JPH0251535A - Electrically conductive powder and preparation thereof - Google Patents

Electrically conductive powder and preparation thereof

Info

Publication number
JPH0251535A
JPH0251535A JP63202409A JP20240988A JPH0251535A JP H0251535 A JPH0251535 A JP H0251535A JP 63202409 A JP63202409 A JP 63202409A JP 20240988 A JP20240988 A JP 20240988A JP H0251535 A JPH0251535 A JP H0251535A
Authority
JP
Japan
Prior art keywords
silver
conductive powder
siloxane particles
spherical
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63202409A
Other languages
Japanese (ja)
Other versions
JPH0477401B2 (en
Inventor
Takuro Morimoto
琢郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Production Development
Original Assignee
Research Institute for Production Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Production Development filed Critical Research Institute for Production Development
Priority to JP63202409A priority Critical patent/JPH0251535A/en
Publication of JPH0251535A publication Critical patent/JPH0251535A/en
Publication of JPH0477401B2 publication Critical patent/JPH0477401B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

PURPOSE:To obtain an electrically conductive powder having a stable and high conductivity, good dispersibility and flowability and being suitable as a raw material for manufacturing an electrically conductive composite material. CONSTITUTION:This electrically conductive powder is a spherical siloxane particle the surface of which is covered with silver by bringing the spherical siloxane particle into contact with a soln. of silver compd. and a soln. of a reducing agent. It is pref. when the spherical siloxane particles are dispersed in the coexistence of a wetting agent and said contact treatment is performed, because a homogeneous surface treatment can be attained. As the wetting agent, methyl alcohol, ethyl alcohol, ethylene glycol, etc., are pref. As the silver compd. and a reducing agent, silver nitride and a tartrate or hydrogen peroxide are respectively pref.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、球状のシロキサン粒子の表面が銀で被覆され
た新規な導電性粉末及びその簡便な製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel conductive powder in which the surface of spherical siloxane particles is coated with silver, and a simple method for producing the same.

本発明によって得られる導電性粉末は、導電性塗料、導
電性インキ、導電性フィルム等の導電性複合材料に適用
出来る素材として適したものである。
The conductive powder obtained by the present invention is suitable as a material that can be applied to conductive composite materials such as conductive paints, conductive inks, and conductive films.

〔従来技術とその課題〕[Conventional technology and its issues]

導電性粉末に対する品質要求は高度化しつつあり、特に
導電性塗料、導電性インキ、導電性フィルム等の導電性
複合材料に用いる導電性粉末にあっては、薄層化適性、
精密印刷適性が要求されてきている。つまり、導電性粉
末に、塗料やインキの製造時における高濃度且つ均質な
分散性が要求されると共に、塗料やインキの流動性が要
求されている。
Quality requirements for conductive powders are becoming more sophisticated, especially for conductive powders used in conductive composite materials such as conductive paints, conductive inks, and conductive films.
Precision printing suitability is increasingly required. In other words, conductive powder is required to have high concentration and homogeneous dispersibility during the production of paints and inks, and fluidity of paints and inks is also required.

従来から知られている導電性粉末としては、銀。Silver is a conventionally known conductive powder.

銅、ニッケル、アルミニューム等の全屈粉末、炭素粉末
、酸化錫粉末等がある。しかし、これらの導電性粉末は
、一般には粉砕法によって製造されるため、微細且つ高
真球度のものが得られないため、前記した分散性や流動
性の要求を満たすことができなかった。もちろん、微細
且つ高真球度の導電性粉末を得る方法もあるが、高度且
つ複雑な処理を必要としていた。
There are total bending powders such as copper, nickel, and aluminum, carbon powders, and tin oxide powders. However, since these conductive powders are generally produced by a pulverization method, fine particles with high sphericity cannot be obtained, and therefore, the above-mentioned requirements for dispersibility and fluidity cannot be met. Of course, there are methods for obtaining fine and highly spherical conductive powder, but these require sophisticated and complicated processing.

そこで、微細且つ高真球度の導電性粉末を簡単に得る方
法の開発が望まれ、ガラスピーズや樹脂ビーズの表面を
無電解メツキ等で導電性金属を被覆する方法等が提案さ
れている。しかし、ガラスピーズや樹脂ビーズと導電性
金属被覆層との結合性がないので、導電性粉末を塗料や
インキに分散する時に導電性金属被覆層が脱落し、所望
の導電性が発現しにくくなるという問題点があった。そ
のため、新規な導電性粉末とその製造法の開発が要望さ
れていた。
Therefore, there is a desire to develop a method for easily obtaining fine and highly spherical conductive powder, and methods have been proposed in which the surfaces of glass beads or resin beads are coated with conductive metal by electroless plating or the like. However, since there is no bond between the glass beads or resin beads and the conductive metal coating layer, the conductive metal coating layer falls off when the conductive powder is dispersed in paint or ink, making it difficult to achieve the desired conductivity. There was a problem. Therefore, there has been a demand for the development of a new conductive powder and its manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、前記した従来技術並びにその課題に鑑み種
々研究した結果、所期の目的を達成できる本発明に係る
導電性粉末とその製造法を完成したのである。
As a result of various studies in view of the above-mentioned prior art and its problems, the present inventor has completed a conductive powder and a manufacturing method thereof according to the present invention that can achieve the intended purpose.

