JPH0251412B2 - - Google Patents

Info

Publication number
JPH0251412B2
JPH0251412B2 JP58028191A JP2819183A JPH0251412B2 JP H0251412 B2 JPH0251412 B2 JP H0251412B2 JP 58028191 A JP58028191 A JP 58028191A JP 2819183 A JP2819183 A JP 2819183A JP H0251412 B2 JPH0251412 B2 JP H0251412B2
Authority
JP
Japan
Prior art keywords
phenol
ethylene
water
acid
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58028191A
Other languages
Japanese (ja)
Other versions
JPS59155332A (en
Inventor
Yakudo Tachibana
Tsutomu Idai
Fujio Suganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Maruzen Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Oil Co Ltd filed Critical Maruzen Oil Co Ltd
Priority to JP58028191A priority Critical patent/JPS59155332A/en
Publication of JPS59155332A publication Critical patent/JPS59155332A/en
Publication of JPH0251412B2 publication Critical patent/JPH0251412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、フエノールとエチレンからパラエチ
ルフエノール(以下PEPと略す)を高選択率、
高収率で製造する方法に関する。さらに詳しく
は、フエノールとエチレンを、水の存在下に、ヘ
テロポリ酸系触媒を用いて反応せしめて、高選択
率、高収率にてPEPを製造する方法に関する。 現在、PEPの工業的製造方法としては、エチ
ルベンゼンをスルホン化し、それをアルカリ溶融
してエチルフエノール類異性体混合物を合成し、
さらにこの混合物を蒸留および晶析する方法が知
られている。しかし、この方法は、エチルフエノ
ール類としてメタ体の生成が多い、工程が複雑で
ある、多量の硫酸およびアルカリを使用する、作
業性が悪い、廃水公害がある、亜硫酸ソーダが副
生する、装置腐食が心配である等種々の問題があ
る。 また、本発明で対象としているフエノールとエ
チレンを原料とするPEPの製造法に関しては、
P2O5・B2O3を触媒とする方法(有機合成化学協
会誌28〔11〕1127(1970))、γ−Al2O3を触媒とす
る方法(北海道大学工学部研究報告73 133
(1974))、BF3−リン酸ケイソウ土を触媒とする
方法(特公昭44−53号公報)、などが知られてい
る。しかし、これらの触媒を用いる方法では、生
成物はオルソエチルフエノール(以下OEPと略
す)とメタエタルフエノール(以下MEPと略す)
が主成分であり、目的とするPEPは生成するエ
チルフエノール類中最高でも22モル%であるとい
うように、PEPへの選択率が低く、しかも反応
温度を250〜420℃と比較的高温にする要があるな
どの欠点を有していて、これらの方法は未だ工業
的製造法としては採用されていない。 そこで、本発明者らは、フエノールとエチレン
を原料とするアルキル化反応により、経済的かつ
簡単な操作で、PEPを高選択率、高収率にて容
易に工業的に製造し得る方法を開発すべく種々検
討した結果、当該アルキル化反応において、タン
グストケイ酸またはタングストリン酸といつたヘ
テロポリ酸を担体に担持させて調製した触媒を用
い、かつ反応系に水を存在せしめて反応を行なう
と、上記フエノールとエチレンとからエチルフエ
ノール類を製造する公知方法に比べて、PEPへ
の選択率およびその収率が著しく向上し、また反
応温度を150〜300℃というように比較的低くする
ことができ、経済的に簡単な操作でPEPを高選
択率、高収率で製造できることを見出して本発明
を完成した。 すなわち、本発明の要旨は、酸触媒の存在下
に、フエノールとエチレンを反応させてパラエチ
ルフエノールを製造するに当り、酸触媒としてタ
ングストケイ酸およびタングストリン酸から選択
されたヘテロポリ酸を担体に担持させて調製した
触媒を用い、かつ反応系中に水を存在させること
を特徴とするパラエチルフエノールを製造する方
法に存する。 本発明で用いる触媒は上記のとおりタングスト
ケイ酸およびタングストリン酸から選択されたヘ
テロポリ酸を担体に担持させて調製した触媒であ
るが、この触媒の調製に用いるヘテロポリ酸の例
としては、12−タングストケイ酸、12−タングス
トリン酸等があげられる。これらは、一種用いて
も複数種用いても差支えない。また、担体として
は、例えばシリカ、アルミナ、シリカアルミナ、
トリア、マグネシア、ケイソウ土、活性炭等一般
に担体として知られた種々のものを広く用い得る
が、なかでもシリカ、アルミナまたは活性炭が、
これらを担体として用いたときPEPへの選択率
が一層向上されるので、好ましい担体である。こ
れらの担体は、市販のものをそのまま用いること
もできるし、必要に応じて酸処理あるいはその他
の処理を施して用いてもよい。 本発明で用いるヘテロポリ酸を担体に担持させ
た触媒の調製は任意の方法によればよく、特に制
限する要はない。一般に好ましい方法は、上記ヘ
テロポリ酸を溶解する溶媒中に所定量の該ヘテロ
ポリ酸を溶解させて溶液となし、該溶液中に所定
量の担体を加え、常温ないし該溶媒の沸点下で十
分攪拌しながら溶媒を蒸発させ乾固する方法であ
る。かくして得られた担持触媒は、必要に応じ
100〜400℃で空気中あるいはその他の雰囲気中に
て焼成してもよい。該ヘテロポリ酸の担持量は、
一般に5〜20重量%の範囲、好ましくは10〜15重
量%の範囲が好適である。 本発明の実施に当つては、反応系内に水を存在
させることが肝要である。水を存在させることに
よつて、特に転化率が顕著に向上する。水を存在
させないと、転化率が低く本発明の目的が達せら
れない。これは、従来の固体酸触媒を用いて反応
を行なう系において水を共存させると酸強度が低
下して触媒活性が低下するという当分野の常識か
らすれば、全く予想外のことである。本発明の実
施に際して、反応系内に存在せしめる水の量は、
原料のフエノールに対し0.01〜3重量倍量、好ま
しくは0.05〜1重量倍量の範囲が適当である。こ
の水としは、純水、工業用水、回収水、スチーム
等いずれをも用い得る。また、反応系内に水を存
在せしめる方法としては、原料のフエノールおよ
び/またはエチレンと混合して反応系に添加して
もよいし、あるいはこれら原料とは別途に水単独
で反応系に添加してもよく、その方法は任意でよ
い。 本発明の実施に当つて、反応温度は、150〜300
℃の範囲が好ましい。150℃以下の場合は転化率
が低くなり、また300℃を超えた場合はMEP、
2,4−ジエチルフエノールなどの副生が多くな
り、いずれの場合もPEPの収率低下を招くので
好ましくない。反応圧力は、1〜30気圧の範囲が
適当である。フエノールとエチレンの仕込比率
は、特に制限する要はないが、フエノール1モル
に対してエチレン0.5〜50モル、好ましくは0.8〜
20モルの範囲が好適である。反応系への原料供給
速度は、フエノールの液空間速度(LHSV)とし
て0.05〜20hr-1、好ましくは0.2〜5hr-1の範囲が
好適である。また反応形式は、特に制限する要は
ないが、固定床流通式が好ましい。 以下、実施例および比較例をあげて本発明をさ
らに説明するが、本発明は以下の実施例に限定さ
れるものではない。 〔実施例 1〕 12−タングストケイ酸8.8gをエタノール250ml
に溶解し、これにシリカゲル(ダビソン社シリカ
ゲル923)50gを加え、湯浴上で加熱攪拌しなが
ら蒸発乾固した。次に、110℃で3時間乾燥し、
300℃にて空気中で3時間焼成した。 このようにして得た12−タングストケイ酸を15
重量%担持したシリカゲル3.0mlを内径1.2cmの流
通式石英ガラス反応管の中央部に充填し、それに
反応原料として、エチレンと50wt%の水を含む
フエノールとの混合物(エチレン:フエノール
モル比5:1)を220℃、GHSV2600hr-1で通し
た。 その結果、フエノールの転化率はワンパス
(one Pass)で45モル%であり、また未反応フエ
