JPH0251387B2 - - Google Patents

Info

Publication number
JPH0251387B2
JPH0251387B2 JP23435083A JP23435083A JPH0251387B2 JP H0251387 B2 JPH0251387 B2 JP H0251387B2 JP 23435083 A JP23435083 A JP 23435083A JP 23435083 A JP23435083 A JP 23435083A JP H0251387 B2 JPH0251387 B2 JP H0251387B2
Authority
JP
Japan
Prior art keywords
ethylene
olefin
elastomer
thermoplastic elastomer
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23435083A
Other languages
Japanese (ja)
Other versions
JPS60127149A (en
Inventor
Katsuyoshi Yonekura
Akira Uchama
Akira Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP23435083A priority Critical patent/JPS60127149A/en
Priority to US06/680,644 priority patent/US4656098A/en
Priority to CA000469985A priority patent/CA1226709A/en
Priority to DE8484308689T priority patent/DE3480696D1/en
Priority to EP19840308689 priority patent/EP0146349B1/en
Publication of JPS60127149A publication Critical patent/JPS60127149A/en
Priority to US07/003,713 priority patent/US4800130A/en
Publication of JPH0251387B2 publication Critical patent/JPH0251387B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳现な説明】 本発明は匟性、抌出成圢性及び耐熱性ずいう熱
可塑性゚ラストマヌの長所ず衚面光沢及び耐スク
ラツチ性ずいうアむオノマヌ又は−オレフむ
ン・メタアクリル酞共重合䜓暹脂の長所ずを
兌備し、前者の欠点である無光沢及び埌者の欠点
である耐熱性欠劂ずを有しない材料の提䟛を目的
ずする。 埓来、車䞡、船舶等のシヌル材、緩衝材又は内
倖装材ずしお、たた家電郚品、スポヌツ甚品、建
材等ずしお甚いられおいる熱可塑性゚ラストマヌ
は衚面光沢及び耐スクラツチ性に乏しいこずか
ら、それらが重芖される分野である自動車等のプ
ロテクトモヌル、りむンドシヌルドガスケツト、
バンパヌその他の材料ずしおは、殆んど甚いられ
なか぀た。 本発明者等は熱可塑性゚ラストマヌの䞊蚘欠点
が郚分的アむオノマヌ又は−オレフむン・メ
タアクリル酞共重合䜓暹脂ずの積局によ぀お実
質的に解消できるばかりでなく、アむオノマヌ等
の欠点も同時に陀去されるこずを芋出し、本発明
を完成した。 すなわち、本発明は次の技術をその内容ずする
ものである。 (1) ポリオレフむンず゚チレン・α−オレフむン
共重合䜓゚ラストマヌずからなり、その少くず
も䞀方が郚分的に架橋されおなる熱可塑性゚ラ
ストマヌ局ず遊離カルボキシル基を含有する郚
分的アむオノマヌ暹脂局又は−オレフむン・
メタアクリル酞共重合暹脂局ずが匷固に接着し
おなる衚面光沢及び耐スクラツチ性の良或な積
局䜓。 (2) ポリオレフむンず゚チレン・α−オレフむン
共重合䜓゚ラストマヌずからなり、少くずも䞀
方が郚分的に架橋されおなる熱可塑性゚ラスト
マヌず遊離カルボキシル基を含有する郚分的ア
むオノマヌ暹脂局又は−オレフむン共重合
䜓・メタアクリル酞共重合暹脂ずを融解状態に
おいお、匷固に接着させる積局䜓の補造方法。 尚、本発明におけるメタ・アクリル酞ずは、
アクリル酞及びメタアクリル酞の総称である。 本発明においお、ポリオレフむンず゚チレン・
α−オレフむン共重合゚ラストマヌの郚分架橋物
ずからなる熱可塑性゚ラストマヌずしおは、次の
様な組成物を䟋瀺できる。 () ゚チレン又はプロピレンの単独重合䜓又は
これらず少量の他のモノマヌずの共重合䜓によ
぀お代衚される各皮ポリオレフむン暹脂α1
及び゚チレンず炭玠数〜14のα−オレフむン
共重合䜓ずの二元重合䜓゚ラストマヌ又はこれ
らず曎に各皮の非共圹ポリ゚ン化合物ずを重合
させた䞉元重合䜓ゎムb2の郚分架橋物
c2からなる熱可塑性゚ラストマヌ組成物 () ポリオレフむン暹脂a1ず゚チレン・α
−オレフむン共重合䜓゚ラストマヌb1ずの
組成物を動的に熱凊理しお埗られる熱可塑性゚
ラストマヌ組成物 () ポリオレフむン暹脂a1ず゚チレン・α
−オレフむン共重合䜓゚ラストマヌb1ずの
組成物を動的に熱凊理しお埗られた郚分架橋物
c2に、曎に同䞀又は別異のポリオレフむン
暹脂a1又はa2を配合しお埗られる熱可
塑性゚ラストマヌ組成物 () ゚チレンの単独重合䜓又ぱチレンず他の
少量のモノマヌずの共重合䜓によ぀お代衚され
るペルオキシド架橋型ポリオレフむン暹脂
a1ずプロピレンの単独重合䜓又はプロピレ
ンず他の少量のモノマヌずの共重合䜓によ぀お