即ち、本発明に係る導電性粉末は、球状のシロキサン粒
子の表面が銀で被覆されたことを特徴とするものである
That is, the conductive powder according to the present invention is characterized in that the surface of spherical siloxane particles is coated with silver.

本発明におけるシロキサン粒子とは、低分子量の加水分
解性シラン又はシロキサン化合物の重合体であり、全結
合の90%以上がシロキサン結合であり、珪素に直結し
たメチル基、フェニル基。
The siloxane particles in the present invention are low molecular weight hydrolyzable silanes or polymers of siloxane compounds, in which 90% or more of all bonds are siloxane bonds, and include methyl groups and phenyl groups directly bonded to silicon.

β−グリシドキシプロピル基、アルコキシル基。β-glycidoxypropyl group, alkoxyl group.

クロル基、水酸基及び水素の1種又は2種以上の結合が
根跡又は10%以下で、実質的にSingを主構成成分
とするものである。本発明におけるシロキサン粒子は球
状を呈することが要求されるが、その理由は、本発明に
係る導電性粉末を導電性複合材料の素材として用いる場
合に、分散性や流動性を阻害してはならないからである
。シロキサン粒子は、均質であっても不揃いのものでも
良いが、実用面からは均質なものが好ましいことは云う
までもない。シロキサン粒子の粒径は、直径0.1μ〜
50μのものが用いられる。直径0.1μより細かいも
のは入手が困難であり、直径50μより粗いものは精密
印刷適性に不適である。従って、実際上は直径1μ前後
〜5μ前後のものが好ましい。
The bond of one or more of chloro group, hydroxyl group, and hydrogen is present or 10% or less, and the main component is substantially Sing. The siloxane particles in the present invention are required to have a spherical shape, because when the conductive powder according to the present invention is used as a material for a conductive composite material, dispersibility and fluidity must not be inhibited. It is from. The siloxane particles may be homogeneous or irregular, but it goes without saying that homogeneous particles are preferred from a practical standpoint. The particle size of siloxane particles is from 0.1μ in diameter to
50μ is used. It is difficult to obtain a material with a diameter of less than 0.1 μm, and a material with a diameter of more than 50 μm is unsuitable for precision printing. Therefore, in practice, a diameter of about 1 μm to about 5 μm is preferable.

本発明に係る導電性粉末を得る方法としては種々の方法
が考えられる。例えば、■シロキサン粒子の流動床中を
銀蒸気と直接接触させるPVD法、■無電解メツキでシ
ロキサン粒子の表面に還元銀を析出させる方法、■シロ
キサン粒子の表面に水酸化銀等の銀化合物で被覆した後
還元する方法等の任意の手段が適用出来る。製造法が簡
便な点からすれば、■の方法が有利である。請求項2は
この■の方法である。
Various methods can be considered to obtain the conductive powder according to the present invention. For example, ■ a PVD method in which siloxane particles are brought into direct contact with silver vapor in a fluidized bed, ■ a method in which reduced silver is deposited on the surface of siloxane particles by electroless plating, and ■ a silver compound such as silver hydroxide is applied to the surface of siloxane particles. Any method such as a method of reducing after coating can be applied. From the point of view of simple manufacturing method, method (2) is advantageous. Claim 2 is the method (2).

即ち、本発明に係る導電性粉末の製造方法は、球状のシ
ロキサン粒子と銀化合物の溶液と還元剤の溶液とを接触
させることにより、球状のシロキサン粒子の表面が銀で
被覆された導電性粉末を得ることを特徴とするものであ
る。
That is, the method for producing a conductive powder according to the present invention involves contacting spherical siloxane particles with a solution of a silver compound and a solution of a reducing agent to produce a conductive powder in which the surface of the spherical siloxane particles is coated with silver. It is characterized by obtaining the following.

本発明において銀化合物とは、硝酸銀、酢酸銀。In the present invention, silver compounds include silver nitrate and silver acetate.

