JPH0251390A - Brushless dc motor - Google Patents

Brushless dc motor

Info

Publication number
JPH0251390A
JPH0251390A JP63202188A JP20218888A JPH0251390A JP H0251390 A JPH0251390 A JP H0251390A JP 63202188 A JP63202188 A JP 63202188A JP 20218888 A JP20218888 A JP 20218888A JP H0251390 A JPH0251390 A JP H0251390A
Authority
JP
Japan
Prior art keywords
phase
back electromotive
motor
windings
brushless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63202188A
Other languages
Japanese (ja)
Inventor
Tamotsu Kato
保 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63202188A priority Critical patent/JPH0251390A/en
Publication of JPH0251390A publication Critical patent/JPH0251390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To improve reliability by directly utilizing back electromotive voltage generated in a stator winding and obtaining optimum conduction timing to a switching element. CONSTITUTION:A brushless DC motor and a driver circuit for the motor are composed of a four-pole permanent magnet rotor 1, stator windings A to C arranged in three-phase and winding driving transistors(Trs) 2a-2c driving the stator windings. The motor is driven by applying successively changing over base currents to the base terminals 3a-3c of the winding driving Trs 2a-2c in response to the rotational position angle of a rotor 1. Accordingly, when the peaks of the crest values of windings A to C are shown respectively by points a to c, the conduction time of the A phase is shown by Ta between points b and c, the conduction time of the B phase by Tb between c-a', and the conduction time of the C phase by Tc between a'-b', and the time of the peaks of the windings of other phase is detected, thus acquiring pulses for performing optimum conduction.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は無刷子直流電動機に係り、特に、位置検出機構
を持たず、電動機の運転中に固定子巻線に発生する逆起
電圧を利用して永久磁石回転子の位置検出を行なうよう
にした無刷子直流電動機に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a brushless DC motor, in particular, it does not have a position detection mechanism and is capable of detecting back electromotive force generated in the stator windings during operation of the motor. The present invention relates to a brushless DC motor which is used to detect the position of a permanent magnet rotor.

(ロ)従来の技術 従来、固定子巻線に発生する逆起電圧を利用して永久磁
石回転子の位置検出を行なうようにした無刷子直流電動
機には特公昭62−20791号公報がある。これは、
複数の固定子巻線のそれぞれに発生する逆起電圧の非通
電領域の全部または一部を個別にとり出す整流回路と、
前記整流回路の出力をそれぞれ電流に変換する吐出型及
び吸引型の電圧電流変換回路と、両変換回路によって充
放電される複数の時間積分コンデンサより構成された演
算回路とを備え、この演算回路により複数の固定子巻線
のそれぞれに発生する逆起電圧の非通電領域の全部また
は一部を個別にとり出してこれを時間内に加算積分およ
び減算積分し積分演算した結果を永久磁石回転子の回転
位置信号となし、この信・号によって複数の固定子巻線
を順次付勢して電動機を駆動するようにしたものである
(B) Prior Art Conventionally, Japanese Patent Publication No. 62-20791 discloses a brushless DC motor in which the position of a permanent magnet rotor is detected using a back electromotive force generated in a stator winding. this is,
a rectifier circuit that individually extracts all or part of the non-current-carrying region of the back electromotive force generated in each of the plurality of stator windings;
It is equipped with discharge type and suction type voltage-current conversion circuits that convert the outputs of the rectifier circuits into currents, respectively, and an arithmetic circuit composed of a plurality of time-integrating capacitors that are charged and discharged by both the conversion circuits. All or part of the non-current-carrying region of the back electromotive force generated in each of the plurality of stator windings is taken out individually, and this is integrated and subtracted in time, and the result of the integral operation is calculated as the rotation of the permanent magnet rotor. This signal is used as a position signal to sequentially energize a plurality of stator windings to drive an electric motor.