代衚されるペルオキシド非架橋型ポリオレフむ
ン暹脂a1ず、゚チレン・α−オレフむン共
重合䜓ゎムb1ずの組成物を動的に熱凊理し
お埗られる熱可塑性゚ラストマヌ組成物 本発明においお、熱可塑性゚ラストマヌの原料
である゚チレン・α−オレフむン共重合ゎムず
は、䟋えば゚チレン−プロピレン共重合ゎム、゚
チレン−プロピレン−共圹ゞ゚ン倚元重合ゎム、
゚チレン−ブタゞ゚ン共重合ゎム、゚チレン−
−ブテン共重合ゎム、゚チレン−−ブテン−非
共圹ゞ゚ン倚元重合䜓ゎム等の−オレフむンを
䞻成分成分ずする実質的に非晶質の゚ラストマヌ
又はそれらの混合物である。䞭でも奜たしいもの
ぱチレン−プロピレン共重合䜓ゎム、゚チレン
−プロピレン−非共圹ゞ゚ン倚元重合䜓ゎムであ
る。 こゝで、非共圹ゞ゚ンずは、ゞシクロペンタゞ
゚ン、−ヘキサゞ゚ン、シクロオクタゞ゚
ン、メチレンノルボルネン、−゚チリデン−
−ノルボルネン等をいゝ、䞭でも、ゞシクロペン
タゞ゚ン及び−゚チリデン−−ノルボルネン
を第䞉成分をする共重合䜓が奜たしい。 これら二元又は倚元重合䜓のムヌニヌ粘床
〔ML1+4100℃〕は通垞10〜120、奜たしくは40
〜80であり、たたその沃玠䟡䞍飜和床は奜た
しくは16以䞋である。 これら゚ラストマヌ䞭に含有される各構成単䜍
の量は−オレフむン郚分においお、゚チレン単
䜍α−オレフむン単䜍が5050〜9010、奜た
しくは7030〜8515モル比の割合であり、
−オレフむン゚チレンα−オレフむン単
䜍非共圹ゞ゚ン単䜍倚元重合䜓の堎合が通
åžž98〜9010、奜たしくは97〜94
モル比の割合である。 本発明の積局䜓の基材局を構成する郚分架橋熱
可塑性゚ラストマヌにおいお、ポリオレフむンず
゚チレン・α−オレフむン共重合゚ラストマヌず
からなる郚分架橋物を構成する䞡者の配合比は通
垞、ポリオレフむン゚ラストマヌに基づいお、
8020〜2080、奜たしくは7030〜3070重
量比に遞ばれる。 䞊蚘郚分架橋物を調補するには、原料゚ラスト
マヌ100重量郚に察しお、通垞0.1〜重量郚の有
機ペルオキシドを配合し、動的に熱凊理するこず
によ぀お行なわれる。 こゝで、動的に熱凊理するずは、融解状態で混
緎するこずをいう。混緎装眮ずしおは、ミキシン
グロヌル、バンバリヌミキサヌ、抌出機、ニヌダ
ヌ、連続ミキサヌ等を甚い埗る。通垞は150〜280
℃においお、〜20分間行なえばよい。 郚分架橋を行なうに甚いられる有機ペルオキシ
ドずしおは、ゞクミルペルオキシド、ゞ−tert−
ブルチルペルオキシド、−ゞメチル−
−ビスtert−ブチルペルオキシヘキサン、
−ゞメチル−−ビスtert−ブチル
ペルオキシヘキサン−、−ビスtert
−ブチルペルオキシむ゜プロピルベンれン、
−ビスtert−ブチルペルオキシ−
−トリメチルシクロヘキサン、−ブチル
−−ビスtert−ブチルペルオキシバレ
ラヌト、ゞベンゟむルペルオキシド、tert−ブチ
ルペルオキシベンゟアヌト等を挙げるこずができ
るが、䞭でも、臭気の少ない点スコヌチ安定性の
高い点で、ビスペルオキシド系化合物が奜たれ、
−ビスtert−ブチルオキシむ゜プロピ
ルベンれンが最適である。 この郚分架橋凊理に際しお、架橋助剀である
−キノンゞオキシム、−p′−ゞベンゟむルキノ
ンゞオキシム等、倚官胜性化合物であるゞビニル
ベンれンDVB、゚チレングリコヌルゞメタク
リレト等を䜵甚するこずにより、均䞀な架橋を実
珟した郚分架橋物は本発明の積局䜓の原料ずし
お、曎に奜適である。 熱可塑性゚ラストマヌの調補に際しおは、他の
有機ペルオキシド非架橋型ゎム、䟋えばポリむ゜
ブテン及びブチルゎムむ゜ブテン−む゜プレン
共重合䜓等䞊びに鉱物油系軟化剀、カヌボンブ
ラツク、タルク、クレヌ、酞化防止剀その他の添
加成分を配合するこずができる。 本発明においお、ポリオレフむンずは、−オ
レフむンの単独重合䜓、その皮以䞊の共重合
䜓、−オレフむンず共圹又は非共圹ゞオレフむ
ンずの共重合䜓、−オレフむンず他の重合性ビ
ニルモノマヌずの共重合䜓及び䞊蚘ポリオレフむ
ンに重合性ビニルモノマヌの皮以䞊をグラフト
した改質ポリオレフむン等であ぀お、線回折枬
定法により求められる結晶化床通垞50以䞊、融
解粘床指数〔MI190℃又はMFR230℃〕通
åžž0.1〜5010min皋床、ペルオキシド分解型
のものが奜たしい。 䟋えば、アむ゜タクチツクポリプロピレン、プ
ロピレンず他の15モル以䞋のα−オレフむンず
の共重合䜓、䟋えばプロピレン−゚チレン共重合
䜓、プロピレン−−ブテン共重合䜓、プロピレ
ン−−ヘキサン共重合䜓、プロピレン−−メ
チル−−ペンテン共重合䜓又はそれらのブレン
ドを挙げるこずができる。 これらのMFR230℃は〜20であるこずが
奜たしい。 本発明に甚いられる郚分的アむオノマヌ暹脂又
は−オレフむン・メタアクリル酞共重合暹
脂ずしおは、熱可塑性゚ラストマヌずの接合性及
び耐スクラツチ性の点で、共重合䜓䞭に存圚する
カルボキシル基の含有量通垞〜15モル、奜た
しくは〜10モルであ぀お、該基の通垞60以
䞋、奜たしは40以䞋がアルカリ金属及び又は
アルカリ土類金属むオン、奜たしくはカルシりム
むオン又は亜鉛むオンず結合しおいるものを挙げ
るこずができる。 本発明においお、熱可塑性゚ラストマヌず郚分
的アむオノマヌ暹脂又は−オレフむン共重合
䜓・メタアクリル酞共重合䜓暹脂ずを積局成
圢する方法ずしおは、次のものを䟋瀺できる。 (a) 郚分的アむオノマヌ暹脂又は−オレフむ
ン・メタアクリル酞共重合暹脂ず熱可塑性
゚ラストマヌずを同時倚局抌出する方法 (b) 郚分的アむオノマヌ暹脂又は−オレフむ
ン・メタアクリル酞共重合暹脂ず熱可塑性
゚ラストマヌずを倚局射出成圢する方法 (c) 金型内に郚分的にアむオノマヌ暹脂又は−