硫酸銀、亜硝酸銀等の水に可溶な化合物の他、ハロゲン
化銀、水酸化銀、酸化銀、シアン化銀、チオ硫酸銀、チ
オシアン酸銀等の水に不溶のものであってもアンモニア
、チオ硝酸ソーダ、シアン化カリウム、エチレンジアミ
ンテトラアセテート(EDTA)等のキレート化剤と反
応したキレート化合物であって、水又は酸あるいはアル
カリの水溶液中で溶解又は均質分散するものであれば良
い。入手しやす(、操作が簡単である点からして、硝酸
銀が好ましい。この銀化合物は、単独又は2種以上の混
合物で、水又は酸あるいはアルカリの水溶液又はこれら
の均質な分散液として利用される。この銀化合物の使用
量は、導電性粉末の利用目的及びシロキサン粒子の粒子
径により相違し特に限定されないが、−船釣にいって、
シロキサン粒子100重量部に対し銀化合物が少なくと
も30重量部、好ましくは50重量部以上である。これ
より少なくすると、被覆層の厚みが薄くなって高導電性
のものが得にくくなる。一方、銀化合物の使用量を多く
すると、高価な銀の使用に伴い製品価格が高くなるばか
りか、銀被覆層が厚くなりすぎることに起因して、導電
性粉末が球状にならなかったり、表面の平滑性が低下し
たりして、実用性が低下する。従って、銀化合物の使用
量の上限は、1000重量部以下、好ましくは700重
量部以下である。
In addition to water-soluble compounds such as silver sulfate and silver nitrite, even water-insoluble compounds such as silver halide, silver hydroxide, silver oxide, silver cyanide, silver thiosulfate, and silver thiocyanate can be used as ammonia. Any chelate compound reacted with a chelating agent such as sodium thionitrate, potassium cyanide, or ethylenediaminetetraacetate (EDTA), which can be dissolved or homogeneously dispersed in water or an aqueous acid or alkali solution, may be used. Silver nitrate is preferred from the viewpoint of easy availability (and easy operation).This silver compound can be used alone or in a mixture of two or more, in water or in an aqueous solution of an acid or alkali, or as a homogeneous dispersion thereof. The amount of this silver compound used varies depending on the purpose of use of the conductive powder and the particle size of the siloxane particles, and is not particularly limited.
The amount of the silver compound is at least 30 parts by weight, preferably 50 parts by weight or more, based on 100 parts by weight of the siloxane particles. When the amount is less than this, the thickness of the coating layer becomes thinner and it becomes difficult to obtain a highly conductive layer. On the other hand, if a large amount of silver compound is used, not only will the product price increase due to the use of expensive silver, but also the silver coating layer will become too thick, causing the conductive powder to become spherical and the surface The smoothness of the surface may deteriorate, resulting in a decrease in practicality. Therefore, the upper limit of the amount of silver compound used is 1000 parts by weight or less, preferably 700 parts by weight or less.

次に、本発明における還元剤とは、酒石酸及びその塩、
ホルムアルデヒド、過酸化水素、ヒドラジン化合物2火
亜リン酸及びその塩、水素化ホウ素化合物例えば水素化
ホウ素ナトリウム等、銀化合物に対し還元性を示すもの
であれば任意のものが利用出来る。入手しやすく、反応
が容易であることから、酒石酸ナトリウム、酒石酸カリ
ウム等の酒石酸塩又は過酸化水素を用いるのが有利であ
る。この還元剤の使用量は、銀化合物を完全に還元する
のに必要な量か、若干の過剰な量がよい。
Next, the reducing agent in the present invention includes tartaric acid and its salts,
Any material can be used as long as it exhibits reducing properties for silver compounds, such as formaldehyde, hydrogen peroxide, hydrazine compounds, diphosphorous acid and its salts, and borohydride compounds such as sodium borohydride. It is advantageous to use tartrates such as sodium tartrate, potassium tartrate, or hydrogen peroxide because of their availability and ease of reaction. The amount of the reducing agent to be used is preferably the amount necessary to completely reduce the silver compound or a slight excess amount.

過剰な量の程度としては、通常lO〜300%程度の過
剰量が好ましい。これ以上の還元剤を用いても、利用さ
れず無駄となる。
The excess amount is usually preferably about 10 to 300%. Even if more reducing agent is used, it will not be used and will be wasted.

本発明においては、球状のシロキサン粒子と銀化合物の
溶液と還元剤の溶液とが接触させられるが、その手段と
しては種々の方法がある。例えば、シロキサン粒子を銀
化合物の溶液に分散させた後に還元剤の溶液を加える方
法、シロキサン粒子を還元剤の溶液に分散させた後に銀
化合物の溶液を加える方法、シロキサン粒子の分散溶液
に銀化合物の溶液と還元剤の溶液を同時に加える方法が
ある。
In the present invention, spherical siloxane particles are brought into contact with a solution of a silver compound and a solution of a reducing agent, and various methods can be used for this purpose. For example, a method of dispersing siloxane particles in a solution of a silver compound and then adding a solution of a reducing agent, a method of dispersing siloxane particles in a solution of a reducing agent and then adding a solution of a silver compound, and a method of adding a solution of a silver compound to a solution of a dispersion of siloxane particles. There is a method of adding the solution and the reducing agent solution at the same time.

銀化合物と還元剤との反応は、通常攪拌下で行い、反応
温度は、還元剤の種類により、加温、又は冷却下で行う
が、通常0°C〜80°Cである。
The reaction between the silver compound and the reducing agent is usually carried out under stirring, and the reaction temperature is usually 0°C to 80°C, depending on the type of reducing agent, heating or cooling.