ノールおよびエチレンならびに水を除いた反応生
成物の組成は表1のとおりであつた。
The present invention produces paraethylphenol (hereinafter abbreviated as PEP) from phenol and ethylene with high selectivity.
It relates to a method for producing with high yield. More specifically, the present invention relates to a method for producing PEP with high selectivity and high yield by reacting phenol and ethylene in the presence of water using a heteropolyacid catalyst. Currently, the industrial method for producing PEP is to sulfonate ethylbenzene and melt it with an alkali to synthesize a mixture of ethylphenol isomers.
Furthermore, methods are known for distilling and crystallizing this mixture. However, this method produces many meta-forms as ethylphenols, is complicated, uses large amounts of sulfuric acid and alkali, has poor workability, causes wastewater pollution, produces sodium sulfite as a by-product, and is difficult to use in equipment. There are various problems such as concerns about corrosion. In addition, regarding the method for producing PEP using phenol and ethylene as raw materials, which is the subject of the present invention,
A method using P 2 O 5 / B 2 O 3 as a catalyst (Journal of the Society of Organic Synthetic Chemistry 28 [11] 1127 (1970)), a method using γ-Al 2 O 3 as a catalyst (Hokkaido University Faculty of Engineering Research Report 73 133
(1974)), a method using BF 3 - diatomaceous earth phosphate as a catalyst (Japanese Patent Publication No. 44-53), and the like are known. However, in the methods using these catalysts, the products are orthoethylphenol (hereinafter abbreviated as OEP) and metaethylphenol (hereinafter abbreviated as MEP).
is the main component, and the target PEP accounts for at most 22 mol% of the ethylphenols produced, so the selectivity to PEP is low, and the reaction temperature is relatively high at 250 to 420 °C. However, these methods have not yet been adopted as industrial manufacturing methods. Therefore, the present inventors developed a method for industrially producing PEP with high selectivity and high yield through an economical and simple operation through an alkylation reaction using phenol and ethylene as raw materials. As a result of various studies, we found that in the alkylation reaction, when the reaction is carried out using a catalyst prepared by supporting a heteropolyacid such as tungstosilicic acid or tungstophosphoric acid on a carrier and in the presence of water in the reaction system, Compared to the above-mentioned known method for producing ethylphenols from phenol and ethylene, the selectivity to PEP and its yield are significantly improved, and the reaction temperature can be kept relatively low at 150 to 300°C. The present invention was completed by discovering that PEP can be produced with high selectivity and yield through an economically simple operation. That is, the gist of the present invention is to support a heteropolyacid selected from tungstosilicic acid and tungstophosphoric acid on a carrier as an acid catalyst in producing paraethylphenol by reacting phenol and ethylene in the presence of an acid catalyst. The present invention relates to a method for producing para-ethylphenol, which is characterized by using a catalyst prepared by the above method and by allowing water to be present in the reaction system. As mentioned above, the catalyst used in the present invention is a catalyst prepared by supporting a heteropolyacid selected from tungstosilicic acid and tungstophosphoric acid on a carrier. acid, 12-tungstophosphoric acid, etc. These may be used alone or in combination. In addition, examples of carriers include silica, alumina, silica alumina,
A wide variety of carriers can be used, such as thoria, magnesia, diatomaceous earth, and activated carbon, among which silica, alumina, and activated carbon can be used.
