JPH0250299B2 - - Google Patents

Info

Publication number
JPH0250299B2
JPH0250299B2 JP59161978A JP16197884A JPH0250299B2 JP H0250299 B2 JPH0250299 B2 JP H0250299B2 JP 59161978 A JP59161978 A JP 59161978A JP 16197884 A JP16197884 A JP 16197884A JP H0250299 B2 JPH0250299 B2 JP H0250299B2
Authority
JP
Japan
Prior art keywords
engine
passage
exhaust
diameter
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59161978A
Other languages
Japanese (ja)
Other versions
JPS6140415A (en
Inventor
Asao Tadokoro
Ikuo Matsuda
Haruo Okimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP16197884A priority Critical patent/JPS6140415A/en
Publication of JPS6140415A publication Critical patent/JPS6140415A/en
Publication of JPH0250299B2 publication Critical patent/JPH0250299B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、吸気を過給するための排気ターボ過
給機を備えるとともに、該排気ターボ過給機のタ
ービンへの排気ガス導入通路の径をエンジン運転
状態に応じて可変にする径可変手段を設けたエン
ジンに関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention includes an exhaust turbo supercharger for supercharging intake air, and the diameter of the exhaust gas introduction passage to the turbine of the exhaust turbo supercharger is This invention relates to an engine equipped with a diameter variable means that varies the diameter according to engine operating conditions.

[従来技術] 従来より、エンジン回転数や負荷等のエンジン
運転状態に応じてタービン上流の排気通路の通路
径を大小2段に切替えるようにし、エンジンの低
速運転時には上記通路径を“小”側にセツトし、
排気ガスを絞り込んでタービンへの排気の流入速
度を高め、タービンを高速回転させることによつ
て過給圧を早期に向上させ、低速域におけるエン
ジンの出力性能の向上を図るようにしたターボ過
給機付エンジンは公知である(実開昭56―161139
号公報参照)。
[Prior art] Conventionally, the diameter of the exhaust passage upstream of the turbine is switched between large and small depending on engine operating conditions such as engine speed and load, and when the engine is operating at low speed, the passage diameter is set to the "small" side. and set it to
Turbocharging improves the engine's output performance in the low speed range by narrowing down the exhaust gas and increasing the speed at which the exhaust gas flows into the turbine, causing the turbine to rotate at high speed to quickly increase boost pressure. The attached engine is publicly known (Utility Model No. 56-161139)
(see publication).

かかる構造のエンジンでは、低速域においてタ
ービン出力の向上により過給効率を向上すること
ができ、それにともなつて、エンジンの出力性能
をある程度向上することができる。
In an engine having such a structure, the turbocharging efficiency can be improved by improving the turbine output in a low speed range, and accordingly, the output performance of the engine can be improved to some extent.

しかしながら、低速域においては、排気ガス導
入通路の径が小さく絞り込まれているため、エン
ジン回転数の増大にともなつてタービン上流側の
排圧は急激に上昇する。このような排圧の上昇は
内部EGR量(燃焼室内にそのまま残留する排気
ガス量)の増加等エンジンの燃焼性を阻害する大
きな要因となる。
However, in a low speed range, the diameter of the exhaust gas introduction passage is narrowed down to a small diameter, so as the engine speed increases, the exhaust pressure on the upstream side of the turbine increases rapidly. Such an increase in exhaust pressure becomes a major factor that inhibits engine combustibility, such as an increase in the amount of internal EGR (the amount of exhaust gas that remains in the combustion chamber).

とりわけ、排気ガス導入通路の通路径が“小”
から“大”に切替えられると、通路径の拡大にと
もなつて排圧は段落的に低下するため、一時にエ
ンジンの燃焼性が良好化されることになり、この
燃焼性の向上にともなつてエンジン出力性能が段
階的に向上することになる。つまり、エンジンの
燃焼を支配する制御装置の要求制御量が異なるた
め、エンジンの出力を有効に引き出すことができ
なかつたり、エンジンの出力性能が通路径の切替
えの前後で連続的に変化せず、不連続に変化し、
切替えの前後でエンジン出力に大きな差が惹起さ
れるといつた問題がある。
In particular, the diameter of the exhaust gas introduction passage is “small”.
When the exhaust pressure is changed from ``high'' to ``large'', the exhaust pressure gradually decreases as the passage diameter increases, and the combustibility of the engine is improved at once. As a result, engine output performance will improve step by step. In other words, because the required control amount of the control device that governs engine combustion is different, it may not be possible to effectively extract the engine output, or the engine output performance may not change continuously before and after switching the passage diameter. changes discontinuously,
There is a problem in that there is a large difference in engine output before and after switching.