請求項3に記載の発明は、請求項2に記載の発明におい
て、球状のシロキサン粒子を湿潤剤の共存系で分散させ
たことを特徴とするものである。
The invention according to claim 3 is the invention according to claim 2, characterized in that spherical siloxane particles are dispersed in a coexistence system of a wetting agent.

本発明において使用するシロキサン粒子は、銀と強固に
結合し、優れた導電性粉末を提供する反面、次のような
問題点を持っている。即ち、シロキサン粒子の表面は検
水性に冨み、水系における無電解メツキ法によりシロキ
サン粒子の表面に銀を析出させる方法では、シロキサン
粒子が水系反応液の表面に浮遊、集合し、均質な表面処
理が行えず、導電性粉末の製造が極めて困難である。請
求項3に記載の発明は、湿潤剤の共存系でシロキサン粒
子を均質分散させることにより、この問題点を解決した
のである。
Although the siloxane particles used in the present invention strongly bond with silver and provide excellent conductive powder, they have the following problems. In other words, the surface of the siloxane particles has high water testability, and in the method of depositing silver on the surface of the siloxane particles by electroless plating in an aqueous system, the siloxane particles float and aggregate on the surface of the aqueous reaction solution, resulting in a homogeneous surface treatment. This makes it extremely difficult to produce conductive powder. The invention described in claim 3 solves this problem by homogeneously dispersing siloxane particles in a system in which a wetting agent coexists.

本発明において湿潤剤とは、水に可溶であり、還元剤に
安定なものであれば任意に選択出来るが、分子鎖中に水
酸基又はエーテル結合を含み、これら水酸基又はエーテ
ル結合と直結した炭化水素基の炭素数が酸素1原子当り
、平均5以下好ましくは3以下のものが良い。代表的な
ものとして、メチルアルコール、エチルアルコール、プ
ロピルアルコール等の炭素数1〜5の1価のアルコール
、エチレングリコール、プロピレングリコール、ブチレ
ングリコール等のグリコール類及びその縮合体、グリセ
リン、ネオペンチルグリコール、ペンタエリストール等
の多価アルコール、メチルセロソルブ、エチルセロソル
ブ等のセロソルブが例示されるが、取り扱いが容易な点
からメチルアルコール、エチルアルコール、プロピルア
ルコール。
In the present invention, the wetting agent can be arbitrarily selected as long as it is soluble in water and stable to reducing agents, but it contains a hydroxyl group or an ether bond in its molecular chain, and a carbonization agent that is directly connected to the hydroxyl group or ether bond. The hydrogen group preferably has an average number of carbon atoms of 5 or less, preferably 3 or less, per oxygen atom. Representative examples include monohydric alcohols having 1 to 5 carbon atoms such as methyl alcohol, ethyl alcohol, and propyl alcohol, glycols and their condensates such as ethylene glycol, propylene glycol, and butylene glycol, glycerin, neopentyl glycol, Examples include polyhydric alcohols such as pentaerythtol, cellosolves such as methyl cellosolve and ethyl cellosolve, but methyl alcohol, ethyl alcohol, and propyl alcohol are preferred from the viewpoint of ease of handling.

エチレングリコール、グリセリンが好ましい。また、本
発明の潤滑剤として次のような非イオン系界面活性剤も
利用できる。例えば、ポリオキシエチレンオレイルエー
テル、ポリオキシエチレンラウリルエーテル等のポリオ
キシエチレンアルキルエーテル類、ポリオキシエチレン
ノニルフェノルエーテル、ポリオキシエチレンオクチル
フェノルエーテル等のポリオキシエチレンアルキルフェ
ノールエーテル類、ポリオキシエチレンモノラウレート
ポリオキシエチレンモノオレエート等のポリオキシエチ
レンモノアルキレート類、ポリオキシエチレンソルビタ
ンモノラウレート、ポリオキシエチレンソルビタンモノ
オレエート等のポリオキシエチレンソルビタンアルキレ
ート類であり、これらノニオン系界面活性剤にあっては
HLBが4以上、好ましくは8以上、即ち親水性基の多
いものが好ましい。これらの湿潤剤は、単独で又は2種
以上の混合物で使用される。
Ethylene glycol and glycerin are preferred. Furthermore, the following nonionic surfactants can also be used as the lubricant of the present invention. For example, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether, polyoxyethylene alkyl phenol ethers such as polyoxyethylene nonyl phenol ether and polyoxyethylene octyl phenol ether, and polyoxyethylene monolaurate. Polyoxyethylene monoalkylates such as polyoxyethylene monooleate, polyoxyethylene sorbitan alkylates such as polyoxyethylene sorbitan monolaurate, and polyoxyethylene sorbitan monooleate, and these nonionic surfactants It is preferable that the HLB is 4 or more, preferably 8 or more, that is, it has many hydrophilic groups. These wetting agents may be used alone or in mixtures of two or more.