When these are used as carriers, the selectivity to PEP is further improved, so they are preferred carriers. These carriers may be used as commercially available carriers as they are, or may be used after being subjected to acid treatment or other treatment as required. The catalyst in which a heteropolyacid is supported on a carrier for use in the present invention may be prepared by any method, and there is no need to particularly limit the method. Generally, a preferred method is to dissolve a predetermined amount of the heteropolyacid in a solvent that dissolves the heteropolyacid to form a solution, add a predetermined amount of carrier to the solution, and stir thoroughly at room temperature or the boiling point of the solvent. In this method, the solvent is evaporated to dryness. The supported catalyst thus obtained can be
It may be fired at 100 to 400°C in air or other atmosphere. The supported amount of the heteropolyacid is
Generally a range of 5 to 20% by weight, preferably a range of 10 to 15% by weight is suitable. In carrying out the present invention, it is essential that water be present in the reaction system. In particular, the presence of water significantly improves the conversion rate. Without water, the conversion rate is low and the object of the present invention cannot be achieved. This is completely unexpected from the common knowledge in the art that when water is present in a system in which a reaction is carried out using a conventional solid acid catalyst, the acid strength decreases and the catalytic activity decreases. When carrying out the present invention, the amount of water present in the reaction system is
The appropriate amount is 0.01 to 3 times by weight, preferably 0.05 to 1 times by weight, based on the phenol used as the raw material. As this water, pure water, industrial water, recovered water, steam, etc. can be used. In addition, water can be made to exist in the reaction system by mixing it with the raw materials phenol and/or ethylene and adding it to the reaction system, or by adding water alone to the reaction system separately from these raw materials. The method may be arbitrary. In carrying out the present invention, the reaction temperature is 150-300°C.
A range of 0.degree. C. is preferred. If the temperature is below 150℃, the conversion rate will be low, and if it exceeds 300℃, MEP,
This is not preferable because by-products such as 2,4-diethylphenol increase, and in either case, the yield of PEP decreases. The reaction pressure is suitably in the range of 1 to 30 atmospheres. The charging ratio of phenol and ethylene is not particularly limited, but is 0.5 to 50 moles of ethylene, preferably 0.8 to 50 moles of ethylene per mole of phenol.
A range of 20 moles is preferred. The feed rate of the raw material to the reaction system is suitably in the range of 0.05 to 20 hr -1 , preferably 0.2 to 5 hr -1 in liquid hourly space velocity (LHSV) of phenol. The reaction format is not particularly limited, but a fixed bed flow type is preferred. The present invention will be further explained below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. [Example 1] 8.8 g of 12-tungstosilicic acid in 250 ml of ethanol
50 g of silica gel (Davison Silica Gel 923) was added thereto, and the mixture was evaporated to dryness while heating and stirring on a hot water bath. Next, dry at 110℃ for 3 hours,
It was baked at 300°C in air for 3 hours. The 12-tungstosilicic acid obtained in this way was
3.0ml of silica gel supported by weight% was filled in the center of a flow-type quartz glass reaction tube with an inner diameter of 1.2cm, and a mixture of ethylene and phenol containing 50wt% water (ethylene:phenol) was used as a reaction raw material.
molar ratio 5:1) at 220°C and GHSV 2600 hr -1 . As a result, the conversion rate of phenol was 45 mol % in one pass, and the composition of the reaction product excluding unreacted phenol, ethylene, and water was as shown in Table 1.