オレフむン・メタアクリル酞共重合暹成圢
䜓をむンサヌトそ、その衚面に熱可塑性゚ラス
トマヌを射出積局する方法 (d) 金型内に熱可塑性゚ラストマヌ成圢䜓をむン
サヌトし、その衚面にアむオノマヌ暹脂又は
−オレフむン共重合䜓・メタアクリル酞暹
脂を射出積局する方法 これらの䞭でも、通垞は(a)の方法が甚いられ
る。 参考䟋  (i) ゚チレン−プロピレン−−゚チリデン−
−ノルボルネン䞉元重合゚ラストマヌ〔゚チレ
ン含有率78モル、ペり玠䟡15、ムヌニヌ粘床
ML1+4100℃70〕75郚、 (ii) 結晶質ポリプロピン〔MFR230℃、2.16Kg
11、密床0.91c.c.、降䌏点応力370Kgcm2
ASTM−−63815郚 (iii) む゜ブテン−む゜プレン共重合゚ラストマヌ
〔䞍飜和床0.8モル、ムヌニヌ粘床ML1+4100
℃45〕10郚、 (iv) 酞化防止剀テトラキス〔メチレン
−ゞ−tert−ブチル−−ドロキシプニル
プロピオネヌト〕メタン0.3郚。 䞊蚘(i)〜(iv)をバンバリヌミキサヌに装入し、窒
玠雰囲気䞭、180℃で分間混緎埌、ロヌルを通
しおシヌル状ずしたものをシヌトカツタヌにより
现断しおペレツト状にした。 次に、該ペレツトに−ビスtert−ブチ
ルペルオキシ−iso−プロピルベンれン0.3郚を
ゞビニルベンれン0.5郚に溶解分散させおなる溶
液を加えお、ヘンシ゚ルミキサヌにより混合し、
溶液をペレツト衚面に均䞀に付着させた。 次いでこのペレツトを抌出機により、窒玠雰囲
気䞭、210℃、滞留時間分間で抌出し、埗られ
た抌出物を動的に熱凊理しお熱可塑性゚ラストマ
ヌを埗た。 参考䟋  (i) ゚チレン−プロピレン−ゞシクロペンタゞ゚
ン䞉元重合゚ラストマヌ〔゚チレン単䜍含有率
79mol、ペり玠䟡10、ムヌニヌ粘床ML1+4
100℃70〕70郚、 (ii) 参考䟋で甚いたず同䞀のポリプロピレン30
郚、 (iii) 参考䟋で甚いたず同䞀の酞化防止剀0.3郚。 䞊蚘(i)〜(iii)を参考䟋におけるず同様に操䜜し
おペレツト化及び郚分架橋化を行ない、所望の熱
可塑性゚ラストマヌを埗た。 参考䟋  (i) 参考䟋においお甚いられた゚ラストマヌ65
郚、 (ii) 参考䟋においお甚いられたポリプロピレン
20郚、 (iii) プロピレン−゚チレンランダム共重合䜓〔プ
ロピレン単䜍含有率55mol、MFR230→
0.510min〕15郚、 (iv) 参考䟋においお甚いられた酞化防止剀0.3
郚。 䞊蚘(i)〜(iv)を参考䟋におけるず同様に操䜜し
おペレツト化及び郚分架橋化を行ない、所望の熱
可塑性゚ラストマヌを埗た。 積局䜓の衚面光沢、耐スクラツチ性衚面匷
床、局間接着力に぀いおは、次の様にしお評䟡
した。 衚面光沢JISZ−8741に準じお、光入射角60゜で
枬定した以䞋、「60゜グロス」ず略称するこず
があるグロス 耐スクラツチ性JISK−5401に定められたスク
ラツチ詊隓機を甚い、鉛筆の硬床HB、荷重
500の条件䞋に成圢品の衚面を匕掻き、その
跡を次の基準で評䟡する 党く掻跡が認められない 僅かに掻跡が残る 掻跡は残るが傷にはならない 浅い傷が残る 深い傷が残る 局間接着力詊隓片巟20mm×長さ120mmを成
圢品から切出し、剥離速床50mmminで䞡局の
型剥離を行なう。 実斜䟋  郚分的アむオノマヌ暹脂〔MI190℃
10mm、カルボキシル基含量8mol、䞭和床19、
亜鉛塩型〕を窒玠雰囲気䞭、200℃においお抌出
機䞭で融解し、他の抌出機䞭で参考䟋においお
埗られた熱可塑性゚ラストマヌを窒玠雰囲気䞭、
230℃においお融解し、䞡者を同䞀金型䞭に抌出
しお、同時二局成圢を行な぀た。 埗られた二局積局䜓の評䟡結果を第衚に瀺
す。 同衚から、本発明品の郚分的アむオノマヌ局衚
面は光沢、耐スクラツチ性共に通垞のアむオノマ
ヌ比范䟋の衚面光沢及び耐スクラツチ性ず
同等であるほか、本発明品における局間接着力は
比范䟋のそれを遥かに凌ぎ、熱可塑性゚ラスト
マヌ盞互比范䟋の堎合に比しおも、実質的
に同等であるこずが刀る。すなわち、比范䟋に
おける䞡局は同䞀の熱可塑性゚ラストマヌである
から、その局間接着力は最倧の筈であり、その倀
3.5Kgcmに察しお本発明品における局間接着力
3.3Kgcmは殆んど同等である。 なお、比范䟋は局間接着性に優れおいるこず
で定評あるEVA゚チレン−酢酞ビニル共重合
䜓ず参考䟋における熱可塑性゚ラストマヌず
の積局䜓の評䟡結果であ぀お、衚面光沢及び局間
接着力においおは、本発明品ず同等であるに拘ら
ず、耐スクラツチ性においおは倧きく劣る堎合の
あるこずを瀺す為の䟋である。 実斜䟋  実斜䟋で甚いたず同䞀の郚分的アむオノマヌ
暹脂及び参考䟋の熱可塑性゚ラストマヌずを甚
いお、実斜䟋ず同様に操䜜しお、二局積局䜓を
埗た。 埗られた積局䜓の評䟡結果を第衚に瀺す。同
衚から、積局䜓の光沢偎における60゜グロス及び
耐スクラツチ性は通垞のアむオノマヌ暹脂のそれ
らず党く同䞀であり、しかも、局間接着力におい
おは、比范䟋におけるそれを遥かに凌いでいる
こずが刀る。 実斜䟋  実斜䟋で甚いおず同䞀の郚分的アむオノマヌ
暹脂及び参考䟋の熱可塑性゚ラストマヌずを甚
いお、実斜䟋ず同様にしお操䜜しお、二局積局
䜓を埗た。 埗られた積局䜓の評䟡結果を第衚に瀺す。同
衚から、積局䜓の光沢偎における60゜グロス及び
耐スクラツチ性は通垞のアむオノマヌ暹脂のそれ
らず党く同䞀であり、しかも局間接着力においお
は、比范䟋におけるそれを遥かに凌いでいるこ
ずが刀る。 比范䟋  䞡局を共に参考䟋で埗られた熱可塑性゚ラス
トマヌずしお、同時二局抌出を行な぀お、積局䜓
を埗た。その評䟡結果を第衚に瀺す。 比范䟋  アむオノマヌ暹脂〔MI190℃1010min、