この湿潤剤の使用量は、反応条件、湿潤剤の種類等によ
り変化するので特定できないが、シロキサン粒子100
重量部に対し1〜10000重量部を用いる。少なすぎ
ると湿潤効果が期待出来ず、逆に多すぎると還元反応を
阻害することがあるからである。
The amount of this wetting agent used cannot be specified as it varies depending on the reaction conditions, the type of wetting agent, etc., but the amount of siloxane particles 100
1 to 10,000 parts by weight is used. This is because if it is too small, no wetting effect can be expected, and if it is too large, the reduction reaction may be inhibited.

湿潤剤の添加時期は、銀化合物と還元剤とが反応を開始
する前がよく、例えばシロキサン粒子を銀化合物の溶液
や還元剤の溶液と接触させる前に、予めシロキサン粒子
と湿潤剤とを分散させておいてもよいし、また、銀化合
物の溶液や還元剤の溶液に湿潤剤を共存させ、その後に
シロキサン粒子を混合してもよい。なお、前者の場合、
シロキサン粒子と湿潤剤とを混合した後水中に投入して
分散させてもよいし、またシロキサン粒子の分散系に潤
滑剤を投入し再分散させてもよい。
The wetting agent is preferably added before the reaction between the silver compound and the reducing agent starts. For example, before the siloxane particles are brought into contact with the silver compound solution or the reducing agent solution, the siloxane particles and the wetting agent are dispersed in advance. Alternatively, a wetting agent may be present in the solution of the silver compound or the solution of the reducing agent, and then the siloxane particles may be mixed. In addition, in the case of the former,
The siloxane particles and the wetting agent may be mixed and then added to water for dispersion, or a lubricant may be added to the dispersion system of the siloxane particles for redispersion.

尚、本発明では、湿潤剤以外に、シロキサン粒子を安定
させる分散剤、銀化合物の安定化の為のキレート化剤、
pH調整剤等、通常用いられる無電解メンキ用添加剤の
併用を制限しない。
In addition, in the present invention, in addition to the wetting agent, a dispersing agent for stabilizing siloxane particles, a chelating agent for stabilizing the silver compound,
There are no restrictions on the combined use of commonly used additives for electroless heating, such as pH adjusters.

〔発明の効果〕〔Effect of the invention〕

■本発明に係る導電性粉末は、基材として球状のシロキ
サンを用いているので、導電層を形成している銀の密着
性が良く、高導電性を得ることができる。また、本発明
に係る導電性わ)末は、基材として球状のシロキサンを
用いているので、分散性や流動性が良く、高充填が可能
となり、安定な高導電性を得ることができる。
(2) Since the conductive powder according to the present invention uses spherical siloxane as a base material, the adhesion of the silver forming the conductive layer is good and high conductivity can be obtained. Furthermore, since the conductive powder according to the present invention uses spherical siloxane as a base material, it has good dispersibility and fluidity, enables high filling, and provides stable high conductivity.

■本発明に係る導電性粉末の製造法は、球状のシロキサ
ンと銀化合物の溶液と還元剤の溶液とを接触させるだけ
であるから、簡単に導電性粉末を得ることができる。
(2) Since the method for producing conductive powder according to the present invention simply involves bringing a solution of spherical siloxane and a silver compound into contact with a solution of a reducing agent, conductive powder can be easily obtained.

従って、本発明によって得られる導電性粉末は、導電性
塗料、導電性インキ、導電性フィルム等の導電性複合材
料に適用出来る素材として好適なものであり、産業上の
利用価値の高いものである。
Therefore, the conductive powder obtained by the present invention is suitable as a material that can be applied to conductive composite materials such as conductive paints, conductive inks, and conductive films, and has high industrial utility value. .

なお、本発明に係る導電性粉末は、銀触媒としても利用
することが出来る。
Note that the conductive powder according to the present invention can also be used as a silver catalyst.

〔実施例〕〔Example〕

次に、本発明の構成を実施例に基づいて説明する。 Next, the configuration of the present invention will be explained based on examples.

実施例1 球状のシロキサン粒子(商品名:「トスパール120」
、東芝シリコーン社製、平均粒径2μ)2gを、硝酸銀
4g、28%アンモニア水6 milを水150gに溶
解したものに加えて球状のシロキサン粒子の一部が浮遊
した分散液を調整した後、攪拌下で、酒石酸カリウムナ
トリウムの10%溶液200gを約30分を要して滴下
後、攪拌を維持しつつ、反応液を50°Cまで昇温し、
1時間及反応させたのち、濾別、水洗、乾燥することに
より、銀灰色の導電性粉末4.4gを得た。
Example 1 Spherical siloxane particles (trade name: "Tospearl 120")
, manufactured by Toshiba Silicone Co., Ltd., average particle size 2 μ) was added to a solution of 4 g of silver nitrate and 6 mil of 28% ammonia water dissolved in 150 g of water to prepare a dispersion in which some spherical siloxane particles were suspended. While stirring, 200 g of a 10% solution of potassium sodium tartrate was added dropwise over about 30 minutes, and while maintaining stirring, the reaction solution was heated to 50°C.
After reacting for 1 hour, the mixture was filtered, washed with water, and dried to obtain 4.4 g of silver-gray conductive powder.