(八)発明が解決しようとする課題 しかしながら上記の構成によると逆起電圧は整流回路に
よって整流されるため、整流回路を一般的なダイオード
等の整流素子で構成した場合には、整流素子の順方向電
圧降下が生じ、この電圧降下によって整流波形は逆起電
圧波形とは異なったものとなる(整流波形の波高値が逆
起電圧波形の波高値より電圧降下分だけ低くなる)。こ
のため、上記整流波形をもとに時間積分された波形の波
高値は一定にならない場合があり、これをもとに演算さ
れた回転位置信号も少なからず影響を受け、駆動回路を
構成するスイッチング素子の安定した切換え(一定のタ
イミングでの切換え)が行なわれないことがある。この
問題は永久磁石回転子の回転数が低い場合には逆起電圧
の波高値が低く、整流波形に及ぼす影響が大きくなるの
で特に顕著となる。また、上記構成では重圧電流変換回
路の出力を充放電する際に複数の時間積分コンデンサを
使用しているため、充放電のサイクル設定が難しく、設
定が悪いとスイッチング素子の正常な切換えができなく
なる等の問題があり、信頼性に問題があった。
(8) Problems to be Solved by the Invention However, according to the above configuration, the back electromotive force is rectified by the rectifier circuit, so if the rectifier circuit is configured with general rectifying elements such as diodes, the order of the rectifying elements A directional voltage drop occurs, and this voltage drop causes the rectified waveform to be different from the back electromotive voltage waveform (the peak value of the rectified waveform becomes lower than the peak value of the back electromotive voltage waveform by the voltage drop). For this reason, the peak value of the time-integrated waveform based on the rectified waveform described above may not be constant, and the rotational position signal calculated based on this may be affected to some extent, and the switching Stable switching of elements (switching at constant timing) may not be performed. This problem becomes particularly noticeable when the rotational speed of the permanent magnet rotor is low, since the peak value of the back electromotive force is low and the influence on the rectified waveform becomes large. In addition, in the above configuration, multiple time-integrating capacitors are used when charging and discharging the output of the heavy voltage current conversion circuit, so it is difficult to set the charging and discharging cycles, and if the settings are incorrect, the switching elements will not be able to switch properly. There were problems with reliability.

本発明は断る点に鑑みなきれたもので、3相の固定子巻
線とこの巻線の夫々に直列接続諮れた永久磁石回転子駆
動用のスイッチング素子とを備え、この直列回路に一方
向通電するようにした無刷子直流電動機(以下3相片道
通電方式の無刷子直流電動機という)において、整流素
子の順方向電圧降下やこれによる回転位置信号への悪影
響、及び、時間積分コンデンサの煩雑な充放電のサイク
ル設定をなくし、永久磁石回転子の回転数の影響を受け
ず、低速から高速まで最適なスイッチング素子への通電
が可能な信頼性の高い無刷子直流電動機を提供すること
を目的とする。
The present invention has been completed in view of the above points, and includes a three-phase stator winding and a switching element for driving a permanent magnet rotor connected in series with each of the windings, and is integrated into the series circuit. In a brushless DC motor that is directionally energized (hereinafter referred to as a 3-phase one-way energized brushless DC motor), there are problems such as the forward voltage drop of the rectifying element, its adverse effect on the rotational position signal, and the complexity of the time-integrating capacitor. The purpose is to provide a highly reliable brushless DC motor that eliminates the need for repetitive charge/discharge cycle settings, is unaffected by the rotation speed of the permanent magnet rotor, and is capable of energizing optimal switching elements from low to high speeds. shall be.