[発明の目的] 本発明の目的は、上記の如きタービンへの排気
ガス導入通路の通路径の径可変手段を備えたター
ボ過給機付エンジンにおいて、通路径の切替えの
前後で生ずる排圧特性の変化に有効に対応するこ
とができるターボ過給機付エンジンの制御装置を
提供することである。
[Object of the Invention] The object of the present invention is to improve the exhaust pressure characteristics that occur before and after switching the passage diameter in a turbocharged engine equipped with means for varying the passage diameter of the exhaust gas introduction passage to the turbine as described above. An object of the present invention is to provide a control device for a turbocharged engine that can effectively respond to changes in the engine speed.

[発明の構成] このため、本発明においては、エンジンの燃焼
状態を支配する燃焼状態制御手段のエンジン運転
状態に対する制御量の特性を、排ガス導入通路の
径の大小の切替えに同期して、該切替えに伴なう
燃焼状態の変化を抑制するように変更する制御量
変更手段を設けたことを基本的な特徴としてい
る。
[Structure of the Invention] Therefore, in the present invention, the characteristics of the control amount for the engine operating state of the combustion state control means that governs the combustion state of the engine are changed in synchronization with the change in the diameter of the exhaust gas introduction passage. The basic feature is that a control amount changing means is provided for changing the combustion state so as to suppress changes in the combustion state due to switching.

つまり、本発明では、タービンへの排気ガス導
入通路の径を“小”から“大”へ、或いは“大”
から“小”へ切替える前後において、所謂エンジ
ンセツトを、径の大小の切替えに伴なう燃焼状態
の変化を抑制する方向に切替えるようにしてい
る。この場合、エンジンセツトに含まれる燃焼状
態を支配する要素としては、点火時期の進角量,
EGR特性,燃料量等の諸要素が挙げられ、これ
ら諸要素の燃焼特性を、排圧の変化特性の変化に
応じて各々最適に制御するようにしたものであ
る。
In other words, in the present invention, the diameter of the exhaust gas introduction passage to the turbine can be changed from "small" to "large" or "large".
Before and after switching from "small" to "small", the so-called engine set is switched in a direction to suppress changes in the combustion state due to switching from large to small diameter. In this case, the elements included in the engine set that govern the combustion state are the amount of advance of the ignition timing,
These include various factors such as EGR characteristics and fuel amount, and the combustion characteristics of these various factors are optimally controlled according to changes in exhaust pressure variation characteristics.

[発明の効果] 本発明によれば、排圧変動に伴う燃焼状態の変
化にマツチしたエンジンセツトを設定でき、出力
変動や異常燃焼等を有効に防止することができ
る。
[Effects of the Invention] According to the present invention, it is possible to set an engine set that matches changes in the combustion state due to fluctuations in exhaust pressure, and it is possible to effectively prevent output fluctuations, abnormal combustion, etc.

[実施例] 以下、本発明の実施例について詳細に説明す
る。
[Examples] Examples of the present invention will be described in detail below.

第1図に示すように、エンジン1は、吸気弁
2、排気弁3によつて夫々燃焼室4に対して開閉
される吸気通路5と排気通路6とにまたがつて設
置したターボ過給機7を備えており、排気通路6
を流下する排気ガスによつてタービン9が駆動さ
れると、これに連動してブロア10が駆動され、
ブロア10によつて昇圧した吸気を燃焼室4に供
給することによつて、所謂吸気過給を行なうよう
にした基本構造を有している。
As shown in FIG. 1, an engine 1 includes a turbo supercharger installed across an intake passage 5 and an exhaust passage 6, which are opened and closed with respect to a combustion chamber 4 by an intake valve 2 and an exhaust valve 3, respectively. 7, and an exhaust passage 6
When the turbine 9 is driven by the exhaust gas flowing down, the blower 10 is driven in conjunction with this.
It has a basic structure in which so-called intake air supercharging is performed by supplying intake air whose pressure has been increased by a blower 10 to the combustion chamber 4.