なお、上記反応では、球状のシロキサン粒子の浮遊物は
完全に消失することな(、回収した導電性物質中に少量
の白色粒子が認められたが、100kg/−加圧下で導
電性は1.2X10−2Ωcmとすくれた導電性を示し
た。
In addition, in the above reaction, the suspended matter of spherical siloxane particles did not completely disappear (although a small amount of white particles were observed in the recovered conductive material, the conductivity was 1.0% under a pressure of 100 kg/-). It showed poor conductivity of 2×10 −2 Ωcm.

実施例2 球状のシロキサン粒子(商品名:「トスパール120」
、東芝シリコーン社製、平均粒径2μ)2gとエチレン
グリコール0゜5gの均質混合物を水50gに分散させ
たものに、硝酸銀4g、28%アンモニア水6 dを水
150gに溶解したものを加え、攪拌下で、酒石酸カリ
ウムナトリウムの10%溶液200gを約30分を要し
て滴下後、撹拌を継持しつつ、反応液を50°Cまで昇
温し、30分間反応させたのち、濾別、水洗、乾燥する
ことにより、銀灰色の導電性粉末4.5gを得た。
Example 2 Spherical siloxane particles (trade name: "Tospearl 120")
To a homogeneous mixture of 2g (manufactured by Toshiba Silicone Co., Ltd., average particle size 2μ) and 0.5g of ethylene glycol dispersed in 50g of water, 4g of silver nitrate and 6d of 28% aqueous ammonia dissolved in 150g of water were added. While stirring, 200 g of a 10% solution of potassium sodium tartrate was added dropwise over a period of about 30 minutes. While stirring was continued, the reaction solution was heated to 50°C, reacted for 30 minutes, and then filtered. , washed with water, and dried to obtain 4.5 g of silver-gray conductive powder.

上記導電性粉末は電子顕微鏡による観察で均質な球状を
示し、100 kg/c+ll加圧下での導重圧下2、
lXl0−3Ωcmとすぐれた導電性を示した。
The above-mentioned conductive powder showed a homogeneous spherical shape when observed with an electron microscope, and the conductive powder under a pressure of 100 kg/c+ll was
It exhibited excellent conductivity of lXl0-3 Ωcm.

実施例3〜8 実施例2において潤滑剤であるエチレングリコールを表
−1に記載のものに変えた以外は実施例2と同様にして
行った。その結果を、表−1に示す。
Examples 3 to 8 The same procedure as in Example 2 was carried out except that the lubricant ethylene glycol in Example 2 was changed to one listed in Table 1. The results are shown in Table-1.

表−1 実施例9 実施例2において球状のシロキサン粒子をフエニル基含
有シロキサン粒子(商品2二「トレフィル:E−603
J、トーレシリコン社製、平均粒径5μ)に変えた以外
は実施例2と同様に行い、銀灰色の導電性粉末4.5g
を得た。
Table 1 Example 9 In Example 2, the spherical siloxane particles were replaced with phenyl group-containing siloxane particles (Product 22 "Trefil: E-603").
J, manufactured by Toray Silicon Co., Ltd., average particle size 5 μ) was carried out in the same manner as in Example 2, and 4.5 g of silver-gray conductive powder was used.
I got it.

上記導電性粉末は電子顕微鏡による観察で均質な球状を
示し、100kg/cr&加圧下での導電性は9X10
−’Ωcmとすくれた導電性を示した。
The above conductive powder showed a homogeneous spherical shape when observed with an electron microscope, and the conductivity under pressure of 100 kg/cr was 9X10.
It showed poor conductivity of -'Ωcm.

実施例10 実施例2において球状のシロキサン粒子をエポキシ基含
有シロキサン粒子(商品名:[トレフィル:E−601
J、トーレシリコン社製、平均粒径5μ)に変えた以外
は実施例2と同様に行い、銀灰色の導電性粉末4.4g
を得た。
Example 10 In Example 2, spherical siloxane particles were replaced with epoxy group-containing siloxane particles (trade name: [Trefill: E-601
J, manufactured by Toray Silicon Co., Ltd., average particle size 5μ) was carried out in the same manner as in Example 2, and 4.4 g of silver-gray conductive powder was used.
I got it.

上記導電性粉末は電子顕微鏡による観察で均質な球状を
示し、100kg/cTA加圧下での導電性は1.2X
10−3Ωcmとすくれた導電性を示した。
The above conductive powder showed a homogeneous spherical shape when observed with an electron microscope, and the conductivity was 1.2X under a pressure of 100 kg/cTA.
It showed poor conductivity of 10-3 Ωcm.