カルボキシ基含有率10mol、䞭和床72、ナト
リりムむオン型〕を窒玠雰囲気䞭、200℃におい
お抌出機䞭で融解し、以䞋は実斜䟋ず同様に操
䜜しお二局積局䜓を埗た。 埗られた積局䜓の評䟡結果を第衚に瀺す。 比范䟋  ゚チレン−酢酞ビニル共重合䜓〔酢酞ビニル単
䜍含有量14wt、密床0.93c.c.、MI190℃
1.410min〕を窒玠雰囲気䞭、200℃においお
抌出䞭で融解させ、以䞋は実斜䟋ず同様に操䜜
しお二局積局䜓を埗た。 埗られた積局䜓の評䟡結果を第衚に瀺す。 【衚】
Detailed Description of the Invention The present invention combines the advantages of thermoplastic elastomers such as elasticity, extrudability and heat resistance, and the advantages of ionomers or 1-olefin/(meth)acrylic acid copolymer resins such as surface gloss and scratch resistance. The object of the present invention is to provide a material that has both the following and does not have the former disadvantage of matteness and the latter disadvantage of lack of heat resistance. Thermoplastic elastomers, which have traditionally been used as sealing materials, cushioning materials, or interior and exterior materials for vehicles, ships, etc., as well as home appliance parts, sporting goods, building materials, etc., have poor surface gloss and scratch resistance, so these are the focus of attention. Protective moldings, windshield gaskets, etc. for automobiles, which are used in the field of
It was rarely used as a bumper or other material. The present inventors have found that not only can the above-mentioned drawbacks of thermoplastic elastomers be substantially eliminated by laminating them with partial ionomers or 1-olefin/(meth)acrylic acid copolymer resins, but also the drawbacks of ionomers etc. The present invention has been completed based on the discovery that it can be removed. That is, the present invention has the following technology as its content. (1) A thermoplastic elastomer layer consisting of a polyolefin and an ethylene/α-olefin copolymer elastomer, at least one of which is partially crosslinked, and a partial ionomer resin layer containing free carboxyl groups or a 1-olefin・
A laminate with good surface gloss and scratch resistance, which is formed by strongly adhering a methacrylic acid copolymer resin layer. (2) A thermoplastic elastomer consisting of a polyolefin and an ethylene/α-olefin copolymer elastomer, at least one of which is partially crosslinked, and a partial ionomer resin layer or 1-olefin copolymer containing a free carboxyl group. A method for manufacturing a laminate in which a methacrylic acid copolymer resin is firmly adhered to the fused resin in a molten state. In addition, (meth)acrylic acid in the present invention is
It is a general term for acrylic acid and methacrylic acid. In the present invention, polyolefin and ethylene
Examples of the thermoplastic elastomer comprising a partially crosslinked α-olefin copolymer elastomer include the following compositions. () Various polyolefin resins (α 1 ) represented by homopolymers of ethylene or propylene or copolymers of these with small amounts of other monomers
and a bipolymer elastomer of ethylene and an α-olefin copolymer having 3 to 14 carbon atoms, or a partially crosslinked product of a terpolymer rubber (b 2 ) obtained by polymerizing these with various non-conjugated polyene compounds. (c 2 ) Thermoplastic elastomer composition () consisting of polyolefin resin (a 1 ) and ethylene α
- Thermoplastic elastomer composition () obtained by dynamically heat-treating a composition with olefin copolymer elastomer (b 1 ) Polyolefin resin (a 1 ) and ethylene α
- The same or different polyolefin resin (a 1 ) or (a 2 ) is added to the partially crosslinked product (c 2 ) obtained by dynamically heat-treating the composition with the olefin copolymer elastomer (b 1 ). A thermoplastic elastomer composition obtained by blending a peroxide crosslinked polyolefin resin (a 1 ) represented by a homopolymer of ethylene or a copolymer of ethylene with a small amount of other monomer (a 1 ) and a monopolymer of propylene. A composition of a peroxide non-crosslinked polyolefin resin (a 1 ) represented by a polymer or a copolymer of propylene and a small amount of other monomers and an ethylene/α-olefin copolymer rubber (b 1 ) In the present invention, the ethylene/α-olefin copolymer rubber that is the raw material for the thermoplastic elastomer refers to, for example, ethylene-propylene copolymer rubber, ethylene-propylene-conjugated diene multi-component rubber,
Ethylene-butadiene copolymer rubber, ethylene-1
-butene copolymer rubber, ethylene-1-butene-nonconjugated diene multipolymer rubber, and other substantially amorphous elastomers containing 1-olefin as a main component, or mixtures thereof. Among these, preferred are ethylene-propylene copolymer rubber and ethylene-propylene-nonconjugated diene multipolymer rubber. Here, non-conjugated dienes include dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylene norbornene, 2-ethylidene-5
-Norbornene, etc. Among them, a copolymer containing dicyclopentadiene and 2-ethylidene-5-norbornene as the third component is preferred. The Mooney viscosity [ML 1+4 (100℃)] of these binary or polypolymers is usually 10 to 120, preferably 40.
~80, and its iodine value (degree of unsaturation) is preferably 16 or less. The amount of each structural unit contained in these elastomers is such that in the 1-olefin portion, the ratio of ethylene units/α-olefin units is 50/50 to 90/10, preferably 70/30 to 85/15 (molar ratio). and
1-olefin (ethylene + α-olefin) units/non-conjugated diene units) in the case of a multicomponent polymer) is usually 98/2 to 90/10, preferably 97/3 to 94/6
(molar ratio). In the partially crosslinked thermoplastic elastomer constituting the base layer of the laminate of the present invention, the blending ratio of the polyolefin and the ethylene/α-olefin copolymer elastomer constituting the partially crosslinked product is usually based on the polyolefin/elastomer. hand,
The ratio is selected from 80/20 to 20/80, preferably from 70/30 to 30/70 (weight ratio). The above partially crosslinked product is prepared by blending organic peroxide in an amount of usually 0.1 to 2 parts by weight with respect to 100 parts by weight of the raw material elastomer, and dynamically heat-treating the mixture. Here, dynamic heat treatment means kneading in a molten state. As the kneading device, a mixing roll, a Banbury mixer, an extruder, a kneader, a continuous mixer, etc. can be used. Usually 150-280
℃ for 1 to 20 minutes. Organic peroxides used for partial crosslinking include dicumyl peroxide, di-tert-
Brutyl peroxide, 2,5-dimethyl-2;
5-bis(tert-butylperoxy)hexane,
2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane-3,1,3-bis(tert
-butylperoxyisopropyl)benzene,
1,1-bis(tert-butylperoxy)-3,
Examples include 3,5-trimethylcyclohexane, n-butyl-4,4-bis(tert-butylperoxy)valerate, dibenzoyl peroxide, and tert-butylperoxybenzoate, among others, scorch stability due to low odor. Bisperoxide compounds are preferred because of their high properties,
1,3-bis(tert-butyloxyisopropyl)benzene is most suitable. During this partial crosslinking treatment, p, which is a crosslinking aid,
- Partially crosslinked products that achieve uniform crosslinking by using polyfunctional compounds such as quinone dioxime, p-p'-dibenzoylquinone dioxime, divinylbenzene (DVB), ethylene glycol dimethacrylate, etc. is more suitable as a raw material for the laminate of the present invention. When preparing thermoplastic elastomers, other organic peroxide non-crosslinked rubbers, such as polyisobutene and butyl rubber (isobutene-isoprene copolymers), mineral oil softeners, carbon black, talc, clay, antioxidants, and other additives may be added. Ingredients can be blended. In the present invention, polyolefin refers to a homopolymer of 1-olefin, a copolymer of two or more thereof, a copolymer of 1-olefin and a conjugated or non-conjugated diolefin, and a copolymer of 1-olefin and another polymerizable vinyl monomer. Copolymers with and modified polyolefins obtained by grafting one or more polymerizable vinyl monomers onto the above polyolefins, etc., which have a crystallinity of usually 50% or more as determined by X-ray diffraction measurement, a melt viscosity index [MI ( (190°C) or MFR (230°C)] usually about 0.1 to 50 g/10 min, preferably a peroxide decomposition type. For example, isotactic polypropylene, copolymers of propylene and up to 15 mol% of other α-olefins, such as propylene-ethylene copolymers, propylene-1-butene copolymers, propylene-1-hexane copolymers. , propylene-4-methyl-1-pentene copolymer or blends thereof. The MFR (230°C) of these is preferably 5 to 20. The partial ionomer resin or 1-olefin/(meth)acrylic acid copolymer resin used in the present invention should have carboxyl groups present in the copolymer from the viewpoint of bondability with the thermoplastic elastomer and scratch resistance. The content is usually 4 to 15 mol%, preferably 6 to 10 mol%, and usually 60% or less, preferably 40% or less of the groups are alkali metal and/or alkaline earth metal ions, preferably calcium ions. Or, those bonded to zinc ions can be mentioned. In the present invention, the following methods can be exemplified as methods for laminating and molding a thermoplastic elastomer and a partial ionomer resin or a 1-olefin copolymer/(meth)acrylic acid copolymer resin. (a) Method of simultaneous multilayer extrusion of partial ionomer resin or 1-olefin/(meth)acrylic acid copolymer resin and thermoplastic elastomer (b) Partial ionomer resin or 1-olefin/(meth)acrylic acid copolymerization Method for multilayer injection molding of resin and thermoplastic elastomer (c) Ionomer resin or 1-
A method of inserting an olefin/(meth)acrylic acid copolymer resin molding and injecting and laminating a thermoplastic elastomer on its surface.
- Method of injection lamination of olefin copolymer/(meth)acrylic acid resin Among these, method (a) is usually used. Reference example 1 (i) Ethylene-propylene-2-ethylidene-5
-Norbornene terpolymer elastomer [ethylene content 78 mol%, iodine value 15, Mooney viscosity
ML 1+4 (100℃) 70〕75 parts, (ii) Crystalline polypropyne [MFR (230℃, 2.16Kg)
11, Density 0.91/cc, Yield stress 370Kg/cm 2
(ASTM-D-638) 15 parts (iii) Isobutene-isoprene copolymer elastomer [unsaturation degree 0.8 mol%, Mooney viscosity ML 1+4 (100
°C) 45] 10 parts, (iv) Antioxidant: Tetrakis [methylene (3,5
-di-tert-butyl-4-droxyphenyl)
Propionate] methane 0.3 parts. The above (i) to (iv) were charged into a Banbury mixer, kneaded for 5 minutes at 180°C in a nitrogen atmosphere, passed through a roll to form a seal, and then cut into pellets using a sheet cutter. Next, a solution prepared by dissolving and dispersing 0.3 parts of 1,3-bis(tert-butylperoxy-iso-propyl)benzene in 0.5 parts of divinylbenzene is added to the pellets, and mixed using a Henschel mixer.
The solution was applied uniformly to the pellet surface. The pellets were then extruded using an extruder in a nitrogen atmosphere at 210°C for a residence time of 5 minutes, and the resulting extrudate was dynamically heat treated to obtain a thermoplastic elastomer. Reference example 2 (i) Ethylene-propylene-dicyclopentadiene terpolymer elastomer [ethylene unit content
79mol%, iodine value 10, Mooney viscosity ML 1+4
(100°C) 70〕70 parts, (ii) 30 parts of the same polypropylene used in Reference Example 1
(iii) 0.3 parts of the same antioxidant used in Reference Example 1. The above steps (i) to (iii) were operated in the same manner as in Reference Example 1 to perform pelletization and partial crosslinking to obtain a desired thermoplastic elastomer. Reference example 3 (i) Elastomer 65 used in reference example 1
(ii) Polypropylene used in Reference Example 1
20 parts, (iii) Propylene-ethylene random copolymer [propylene unit content 55 mol%, MFR (230→)
0.5g/10min] 15 parts, (iv) 0.3 of the antioxidant used in Reference Example 1
Department. The above steps (i) to (iv) were operated in the same manner as in Reference Example 1 to perform pelletization and partial crosslinking to obtain a desired thermoplastic elastomer. The surface gloss, scratch resistance (surface strength), and interlayer adhesion of the laminate were evaluated as follows. Surface gloss: Gloss measured at a light incidence angle of 60° in accordance with JISZ-8741 (hereinafter sometimes referred to as "60° gloss") Scratch resistance: Using a scratch tester specified in JISK-5401 , pencil hardness HB, load
Scratch the surface of the molded product under 500g conditions and evaluate the marks using the following criteria. 5: No scratches observed at all 4: Slight scratches left 3: Scratches left but not scratches 2 : Shallow scratches remain 1: Deep scratches remain Interlayer adhesion: A test piece (width 20 mm x length 120 mm) is cut out from the molded product, and both layers are subjected to T-peeling at a peeling speed of 50 mm/min. Example 1 Partial ionomer resin [MI (190°C) 5g/
10mm, carboxyl group content 8mol%, neutralization degree 19%,
Zinc salt type] was melted in an extruder at 200°C in a nitrogen atmosphere, and the thermoplastic elastomer obtained in Reference Example 1 was melted in another extruder in a nitrogen atmosphere.
They were melted at 230°C and both were extruded into the same mold to perform simultaneous two-layer molding. Table 1 shows the evaluation results of the obtained two-layer laminate. From the same table, it can be seen that the surface gloss and scratch resistance of the partial ionomer layer of the product of the present invention are equivalent to those of the normal ionomer (Comparative Example 2), and the interlayer adhesion strength of the product of the present invention is comparable. It can be seen that it far exceeds that of Example 2 and is substantially equivalent when compared with the thermoplastic elastomer (Comparative Example 1). In other words, since both layers in Comparative Example 1 are made of the same thermoplastic elastomer, the interlayer adhesion force should be the maximum, and the value
Interlayer adhesion strength of the present invention product for 3.5Kg/cm
3.3Kg/cm is almost the same. Comparative Example 3 is an evaluation result of a laminate of EVA (ethylene-vinyl acetate copolymer), which has a reputation for excellent interlayer adhesion, and the thermoplastic elastomer in Reference Example 1. This is an example to show that even though the adhesive strength between the adhesive and the adhesive is equivalent to that of the product of the present invention, the scratch resistance may be significantly inferior. Example 2 A two-layer laminate was obtained in the same manner as in Example 1 using the same partially ionomer resin used in Example 1 and the thermoplastic elastomer of Reference Example 2. Table 1 shows the evaluation results of the obtained laminate. From the same table, it can be seen that the 60° gloss and scratch resistance on the glossy side of the laminate are exactly the same as those of ordinary ionomer resin, and the interlayer adhesion strength far exceeds that of Comparative Example 2. I understand. Example 3 A two-layer laminate was obtained using the same partial ionomer resin as used in Example 1 and the thermoplastic elastomer of Reference Example 3 and operating as in Example 1. Table 1 shows the evaluation results of the obtained laminate. From the same table, it can be seen that the 60° gloss and scratch resistance on the glossy side of the laminate are exactly the same as those of ordinary ionomer resin, and the interlayer adhesion strength far exceeds that of Comparative Example 2. I understand. Comparative Example 1 A laminate was obtained by simultaneous two-layer extrusion using the thermoplastic elastomer obtained in Reference Example 1 for both layers. The evaluation results are shown in Table 1. Comparative example 2 Ionomer resin [MI (190°C) 10g/10min,