(ニ)課題を解決するための手段 本発明は、3相片道通電方式の無刷子直流電動機におい
て、3相の固定子巻線とこの巻線の夫々に直列接続され
た巻線駆動用のスイッチング素子とを備え、この直列回
路に一方向通電するようにした無刷子直流電動機におい
て、前記固定子巻線の夫々に発生する逆起電圧のピーク
時を検出して信号を出力するピーク時検出回路を設け、
この回路の信号出力時に前記スイッチング素子の切換え
を行なうようにしたものである。
(d) Means for Solving the Problems The present invention provides a three-phase stator winding and switching for driving windings connected in series to each of the windings in a three-phase one-way energizing type brushless DC motor. A peak time detection circuit detects the peak time of the back electromotive force generated in each of the stator windings and outputs a signal in the brushless DC motor, which is equipped with an element and is configured to unidirectionally conduct current through the series circuit. established,
The switching element is switched when a signal is output from this circuit.

また、請求項1記載の無刷子直流電動機において、固定
子巻線の通電状態を常に1相がON、2相がOFFとし
、かつ、OFF相である一方の相の誘起逆起電圧と電源
電圧との差を検出して信号を出力する第1の検出回路と
、他方の相の誘起逆起電圧と電源電圧との差を検出して
信号を出力する第2の検出回路とを設け、この両回路か
らの出力信号を比較することによってOFF相の巻線の
逆起電圧のピーク時を検出するようにしたものである。
Further, in the brushless DC motor according to claim 1, the stator windings are always energized in such a manner that one phase is ON and the second phase is OFF, and the induced back electromotive force and power supply voltage of one phase that is the OFF phase are provided. A first detection circuit detects the difference between the two phases and outputs a signal, and a second detection circuit detects the difference between the induced back electromotive voltage of the other phase and the power supply voltage and outputs a signal. By comparing the output signals from both circuits, the peak time of the back electromotive voltage of the OFF phase winding is detected.

(*)作用 本発明の無刷子直流電動機は上記した前者の構成により
、固定子巻線に発生する逆起電圧を直接利用してスイッ
チング素子への最適な通電タイミング(回転トルクが大
きい時点でのタイミング)を得ることができ、整流回路
や時間積分コンデンサを不用として整流素子の順方向電
圧降下やこれによる回転位置信号への悪影響、及び、時
間積分フンデンサの煩雑な充放電のサイクル設定をなく
し、しかも、逆起電圧の波高値を直接使用しておらずそ
の比を利用しているので永久磁石回転子の回転数の影響
を受けることなく低速から高速まで最適なタイミングで
スイッチング素子への通電を行なうことが可能となり、
信頼性を向上できるものである。
(*) Effect The brushless DC motor of the present invention has the above-mentioned former configuration, and directly utilizes the back electromotive force generated in the stator windings to determine the optimal timing for energizing the switching elements (at the point when the rotational torque is large). This eliminates the need for a rectifier circuit or time-integrating capacitor, eliminates the forward voltage drop of the rectifying element and its negative effect on the rotational position signal, and eliminates the complicated charging/discharging cycle settings of the time-integrating capacitor. Moreover, since the peak value of the back electromotive force is not directly used, but the ratio is used, the switching element can be energized at the optimal timing from low to high speeds without being affected by the rotation speed of the permanent magnet rotor. It becomes possible to do
This can improve reliability.

また、後者の構成により常にOFFとなっている2相の
巻線の逆起電圧を利用することができ、より確実な通電
タイミングが得られ信頼性を一層向上できると共に回路
構成を簡素化できる。
Furthermore, the latter configuration allows the back electromotive force of the two-phase windings that are always OFF to be used, thereby providing more reliable energization timing, further improving reliability, and simplifying the circuit configuration.

(へ)実施例 以下本発明の実施例を図面に基づいて説明する。(f) Example Embodiments of the present invention will be described below based on the drawings.

第1図は本発明による無刷子直流電動機と巻線駆動用の
スイッチング素子の概略図である。1は4極の永久磁石
回転子、A、B、Cは3相に配置された固定子巻線、2
a、2b、2cは夫々前記巻線A、B、Cを駆動する巻
線駆動トランジスタ、3a、3b、3cはそのベース端
子である。
FIG. 1 is a schematic diagram of a brushless DC motor and a switching element for driving windings according to the present invention. 1 is a 4-pole permanent magnet rotor; A, B, and C are stator windings arranged in three phases; 2
A, 2b, and 2c are winding drive transistors that drive the windings A, B, and C, respectively, and 3a, 3b, and 3c are their base terminals.

4は正の直流電源VCCに接続される端子である。4 is a terminal connected to a positive DC power supply VCC.

この電動機の駆動は回転子1の回転位置角度に応じて巻
線駆動トランジスタ2B、2b、2cのベース端子3a
、3b、3cに順次切換わるベース電流を印加すること
により行なわれる。
The motor is driven by the base terminals 3a of the winding drive transistors 2B, 2b, 2c depending on the rotational position angle of the rotor 1.
, 3b, and 3c by applying base currents that are switched sequentially.

第2図は本発明による基本的な通電タイミングである。FIG. 2 shows the basic energization timing according to the present invention.

ここで、永久磁石回転子1の回転時に発生する夫々の巻
線A、B、Cの逆起電圧はvA。
Here, the back electromotive force of each winding A, B, and C generated when the permanent magnet rotor 1 rotates is vA.

V、、VCとなる。この場合、最適な通電タイミングと
は3相巻腺A、B、Cの各相において夫々Ta 、Tb
 、Tcの区間になる。すなわち、各巻線A、B、Cの
波高値のピークを夫々a 、 b ’、 cとすると、
A相の通電時間はb −c間のTa、B相の通電時間は
c−a’間のTb、C相の通電時間はa゛〜b′間のT
cとなり、他相の巻線のピーク時を検出することにより
上述した最適通電を行なうためのパルスを得るようにす
る。
V, VC. In this case, the optimal energization timing is Ta and Tb in each of the three-phase windings A, B, and C, respectively.
, Tc. That is, if the peak values of the windings A, B, and C are respectively a, b', and c,
The energizing time of A phase is Ta between b and c, the energizing time of B phase is Tb between c and a', and the energizing time of C phase is T between a゛ and b'.
c, and by detecting the peak time of the windings of the other phases, a pulse for performing the above-mentioned optimum energization is obtained.

次に、OFF相のピーク時を検出する基本的な方法を第
3図で説明する。各巻線A、B、Cに発生する逆起電圧
の波形は夫々vA、 Vs 、 Vcとなり、かつ、通
電状態は常に1相がON、2相がOFFとなるが、ここ
で、B相の逆起電圧のピーク時点すについて考えてみる
と、この時までは第2図に示した如くC相がONL、て
いる。ここで、b点での+VCCからの波高値をE、b
点と同時刻のA相のVAの波高値をKEとすると、波高
値Eは回転数によって変化するが、Kは回転数による変
化のない定数となる。例えば、VA−Esinθであれ
ばに−1/2となる。そこで、 [vi−(+vcc):lと、[(+Vcc)−VA)
の1/に倍したものとを比較し、これが1:1になる時
を検出すればそれがV、のピーク時点すとなる。すなわ
ち、第4図に示すように(Vl−(+Vcc))と t
/x((+vcc)−va)の両型圧の波高値が一致す
る点がv3のピーク時点すとなるため、このb点でパル
スを発生させるようにしている。なお、他の相の場合も
同様にして、(V C+ (+ V CC”) )と 
1/K((+Vcc)−Vm)を比較してVcのピーク
時点Cを、(VA−(+Vcc)3 ト1/K ((+
Vcc)−Vc)を比較してVaのピーク時点aを検出
する。
Next, a basic method for detecting the peak time of the OFF phase will be explained with reference to FIG. The waveforms of the back electromotive force generated in each winding A, B, and C are vA, Vs, and Vc, respectively, and the energization state is always such that one phase is ON and the second phase is OFF. Considering the peak point of the electromotive voltage, up to this point the C phase is ONL as shown in FIG. Here, the peak value from +VCC at point b is E, b
If the peak value of VA of phase A at the same time as the point is KE, the peak value E changes depending on the rotation speed, but K is a constant that does not change depending on the rotation speed. For example, if VA-Esinθ, it becomes -1/2. Therefore, [vi-(+vcc):l and [(+Vcc)-VA)
If we compare the value multiplied by 1/1 and detect the time when this becomes 1:1, this will be the peak point of V. That is, as shown in FIG. 4, (Vl-(+Vcc)) and t
Since the point where the peak values of both pressures of /x((+vcc)-va) coincide is the peak point of v3, a pulse is generated at this point b. In addition, in the case of other phases, (V C+ (+ V CC”) ) and
By comparing 1/K((+Vcc)-Vm), the peak time C of Vc is determined as (VA-(+Vcc)3 to 1/K((+
Vcc)-Vc) is compared to detect the peak point a of Va.

以上の基本的な論理に基づいて具体的実施例を以下に説
明する。
Specific examples will be described below based on the above basic logic.

第5図は無刷子直流電動機の回路例であり、3相片道通
電方式で結線された固定子巻線A、B。
FIG. 5 is an example of a circuit of a brushless DC motor, with stator windings A and B connected in a three-phase one-way energization system.

Cの各相の逆起電圧vA、v、、Vcと+VCCを夫々
抵抗R8〜R6によって分圧して信号として取り出し、
取扱いができるレベルに変換する。ここで、Rt−Rs
=Rs、Rs−R−−Rsとすれば減衰比は一定となる
。更に、これをR7−R14によって分圧して電圧比較
できるレベルにする。ここで −Rγ −Rψ −R1
1”’R11l   R#”R1・−R11”Rt4と
すれば、第6図に示すようにVを基準として夫々等しい
波高値の信号電圧レベルV a t V b yvcが
得られる。
The back electromotive voltages vA, v, , Vc and +VCC of each phase of C are divided by resistors R8 to R6 and taken out as signals,
Convert to a level that can be handled. Here, Rt-Rs
=Rs, Rs-R--Rs, the damping ratio will be constant. Furthermore, this voltage is divided by R7-R14 to a level that allows voltage comparison. Here −Rγ −Rψ −R1
1"'R11l R#"R1.-R11"Rt4, signal voltage levels V at V b yvc having the same peak value with respect to V as shown in FIG. 6 can be obtained.

このようにして得られた信号電圧va、 vb、 vC
を第7図に示すように2個の差動増幅器5,6に入力す
る。ここで、差動増幅器5は増幅度1、差動増幅器6は
増幅度1/Kに設定する。そして、それぞれの出力を電
圧比較器7によって比較するとVmのピーク時に巻線A
を通電させるためのパルスaを発生させることができる
。このときの、A相における逆起電圧vAと電圧比較器
7からの発生パルスaを時間的に見ると第8図のような
タイムチャートとなる。また、他のB相、C相からも同
様にして巻11Bを通電させるためのパルス51巻11
Acを通電させるためのパルスCを得ることができる。
The signal voltages va, vb, vC obtained in this way
is input to two differential amplifiers 5 and 6 as shown in FIG. Here, the amplification degree of the differential amplifier 5 is set to 1, and the amplification degree of the differential amplifier 6 is set to 1/K. When the respective outputs are compared by the voltage comparator 7, at the peak of Vm, the winding A
It is possible to generate a pulse a for energizing. At this time, when the back electromotive voltage vA in the A phase and the generated pulse a from the voltage comparator 7 are viewed in terms of time, a time chart as shown in FIG. 8 is obtained. Similarly, a pulse 51 for energizing the winding 11B from the other B-phase and C-phase is also applied to the winding 11.
A pulse C for energizing Ac can be obtained.