実施例11 実施例2と同じ球状のシロキサン粒子1.5gをエタノ
ール15gで湿潤させたものを水150m1に分散させ
たものに、エチレンジアミン四酢酸二ナトリウム7.5
gを水100 mlに溶解したものを加え、攪拌下で硝
酸銀5gを水25gに溶解したものを約15分を要して
滴下、次いで反応液を5°Cに冷却下、30%の過酸化
水素水50m1を添加後、20%水酸化ナトリウム50
gを約20分間で、引き続き30%の過酸化水素水75
gを約30分要して滴下、以後撹拌を続は室温まで昇温
後30分間熟成、濾別、水洗、乾燥することにより、銀
灰色の導電性粉末4.6gを得た。
Example 11 1.5 g of the same spherical siloxane particles as in Example 2 were moistened with 15 g of ethanol and dispersed in 150 ml of water, and 7.5 g of disodium ethylenediaminetetraacetate was added.
g dissolved in 100 ml of water, and while stirring, 5 g of silver nitrate dissolved in 25 g of water was added dropwise over about 15 minutes. Then, the reaction solution was cooled to 5°C and 30% peroxide was added. After adding 50 ml of hydrogen water, 50 ml of 20% sodium hydroxide
g for about 20 minutes, then add 75% of 30% hydrogen peroxide solution.
g was added dropwise over about 30 minutes, followed by stirring, heating to room temperature, aging for 30 minutes, filtering, washing with water, and drying to obtain 4.6 g of silver-gray conductive powder.

上記導電性粉末は、電子顕微鏡による観察で均質な球状
を示し、導電性は1.9X10−’Ωcmとすぐれた導
電性を示した。
The conductive powder had a homogeneous spherical shape when observed using an electron microscope, and exhibited excellent conductivity of 1.9×10 −′Ωcm.

実施例12 実施例3において、ポリオキシエチレンジルビクンモノ
オレートをソルビタンモノステアレート(HLB4)に
変更する以外は実施例3と同様に行うことにより、銀灰
色の導電性粉末4.3gが得られ、導電性は8.lXl
0−’Ω印であった。
Example 12 By carrying out the same procedure as in Example 3 except for changing polyoxyethylene zirubikune monooleate to sorbitan monostearate (HLB4), 4.3 g of silver-gray conductive powder was obtained, Conductivity is 8. lXl
It was a 0-'Ω mark.

比較例1 実施例2において、球状のシロキサン粒子を酸化チタン
粒子(粒径2μ)に変更した以外は実施例2と同様に行
うことにより、灰白色の導電性粉末4.3gが得られた
が、導電性は3400Ωcmであった。
Comparative Example 1 4.3 g of gray-white conductive powder was obtained by carrying out the same procedure as in Example 2 except that the spherical siloxane particles were changed to titanium oxide particles (particle size 2 μ). The conductivity was 3400 Ωcm.

比較例2 比較例1において、酸化チタン粒子の使用量を0.5g
に変更した以外は比較例1と同様にして行い、銀灰色の
導電性粉末2.7gが得られ、導電性も2.4X10−
’Ωcmであったが、粒状のシロキサン粒子を用いる場
合に比し同一導電性を得るには多]の根が必要であった
Comparative Example 2 In Comparative Example 1, the amount of titanium oxide particles used was 0.5 g.
The procedure was carried out in the same manner as in Comparative Example 1, except that 2.7 g of silver-gray conductive powder was obtained, and the conductivity was 2.4X10-
However, in order to obtain the same conductivity as when using granular siloxane particles, more roots were required.

比較例3 実施例2において、球状のシロキサン粒子を不定型のシ
ロキサン粒子(商品名:[トレフィル:R−902J 
、  トーレシリコン社製、平均粒径5μ)に変えた以
外は実施例2と同様に行い、灰白色の導電性粉末4.1
gが得られたが、導電性は7200Ωcrnであった。
Comparative Example 3 In Example 2, spherical siloxane particles were replaced with amorphous siloxane particles (trade name: [Trefill: R-902J
, manufactured by Toray Silicon Co., Ltd., average particle size 5μ) was carried out in the same manner as in Example 2, and a gray-white conductive powder 4.1
g, but the electrical conductivity was 7200Ωcrn.

比較例4 市販の銀粉末を粉砕し、粒径5μで導電性168X10
−’Ωcmの導電性粉末を作成したものと実施例2で用
いたシロキサン粒子とを混合したものについて導電性を
測定した。その結果を実施例2で得た導電性粉末、実施
例2で用いたシロキサン粒子の導電性と共に表−2に示
す。
Comparative Example 4 Commercially available silver powder was pulverized to have a particle size of 5 μm and conductivity of 168×10
The conductivity was measured for a mixture of a conductive powder of −'Ωcm and the siloxane particles used in Example 2. The results are shown in Table 2 together with the conductivity of the conductive powder obtained in Example 2 and the siloxane particles used in Example 2.