Carboxy group content 10 mol%, neutralization degree 72%, sodium ion type] was melted in an extruder at 200°C in a nitrogen atmosphere, and the following operations were performed in the same manner as in Example 1 to obtain a two-layer laminate. . Table 1 shows the evaluation results of the obtained laminate. Comparative Example 3 Ethylene-vinyl acetate copolymer [vinyl acetate unit content 14 wt%, density 0.93 g/cc, MI (190°C)
1.4 g/10 min] was melted during extrusion at 200° C. in a nitrogen atmosphere, and the following operations were performed in the same manner as in Example 1 to obtain a two-layer laminate. Table 1 shows the evaluation results of the obtained laminate. 【table】

Claims (1)

【特蚱請求の範囲】  ポリオレフむンず゚チレン・α−オレフむン
共重合䜓゚ラストマヌずからなり、その少くずも
䞀方が郚分的に架橋されおなる熱可塑性゚ラスト
マヌ局ず遊離カルボキシル基を含有する郚分的ア
むオノマヌ暹脂局又は−オレフむン・メタ
アクリル酞共重合暹脂局ずが匷固に接合しおなる
衚面光沢及び耐スクラツチ性の良奜な積局䜓。  ポリオレフむンず゚チレン・α−オレフむン
共重合䜓゚ラストマヌずからなり、その少くずも
䞀方が郚分的に架橋されおなる熱可塑性゚ラスト
マヌず遊離カルボキシル基を含有する郚分的アむ
オノマヌ暹脂局又は−オレフむン・メタア
クリル酞共重合暹脂ずを融解状態においお匷固に
接合させるこずを特城ずする衚面光沢及び耐スク
ラツチ性の良奜な積局䜓の補造方法。
[Scope of Claims] 1. A thermoplastic elastomer layer consisting of a polyolefin and an ethylene/α-olefin copolymer elastomer, at least one of which is partially crosslinked, and a partial ionomer resin layer containing free carboxyl groups. or 1-olefin (meta)
A laminate with good surface gloss and scratch resistance, which is formed by strongly bonding an acrylic acid copolymer resin layer. 2. A thermoplastic elastomer consisting of a polyolefin and an ethylene/α-olefin copolymer elastomer, at least one of which is partially crosslinked, and a partial ionomer resin layer containing a free carboxyl group or a 1-olefin (meth) elastomer. ) A method for producing a laminate with good surface gloss and scratch resistance, characterized by strongly bonding the acrylic acid copolymer resin with an acrylic acid copolymer resin in a molten state.
JP23435083A 1983-12-14 1983-12-14 Laminate having excellent surface gloss and surface hardnessand manufacture thereof Granted JPS60127149A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23435083A JPS60127149A (en) 1983-12-14 1983-12-14 Laminate having excellent surface gloss and surface hardnessand manufacture thereof
US06/680,644 US4656098A (en) 1983-12-14 1984-12-11 Laminate excellent in surface gloss and surface harness, and preparation process and use thereof
CA000469985A CA1226709A (en) 1983-12-14 1984-12-13 Laminate excellent in surface gloss and surface hardness, and preparation process and use thereof
DE8484308689T DE3480696D1 (en) 1983-12-14 1984-12-13 LAMINATE, ITS PRODUCTION AND USE.
EP19840308689 EP0146349B1 (en) 1983-12-14 1984-12-13 Laminate, preparation and use thereof
US07/003,713 US4800130A (en) 1983-12-14 1987-01-15 Laminate excellent in surface gloss and surface hardness, and preparation process and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23435083A JPS60127149A (en) 1983-12-14 1983-12-14 Laminate having excellent surface gloss and surface hardnessand manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60127149A JPS60127149A (en) 1985-07-06
JPH0251387B2 true JPH0251387B2 (en) 1990-11-07

Family

ID=16969616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23435083A Granted JPS60127149A (en) 1983-12-14 1983-12-14 Laminate having excellent surface gloss and surface hardnessand manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60127149A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964671B1 (en) 2005-12-16 2014-03-26 Nichiban Co. Ltd. Tipping film
EP3677640B1 (en) 2017-08-28 2023-12-13 Dow-Mitsui Polychemicals Co., Ltd. Resin composition, molded object, and production method for resin composition

Also Published As

Publication number Publication date
JPS60127149A (en) 1985-07-06

Similar Documents

Publication Publication Date Title
US4656098A (en) Laminate excellent in surface gloss and surface harness, and preparation process and use thereof
JP2582771B2 (en) Thermoplastic elastomer laminated leather
EP0132931B1 (en) Thermoplastic elastomer composition and process for preparation thereof
JPH0252648B2 (en)
JPH02202531A (en) Composition of ionomer
EP0336780B1 (en) Thermoplastic resin or elastomer composition having excellent paint adhesion and laminate comprising layer of said thermoplastic elastomer and polyurethane layer
US4800130A (en) Laminate excellent in surface gloss and surface hardness, and preparation process and use thereof
EP3604422B1 (en) Thermoplastic elastomer composition having excellent molding appearance and molded body thereof
JPH0446296B2 (en)
JPH066656B2 (en) Polymer composition
EP1040162B1 (en) Thermoplastic polymer compositions
JPH0251387B2 (en)
EP0603580A1 (en) Olefinic resin composition
JPS59221347A (en) Thermoplastic elastomer composition having excellent injection weldability
JPH05222214A (en) Waterproof sheet
JP2000143896A (en) Preparation of functionalized elastomer composition
JPS61134250A (en) Laminate having excellent surface gloss and surface hardnessand manufacture and application thereof
JPH0567657B2 (en)
JPH02113045A (en) Thermoplastic elastomer composition
JPH01247440A (en) Thermoplastic elastomer composition
JPS59221346A (en) Thermoplastic elastomer composition having excellent surface gloss and its production
JPH0557297B2 (en)
JPH0542619A (en) Laminate and manufacture thereof
JPH0639555B2 (en) Thermoplastic polymer composition
JP2595302B2 (en) Laminate