(尚、第7図中、B相、C相についての差動増幅器と電
圧比較器の構成は同様であるので省略する。)そして、
夫々(3個)の電圧比較器7(他2個は図示せず)から
の出力パルスa、b、cは第9図に示すようになり、こ
れを演算回路8に入力して最適通電パルスd、e、fが
得られる。ここで、演算回路8ではパルス発生した相を
順次ONさせ、かつ、他の相がONするまでとする演算
を行なうことにより上記最適通電パルスを得ている。
(In FIG. 7, the configurations of the differential amplifier and voltage comparator for the B phase and C phase are the same, so they are omitted.)
The output pulses a, b, and c from each (three) voltage comparators 7 (the other two are not shown) are as shown in FIG. d, e, f are obtained. Here, the arithmetic circuit 8 obtains the optimum energizing pulse by sequentially turning on the phases in which pulses are generated until the other phases are turned on.

以上得られた最適通電パルスをもとに各巻線A、B、C
を通電すると各相の逆起電圧波形は第10図に示すVA
’ 、 V、’ 、 VC’(7)ように変化する。そ
して、これによって逆起電圧から比較して得られる波形
も変化するので発生パルスも第10図中a’、b’、c
’という具合に変化してパルスの時間幅は長くなる。し
かし、パルスの発生時点には同等影響がないので、演算
回路8によって再び上述した演算(パルス発生した相を
順次ONさせ、かつ、他の相がONするまでの間を通電
パルスとする演算)を行なうことにより、上記したパル
スd、e、f’と同様の最適通電パルスd ’、 e 
’。
Based on the optimum energizing pulse obtained above, each winding A, B, C
When electricity is applied, the back electromotive voltage waveform of each phase is VA shown in Figure 10.
' , V, ', VC' (7). As a result, the waveform obtained by comparison from the back electromotive force also changes, so the generated pulses also change to a', b', and c in Figure 10.
', and the time width of the pulse becomes longer. However, since there is no equivalent effect at the time of pulse generation, the arithmetic circuit 8 performs the above-mentioned calculation again (calculation in which the phases in which pulses are generated are sequentially turned on, and the energizing pulse is made until the other phases are turned on). By doing this, optimal energizing pulses d', e similar to the above-mentioned pulses d, e, f' are obtained.
'.

r゛が得られる。r゛ is obtained.

尚、以上の説明では差動増幅器5,6の増幅度を1と1
/Kに設定したが、電圧比較器7との関係によってこれ
以外の設定でも良い。
In the above explanation, the amplification degrees of the differential amplifiers 5 and 6 are assumed to be 1 and 1.
/K, but other settings may be used depending on the relationship with the voltage comparator 7.

更に、本実施例ではOFF相と+VCCとの電圧差をそ
れぞれ比較する方法を説明したが、これに限定されるこ
となく、例えば1相は(Vl−VA)のように逆起電圧
そのものの電圧差を検出して1+に:にとなる時点を検
出しても最適通電パルスが得られ、逆起電圧のピーク時
を検出するものであれば同等本発明を逸脱しない。
Furthermore, in this embodiment, a method of comparing the voltage difference between the OFF phase and +VCC was explained, but the method is not limited to this, and for example, one phase is the voltage of the back electromotive voltage itself, such as (Vl-VA). An optimal energizing pulse can be obtained even if the difference is detected and the time point when the value becomes 1+ is detected, and the present invention is equivalent to that provided that the peak time of the back electromotive force is detected.

(ト)発明の効果 以上のように本発明によればOFF相の固定子巻線に発
生する逆起電圧を直接利用して巻線駆動用スイッチング
素子への最適な通電タイミングを得ることができ、整流
回路や時間積分コンデンサを不用として整流素子の順方
向電圧降下やこれによる回転位置信号への悪影響、及び
、時間積分コンデンサの煩雑な充放電のサイクル設定を
なくし、永久磁石回転子の回転数の影響を受けることな
く低速から高速まで最適なタイミングでスイッチング素
子への通電を行なうことが可能となり、信頼性の高い無
刷子直流電動機が得られる。
(G) Effects of the Invention As described above, according to the present invention, it is possible to directly utilize the back electromotive force generated in the OFF-phase stator winding to obtain the optimum timing for energizing the winding drive switching element. , eliminates the need for a rectifier circuit or time-integrating capacitor, eliminates the forward voltage drop of the rectifying element and its negative effect on the rotational position signal, and eliminates the complicated charging/discharging cycle setting of the time-integrating capacitor, thereby reducing the rotational speed of the permanent magnet rotor. This makes it possible to energize the switching elements at optimal timing from low to high speeds without being affected by the effects of turbulence, resulting in a highly reliable brushless DC motor.

また、常に1相を0N52相をOFFとして0FF2相
の逆起電圧を利用することにより簡単に各相の逆起電圧
のピーク時を検出することができると共に信頼性を一層
向上することができ、更に、定数Kを変更すれば永久磁
石回転子の着磁波形の興なる電動機にも簡易に適用でき
る。
In addition, by always turning 1 phase ON and 52 phases OFF and using the back electromotive force of 0FF and 2 phases, it is possible to easily detect the peak time of the back electromotive voltage of each phase, and further improve reliability. Furthermore, by changing the constant K, the present invention can be easily applied to electric motors where the magnetization waveform of the permanent magnet rotor is different.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による無刷子直流電動機と巻線駆動用ス
イッチング素子の概念図、第2図は逆起電圧による最適
通電の切換えタイミングを示す波形図、第3図は逆起電
圧によるOFFFF−ク時検出の原理を示す波形図、第
4図は逆起電圧によるOFFFF−ク時検出の電圧比較
を行なった場合の原理を示す波形図、第5図は無刷子直
流電動機と巻線駆動用スイッチング素子の実際の回路図
、第6図は第5図に示した回路での逆起電圧検出時の入
出力を示す波形図、第7図は逆起電圧のOFFFF−ク
時検出の回路例を示すブロック図、第8図は第7図のピ
ーク時検出回路の出力を示す波形図、第9図は逆起電圧
波形とピーク時検出回路の出力と最適通電パルスの関係
図、第10図は最適通電パルスによって巻線通電した場
合の逆起電圧波形とピーク時検出回路の出力と最適通電
パルスの関係図である。 1・・・永久磁石回転子、 A、B、C・・・固定子巻
線、 2a、2b、2c・・・巻線駆動トランジスタ、
  5,6・・・差動増幅器、 7・・・電圧比較器、
8・・・演算回路。
Fig. 1 is a conceptual diagram of a brushless DC motor and a winding drive switching element according to the present invention, Fig. 2 is a waveform diagram showing optimum energization switching timing using a back electromotive force, and Fig. 3 is a waveform diagram showing the optimum energization switching timing using a back electromotive voltage. Figure 4 is a waveform diagram showing the principle of voltage comparison for OFF-time detection using back electromotive voltage. Figure 5 is for brushless DC motors and winding drive. Actual circuit diagram of the switching element. Figure 6 is a waveform diagram showing the input and output when detecting back electromotive force in the circuit shown in Figure 5. Figure 7 is an example of a circuit for detecting OFF/OFF of back electromotive force. FIG. 8 is a waveform diagram showing the output of the peak detection circuit in FIG. 7, FIG. 9 is a diagram showing the relationship between the back electromotive voltage waveform, the output of the peak detection circuit, and the optimal energization pulse, and FIG. 10 is a relationship diagram between the back electromotive voltage waveform, the output of the peak time detection circuit, and the optimum energization pulse when the winding is energized by the optimum energization pulse. 1... Permanent magnet rotor, A, B, C... Stator winding, 2a, 2b, 2c... Winding drive transistor,
5, 6... Differential amplifier, 7... Voltage comparator,
8... Arithmetic circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)3相の固定子巻線とこの巻線の夫々に直列接続さ
れた巻線駆動用のスイッチング素子とを備え、この直列
回路に一方向通電するようにした無刷子直流電動機にお
いて、前記固定子巻線の夫々に発生する逆起電圧のピー
ク時を検出して信号を出力するピーク時検出回路を設け
、この回路の信号出力時に前記スイッチング素子の切換
えを行なうようにしたことを特徴とする無刷子直流電動
機。
(1) A brushless DC motor comprising three-phase stator windings and a switching element for driving the windings connected in series with each of the windings, the series circuit being energized in one direction. A peak time detection circuit is provided to detect the peak time of the back electromotive force generated in each of the stator windings and output a signal, and the switching element is switched when the signal is output from this circuit. brushless DC motor.
(2)固定子巻線の通電状態を常に1相がON、2相が
OFFとし、かつ、OFF相である一方の相の誘起逆起
電圧と電源電圧との差を検出して信号を出力する第1の
検出回路と、他方の相の誘起逆起電圧と電源電圧との差
を検出して信号を出力する第2の検出回路とを設け、こ
の両回路からの出力信号を比較することによってOFF
相の巻線の逆起電圧のピーク時を検出するようにしたこ
とを特徴とする請求項1記載の無刷子直流電動機。
(2) The energization state of the stator windings is always set to one phase ON and two phases OFF, and the difference between the induced back electromotive force of one phase, which is the OFF phase, and the power supply voltage is detected and a signal is output. A first detection circuit that detects the difference between the induced back electromotive voltage of the other phase and the power supply voltage and outputs a signal is provided, and the output signals from both circuits are compared. OFF by
2. The brushless DC motor according to claim 1, wherein a peak time of a back electromotive voltage of a phase winding is detected.
JP63202188A 1988-08-12 1988-08-12 Brushless dc motor Pending JPH0251390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202188A JPH0251390A (en) 1988-08-12 1988-08-12 Brushless dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202188A JPH0251390A (en) 1988-08-12 1988-08-12 Brushless dc motor

Publications (1)

Publication Number Publication Date
JPH0251390A true JPH0251390A (en) 1990-02-21

Family

ID=16453422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202188A Pending JPH0251390A (en) 1988-08-12 1988-08-12 Brushless dc motor

Country Status (1)

Country Link
JP (1) JPH0251390A (en)

Similar Documents

Publication Publication Date Title
US6570353B2 (en) System for the electronic commutation of a brushless DC motor
US7072778B2 (en) Method and system for determining a rotor position in a wound field DC motor
KR100288770B1 (en) Rectifier Circuit for Sensorless Three-Phase Bieldi Motors
JPH07118944B2 (en) Brushless DC motor
JP2688112B2 (en) Brushless DC motor drive system without rotor position detector and its drive circuit
JPS59149780A (en) Drive device for motor
KR100242445B1 (en) Driving circuit of senseless 3 phase bldc motor
US20140176032A1 (en) Back electromotive force detection circuit, and motor driving control apparatus and motor using the same
JP4055372B2 (en) Motor drive device
JP4062074B2 (en) Control method of three-phase brushless DC motor
JP2000287479A (en) Controller for brushless motor
JP2006296088A (en) Apparatus and method for controlling motor
JPH0251390A (en) Brushless dc motor
JPS6260491A (en) Method of detecting position of rotor for brushless dc motor
JP2755057B2 (en) DC brushless motor drive circuit
JPH09154294A (en) Driving of brushless dc motor
Bhosale et al. Performance comparison of Two PWM techniques applied to BLDC motor control
US20030210009A1 (en) Pulse width modulated drive system for electronically commutated motors
JP3309828B2 (en) Motor drive control device
JP3552380B2 (en) Brushless motor drive
JPH02111283A (en) Brushless dc motor
JP3028768B2 (en) Brushless DC motor drive control method and device
JPH11187691A (en) Driving device of brushless motor
JP2005176457A (en) Position detecting circuit of brushless motor
JPH0767302B2 (en) Brushless motor drive circuit