表−2Table-2

Claims (3)

【特許請求の範囲】[Claims] (1)球状のシロキサン粒子の表面が銀で被覆された導
電性粉末。
(1) A conductive powder in which the surface of spherical siloxane particles is coated with silver.
(2)球状のシロキサン粒子と銀化合物の溶液と還元剤
の溶液とを接触させることにより、球状のシロキサン粒
子の表面が銀で被覆された導電性粉末を得ることを特徴
とする導電性粉末の製造法。
(2) A conductive powder characterized in that the surface of the spherical siloxane particles is coated with silver by contacting the spherical siloxane particles with a solution of a silver compound and a solution of a reducing agent. Manufacturing method.
(3)球状のシロキサン粒子を湿潤剤の共存系で分散さ
せた請求項2に記載の導電性粉末の製造法。
(3) The method for producing a conductive powder according to claim 2, wherein spherical siloxane particles are dispersed in a coexistence system of a wetting agent.
JP63202409A 1988-08-12 1988-08-12 Electrically conductive powder and preparation thereof Granted JPH0251535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202409A JPH0251535A (en) 1988-08-12 1988-08-12 Electrically conductive powder and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202409A JPH0251535A (en) 1988-08-12 1988-08-12 Electrically conductive powder and preparation thereof

Publications (2)

Publication Number Publication Date
JPH0251535A true JPH0251535A (en) 1990-02-21
JPH0477401B2 JPH0477401B2 (en) 1992-12-08

Family

ID=16457028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202409A Granted JPH0251535A (en) 1988-08-12 1988-08-12 Electrically conductive powder and preparation thereof

Country Status (1)

Country Link
JP (1) JPH0251535A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108312A (en) * 2007-10-11 2009-05-21 Dow Corning Toray Co Ltd Metal-particle-dispersed structure, microparticle comprising the structure, article coated with the structure, and methods for producing them
JP2017171844A (en) * 2016-03-25 2017-09-28 住友ベークライト株式会社 Paste-like adhesive composition, semiconductor device, method for manufacturing semiconductor device, and method for bonding heat dissipation plate
JP2020188270A (en) * 2016-03-25 2020-11-19 住友ベークライト株式会社 Paste-like adhesive composition, semiconductor device, method for manufacturing semiconductor device, and method for bonding heat dissipation plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108312A (en) * 2007-10-11 2009-05-21 Dow Corning Toray Co Ltd Metal-particle-dispersed structure, microparticle comprising the structure, article coated with the structure, and methods for producing them
US8349928B2 (en) 2007-10-11 2013-01-08 Dow Corning Toray Co., Ltd. Metal particle dispersion structure, microparticles comprising this structure, articles coated with this structure, and methods of producing the preceding
JP2017171844A (en) * 2016-03-25 2017-09-28 住友ベークライト株式会社 Paste-like adhesive composition, semiconductor device, method for manufacturing semiconductor device, and method for bonding heat dissipation plate
JP2020188270A (en) * 2016-03-25 2020-11-19 住友ベークライト株式会社 Paste-like adhesive composition, semiconductor device, method for manufacturing semiconductor device, and method for bonding heat dissipation plate

Also Published As

Publication number Publication date
JPH0477401B2 (en) 1992-12-08

Similar Documents

Publication Publication Date Title
US5226930A (en) Method for preventing agglomeration of colloidal silica and silicon wafer polishing composition using the same
JP2508847B2 (en) Method for producing silver-coated glass flakes with SiO2 coating
EP1620580B1 (en) Polytetrafluoroethylene dispersion for electroless nickel plating applications
TW559631B (en) Electroless composite plating solution and electroless composite plating method
JPH0140070B2 (en)
CN109423637A (en) A kind of preparation method of high conductive material
JPS59116303A (en) Manufacture of fine copper powder
JPH0251535A (en) Electrically conductive powder and preparation thereof
KR100882095B1 (en) Method of surface treatment of metal particle using self assembly, metal particle thereby, making method of polymer solution containing the metal particle and coating steel panel thereby
JPS6386205A (en) Conducting composition
JP4164009B2 (en) Copper powder, copper paste and paint using the same, electrode
JP2001011502A (en) Copper powder, its manufacture, and electrical conductive paste using the same
CN101286614B (en) Metal-coated carbon brush
JPS6059070A (en) Manufacture of plated fine grain
JPS5855204B2 (en) Method for producing platinum powder for printing paste
JP4164010B2 (en) Inorganic ultrafine particle coated metal powder and method for producing the same
JPH02294416A (en) Production of platinum powder
CN106532390A (en) Surface-modified potassium titanate whisker-reinforced copper-based graphite motor carbon brush and preparation method thereof
JP2003012320A (en) Organosol of silica base inorganic compound
JP3738401B2 (en) Alkaline alumina hydrate sol and process for producing the same
TW201718423A (en) Conductive paste, method of preparation, and solar cell electrode using the same
JPS6116809A (en) Method of adjusting grain size of ceramic raw material
JP4221811B2 (en) Surface treatment powder and surface treatment method of powder
JPH0247549B2 (en)
JP2000281797A (en) Preparation of fine particle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees