を使用する場合、第1
例と同様、高融点溶射材料をプラズマフレームの−E流
域の供給口5.6から供給し、低融点の材料はプラズマ
フレームの下流域の供給口15.16から供給している
。尚、材料供給口数は2対以上具備し、2種以上の溶射
材料を使用する場合もある。
In FIG. 3, the upper part is the plasma spray gun main body, which is mainly composed of a tungsten electrode 2, a water-cooled copper electrode 3, a plasma gas supply port 4, and a thermal spray material supply port 5, 6, 15, and 16. The feature of this embodiment is that two pairs of thermal spray material supply ports are provided symmetrically with respect to the tungsten electrode 2, and each pair of material supply ports is arranged offset from the plasma flame in the direction of the center line of the plasma spray gun. For example, when using two materials with significantly different melting points as thermal spray materials, the first
As in the example, the high melting point spray material is supplied from the supply port 5.6 in the -E region of the plasma flame, and the low melting point material is supplied from the supply port 15.16 in the downstream region of the plasma flame. Note that two or more pairs of material supply ports may be provided, and two or more types of thermal spraying materials may be used.

第3例として、第5図は第1例の溶射ガンの溶射材料供
給角度及び溶射材料供給口位置を変えた例の溶射ガンの
断面図を示し、第6図は第5図溶射ガンのC−C矢視図
を示す。
As a third example, FIG. 5 shows a cross-sectional view of the thermal spray gun in which the spraying material supply angle and the spraying material supply port position of the thermal spraying gun of the first example are changed, and FIG. -C arrow view is shown.

第5図中第1図と同一符号は第1図と同−機能品を示す
In FIG. 5, the same reference numerals as in FIG. 1 indicate items with the same functions as in FIG. 1.

本実施例の特徴は、前記2実施例では溶射材料投入角度
がプラズマフレームに対して直角であったのに対し、プ
ラズマフレームに対して上向、あるいは下向に粉末が投
入できる様、溶射材料供給流路に角度を設け、前例と同
様、高融点溶射材料をプラズマフレームに対して上向き
の供給口5から供給し、低融点の材料は下向きの供給口
6から供給している。
The feature of this embodiment is that, whereas in the previous two embodiments, the spraying material injection angle was perpendicular to the plasma flame, the spraying material was The supply flow path is angled, and as in the previous example, the high melting point thermal spray material is supplied to the plasma flame from the upward supply port 5, and the low melting point material is supplied from the downward supply port 6.

また、図示していないが、溶射材料供給口の位置は同じ
とし、溶射材料供給流路の角度に差をつけるもの等も含
め、必要により、以上の複数実施例を組合せした構成で
実施する場合もある。
Although not shown, the spray material supply ports may be placed at the same position and the angles of the spray material supply channels may be different, and if necessary, the above embodiments may be combined. There is also.

(発明の効果) 以上に説明した様に、本発明において、溶射材料の物性
の違いによってプラズマフレームに対する溶射材料供給
口位置あるいは供給角度又は供給位置と角度の組合せを
違えて複数種の溶射材料を供給し、任意の混合比率にて
溶射することで、接着強度が大きく熱的および機械的衝
撃に対して優れた抵抗を有する被覆を形成することが可
能となった。
(Effects of the Invention) As explained above, in the present invention, multiple types of thermal spraying materials are applied by changing the position of the thermal spraying material supply port, the feeding angle, or the combination of the feeding position and angle to the plasma flame depending on the physical properties of the thermal spraying materials. By supplying and thermal spraying at an arbitrary mixing ratio, it became possible to form a coating with high adhesive strength and excellent resistance to thermal and mechanical impact.

又波及効果として、本発明の溶射ガンを利用し、例えば
複数種の溶射材料のそれぞれの供給量を時間とともに変
化させることで、連続的に所望の混合比率の積層溶射被
膜の形成が可能となり、接着強度が大きな厚肉溶射被膜
が可能である。
In addition, as a ripple effect, by using the thermal spray gun of the present invention and changing the supply amount of each of multiple types of thermal spray materials over time, it becomes possible to continuously form a laminated thermal spray coating with a desired mixing ratio, Thick thermal sprayed coatings with high adhesive strength are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様(第1例)を示ず溶射ガン
の断面図、 第2図は第1図溶射ガンのA−^矢視図、第3図は本発
明の一実施態様(第2例)を示す溶射ガンの断面図、 第4図は第3図溶射ガンのB−8矢視図、第5図は本発
明の一実施態様(第3例)を示す溶射ガンの断面図、 第6図は第5図溶射ガンのC−C矢視図、第7図は溶射
ガンの位置に対応した溶射材料供給口付近のプラズマフ
レーム中心軸上の温度分布、第8図は従来のプラズマ溶
射法を説明する図である。 上・・・溶射ガン、    2・・・タングステン電極
、3・・・水冷銅電極、  4・・・プラズマガス供給
口、5、6.15.16・・・溶射材料供給口、7・・
・絶縁体、     8・・・直流電源、9・・・プラ
ズマガスボンベ、 10、12・・・溶射材料ホッパー 11、13・・・不活性ガスボンベ、 14・・・被溶射母材、  17・・・プラズマフレー
ム。
Fig. 1 is a sectional view of a thermal spray gun, not showing one embodiment (first example) of the present invention, Fig. 2 is a view taken along arrow A-^ of the thermal spray gun of Fig. 1, and Fig. 3 is an embodiment of the present invention. 4 is a cross-sectional view of the thermal spray gun showing an embodiment (second example), FIG. 4 is a view taken along arrow B-8 of the thermal spray gun in FIG. 3, and FIG. 5 is a thermal spray gun showing an embodiment (third example) of the present invention. Figure 6 is a cross-sectional view of the thermal spray gun in Figure 5 taken along the line C-C, Figure 7 is the temperature distribution on the central axis of the plasma flame near the spray material supply port corresponding to the position of the spray gun, and Figure 8 is a cross-sectional view of the spray gun. FIG. 1 is a diagram illustrating a conventional plasma spraying method. Top...Thermal spray gun, 2...Tungsten electrode, 3...Water-cooled copper electrode, 4...Plasma gas supply port, 5, 6.15.16...Thermal spray material supply port, 7...
- Insulator, 8... DC power supply, 9... Plasma gas cylinder, 10, 12... Thermal spray material hopper 11, 13... Inert gas cylinder, 14... Base material to be sprayed, 17... plasma flame.

Claims (1)

【特許請求の範囲】 1)カソードと該カソードの外側に設けた筒状のアノー
ドとプラズマガスをカソードとアノードの間に噴出させ
るプラズマガス供給口及びプラズマフレームに向けて複
数種の溶射材料を同時に噴出させる溶射材料供給口を複
数個設けたプラズマ溶射ガンにおいて、 溶射材料供給口の位置をプラズマ溶射ガンの中心線方向
で差をつけて設けるか又は、溶射材料供給流路の角度を
プラズマ溶射ガンの中心線に対して差をつけて設けるか
又は、溶射材料供給口の位置をプラズマ溶射ガンの中心
線方向で差をつけて設けると共に溶射材料供給流路の角
度をプラズマ溶射ガンの中心線に対して差をつけて設け
ることを特徴とするプラズマ溶射ガン。
[Claims] 1) Multiple types of thermal spraying materials are simultaneously directed toward a cathode, a cylindrical anode provided outside the cathode, a plasma gas supply port for ejecting plasma gas between the cathode and the anode, and a plasma flame. In a plasma spray gun that is equipped with multiple spray material supply ports, the spray material supply ports should be placed at different positions in the direction of the center line of the plasma spray gun, or the angle of the spray material supply channel should be adjusted to suit the plasma spray gun. Alternatively, the spray material supply ports may be provided at different positions in the direction of the center line of the plasma spray gun, and the angle of the spray material supply flow path may be set at a different angle from the center line of the plasma spray gun. A plasma spray gun characterized by being installed with a difference between the two.
JP63201039A 1988-08-13 1988-08-13 Plasma spray gun Pending JPH0251898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63201039A JPH0251898A (en) 1988-08-13 1988-08-13 Plasma spray gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63201039A JPH0251898A (en) 1988-08-13 1988-08-13 Plasma spray gun

Publications (1)

Publication Number Publication Date
JPH0251898A true JPH0251898A (en) 1990-02-21

Family

ID=16434414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63201039A Pending JPH0251898A (en) 1988-08-13 1988-08-13 Plasma spray gun

Country Status (1)

Country Link
JP (1) JPH0251898A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196298A (en) * 1992-12-24 1994-07-15 Kaku Yuugou Kagaku Kenkyusho Plasma electromagnetic accelerator
JP2000188200A (en) * 1998-12-21 2000-07-04 Sulzer Metco Ag Nozzle for plasma torch
KR20000040103A (en) * 1998-12-17 2000-07-05 서성필 Portable nonelectric iron
JP2010521042A (en) * 2007-02-02 2010-06-17 プラズマ テクノロジーズ リミテッド Plasma spray apparatus and method
JP2011045877A (en) * 2009-08-27 2011-03-10 General Electric Co <Ge> Apparatus and method for depositing coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202062A (en) * 1974-10-07 1983-11-25 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Thermal spray method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202062A (en) * 1974-10-07 1983-11-25 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Thermal spray method and apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196298A (en) * 1992-12-24 1994-07-15 Kaku Yuugou Kagaku Kenkyusho Plasma electromagnetic accelerator
KR20000040103A (en) * 1998-12-17 2000-07-05 서성필 Portable nonelectric iron
JP2000188200A (en) * 1998-12-21 2000-07-04 Sulzer Metco Ag Nozzle for plasma torch
JP4620198B2 (en) * 1998-12-21 2011-01-26 スルツァー メトコ アーゲー Plasma torch nozzle
JP2010521042A (en) * 2007-02-02 2010-06-17 プラズマ テクノロジーズ リミテッド Plasma spray apparatus and method
JP2011045877A (en) * 2009-08-27 2011-03-10 General Electric Co <Ge> Apparatus and method for depositing coating

Similar Documents

Publication Publication Date Title
US3075066A (en) Article of manufacture and method of making same
EP0368547B1 (en) Plasma generating apparatus and method
EP1160348B1 (en) Process for producing graded coated articles
US5144110A (en) Plasma spray gun and method of use
KR900000507B1 (en) Semi transferred arc in a liquid stabilized plasma generator and method for utilizing the same
US4471034A (en) Alloy coating for cast iron parts, such as glass molds
EP0296814B1 (en) Thermal spray coating method
US5070228A (en) Method for plasma spray joining active metal substrates
GB2228428A (en) Laser plasma spraying
US5441554A (en) Alloy coating for aluminum bronze parts, such as molds
JPH0251898A (en) Plasma spray gun
Beilis et al. Thin-film deposition with refractory materials using a vacuum arc
Li et al. Effects of spray parameters on the microstructure and property of Al2O3 coatings sprayed by a low power plasma torch with a novel hollow cathode
JP6985097B2 (en) Mixed gas and method of forming a thermal spray coating using it
US6833165B2 (en) Thermally sprayed coatings
JPH09148094A (en) Plasma spraying torch
JPS61230300A (en) Torch for plasma arc
JP3028709B2 (en) Plasma spraying equipment
JPH05202460A (en) Method for thermally spraying perovskite type oxide, thermal-sprayed film, solid electrolyte type fuel cell and manufacture thereof
US20040037968A1 (en) Thermally sprayed chromium nitride coating
JPH05339699A (en) Plasma thermal spraying method
JPH07135092A (en) Plasma thermal spraying device
JPH0741931A (en) Plsma thermal spraying device
JPH0390554A (en) Method and device for reduced pressure plasma flame spraying
JPS6231069B2 (en)