〔実施例 2〕[Example 2]

12−タングストリン酸を活性炭(クラレ製クラ
クテイブFR−20 )に担持させ、また反応原料
として、エチレンと10wt%の水を含むフエノー
ルとの混合物(エチレン:フエノール モル比
10:1)を用いた他は実施例1と同様に実施し
た。 その結果、表2に示すような組成の反応生成物
が得られ、またフエノールの転化率は39モル%で
あつた。
12-tungstophosphoric acid was supported on activated carbon (Kuraray's Clactive FR-20), and a mixture of ethylene and phenol containing 10 wt% water (ethylene:phenol molar ratio) was used as a reaction raw material.
The same procedure as in Example 1 was carried out except that 10:1) was used. As a result, a reaction product having the composition shown in Table 2 was obtained, and the conversion rate of phenol was 39 mol%.

〔比較例 1〕[Comparative example 1]

反応原料としてエテレンと水を含まないフエノ
ールとの混合物(エチレン:フエノール モル比
5:1)を用いた他は実施例1と同様に実施し
た。その結果フエノールの転化率は3モル%に過
ぎなかつた。 〔比較例 2〕 反応原料としてエチレンと水を含まないフエノ
ールとの混合物(エチレン:フエノール モル比
10:1)を用いた他は実施例2と同様に実施し
た。その結果、フエノールの転化率は2モル%に
過ぎなかつた。 〔実施例 3〕 担体として、γ−Al2O3を用いた以外は実施例
1と同様に実施した。 その結果、表3に示すような組成の反応生成物
が得られ、またフエノールの転化率は42モル%で
あつた。
The same procedure as in Example 1 was carried out except that a mixture of ethylene and water-free phenol (ethylene:phenol molar ratio 5:1) was used as the reaction raw material. As a result, the conversion rate of phenol was only 3 mol%. [Comparative Example 2] A mixture of ethylene and water-free phenol as a reaction raw material (ethylene:phenol molar ratio
The same procedure as in Example 2 was carried out except that 10:1) was used. As a result, the conversion rate of phenol was only 2 mol%. [Example 3] The same procedure as in Example 1 was carried out except that γ-Al 2 O 3 was used as the carrier. As a result, a reaction product having the composition shown in Table 3 was obtained, and the conversion rate of phenol was 42 mol%.

〔実施例 4〕[Example 4]

担体として、シリカアルミナを用いた以外は実
施例1と同様に実施した。その結果、表3に示す
ような組成の反応生成物が得られ、またフエノー
ルの転化率は30モル%であつた。
The same procedure as in Example 1 was carried out except that silica alumina was used as the carrier. As a result, a reaction product having the composition shown in Table 3 was obtained, and the conversion rate of phenol was 30 mol%.

【表】【table】

Claims (1)

【特許請求の範囲】 1 酸触媒の存在下に、フエノールとエチレンを
反応させてパラエチルフエノールを製造するに当
り、酸触媒としてタングストケイ酸およびタング
ストリン酸から選択されたヘテロポリ酸を担体に
担持させて調製した触媒を用い、かつ反応系中に
水を存在させることを特徴とするパラエチルフエ
ノールを製造する方法。 2 反応系中の水の存在量が、原料のフエノール
に対して0.01〜3重量倍量である特許請求の範囲
第1項記載のパラエチルフエノールを製造する方
法。 3 該ヘテロポリ酸を担体に担持させて調製した
触媒の担体が、シリカ、アルミナおよび活性炭か
ら選択された担体である特許請求の範囲第1項ま
たは第2項記載のパラエチルフエノールを製造す
る方法。
[Claims] 1. In producing paraethylphenol by reacting phenol and ethylene in the presence of an acid catalyst, a heteropolyacid selected from tungstosilicic acid and tungstophosphoric acid is supported on a carrier as an acid catalyst. 1. A method for producing para-ethylphenol, which comprises using a catalyst prepared in accordance with the above method and allowing water to be present in the reaction system. 2. The method for producing para-ethylphenol according to claim 1, wherein the amount of water present in the reaction system is 0.01 to 3 times the weight of the raw material phenol. 3. The method for producing paraethylphenol according to claim 1 or 2, wherein the carrier of the catalyst prepared by supporting the heteropolyacid on a carrier is a carrier selected from silica, alumina, and activated carbon.
JP58028191A 1983-02-21 1983-02-21 Process for production of p-ethylphenol Granted JPS59155332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028191A JPS59155332A (en) 1983-02-21 1983-02-21 Process for production of p-ethylphenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028191A JPS59155332A (en) 1983-02-21 1983-02-21 Process for production of p-ethylphenol

Publications (2)

Publication Number Publication Date
JPS59155332A JPS59155332A (en) 1984-09-04
JPH0251412B2 true JPH0251412B2 (en) 1990-11-07

Family

ID=12241791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028191A Granted JPS59155332A (en) 1983-02-21 1983-02-21 Process for production of p-ethylphenol

Country Status (1)

Country Link
JP (1) JPS59155332A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548934B2 (en) * 1986-06-10 1996-10-30 住友化学工業株式会社 Process for producing hydroxy-containing alkyl aromatic compound
JPH0660117B2 (en) * 1987-12-18 1994-08-10 丸善石油化学株式会社 Method for producing para-ethylphenol

Also Published As

Publication number Publication date
JPS59155332A (en) 1984-09-04

Similar Documents

Publication Publication Date Title
KR950001674B1 (en) Process for producing alkyl-substituted aromatic hydrocarbon
US4628138A (en) Catalyst and process for oligomerization of ethylene
US4351958A (en) Process for producing orthoalkylated aromatic amine
US4376219A (en) Process for preparing an ether having tertiary alkyl group
US4335258A (en) Process for producing methacrylic acid
JPH0251412B2 (en)
US4405808A (en) Process for preparing acetic acid esters
US3313840A (en) Process for the production of the dinitriles of fumaric acid and maleic acid
JP2977334B2 (en) Method for producing polyalkylbenzene and catalyst
JP2977333B2 (en) Method for producing alkylbenzene and catalyst
US4166191A (en) Process for producing highly pure p-tertiary-butyl phenol
JP2546545B2 (en) Method for producing alkylnaphthalene
JPH0251411B2 (en)
US3257464A (en) Process for the preparation of ethyl mercaptan and diethyl sulfide
JPS6219422B2 (en)
US3071625A (en) Sulfide cleavage
JP2850636B2 (en) Method for producing lower fatty acid ester
JPH024583B2 (en)
JP3360759B2 (en) Olefin catalytic hydration method
JP2975702B2 (en) Method for producing alkyl-substituted aromatic compound
JPH05301842A (en) Production of lower fatty acid ester
JPH0459304B2 (en)
JPS58183640A (en) Production of acetic ester
JPH047734B2 (en)
JPS59144727A (en) Preparation of phenylacetaldehyde