上記吸気通路5のブロア10の上流側には、エ
アクリーナ11が設置され、そ下流には、時々
刻々の吸気量を計量するエアフローメータ12が
介設されている。また、吸気通路5のブロア10
の下流側には、エンジン1の負荷に応じて開閉さ
れるスロツトル弁13が介設されるとともに、そ
の下流には、燃料噴射弁14が臨設されている。
An air cleaner 11 is installed on the upstream side of the blower 10 in the intake passage 5, and an air flow meter 12 for measuring the amount of intake air from moment to moment is interposed downstream thereof. In addition, the blower 10 of the intake passage 5
A throttle valve 13, which is opened and closed according to the load of the engine 1, is provided downstream of the throttle valve 13, and a fuel injection valve 14 is provided downstream of the throttle valve 13.

一方、排気通路6は、タービン9の排気導入口
部において、仕切壁15によつて低速用排気ガス
導入通路16と高速用排気ガス導入通路17とに
仕切られていて、高速用排気ガス導入通路17の
上流側は、本発明にいう径可変手段としての切替
バルブ18によつてオン,オフ的に開閉されるよ
うになつている。また、タービン9下流の排気通
路6には、触媒式排気ガス浄化装置19が介設さ
れている。
On the other hand, the exhaust passage 6 is partitioned into a low-speed exhaust gas introduction passage 16 and a high-speed exhaust gas introduction passage 17 by a partition wall 15 at the exhaust gas introduction port of the turbine 9. The upstream side of the valve 17 is opened and closed on and off by a switching valve 18, which serves as a diameter variable means according to the present invention. Furthermore, a catalytic exhaust gas purification device 19 is interposed in the exhaust passage 6 downstream of the turbine 9.

上記低速用排気ガス導入通路16には、タービ
ン9をバイパスしてタービン9下流の排気通路6
に排気ガスの一部をバイパスさせるウエストゲー
ト通路20が開口されており、該通路20をウエ
ストゲートバルブ21によつて開閉制御すること
により、以下に説明するように、過給圧が予め設
定した最高過給圧を越えて高圧とならないように
過給圧を制御する。
The low-speed exhaust gas introduction passage 16 includes an exhaust passage 6 downstream of the turbine 9 that bypasses the turbine 9.
A waste gate passage 20 is opened to bypass a part of the exhaust gas, and by opening and closing the passage 20 with a waste gate valve 21, the supercharging pressure is set in advance as described below. Control the boost pressure so that it does not exceed the maximum boost pressure.

また、タービン9と触媒式排気ガス浄化装置1
9との間の排気通路9とスロツトル弁13下流の
吸気通路5とは、排気ガス還流通路(以下、単に
EGR通路という。)22によつて連通され、EGR
通路22に介設した排気ガス還流制御バルブ(以
下、FGRバルブという。)23が開かれたときに
は、排気ガスの一部を吸気側に還流させ、よく知
られているように、不活性な還流排気ガスによつ
てエンジン1と最高燃焼温度の過度の上昇を抑制
してNOxの発生を抑制する。
In addition, the turbine 9 and the catalytic exhaust gas purification device 1
The exhaust passage 9 between the exhaust passage 9 and the intake passage 5 downstream of the throttle valve 13 are referred to as exhaust gas recirculation passages (hereinafter simply referred to as exhaust gas recirculation passages).
It's called the EGR passage. ) 22, EGR
When the exhaust gas recirculation control valve (hereinafter referred to as FGR valve) 23 installed in the passage 22 is opened, part of the exhaust gas is recirculated to the intake side, and as is well known, an inert recirculation is performed. The generation of NOx is suppressed by suppressing an excessive rise in the maximum combustion temperature of the engine 1 due to exhaust gas.

上記ウエストゲートバルブ21,切替バルブ1
8,燃焼室4に臨設した点火プラグ24および燃
料噴射弁14等のエンジン1の燃焼性に直接,間
接に関与するものについては、以下に詳述するよ
うに、車両に装備したコンピユータ25によつて
制御を行なう。
Above waste gate valve 21, switching valve 1
8. Items that are directly or indirectly related to the combustibility of the engine 1, such as the spark plug 24 and fuel injection valve 14 installed in the combustion chamber 4, are controlled by the computer 25 installed in the vehicle, as detailed below. control.

このコンピユータ25は、エアフローメータ1
2によつて検出される吸気量、回転数センサ26
によつて検出されるエンジン回転数、スロツトル
弁13下流の吸気通路5に設置した圧力センサ2
7によつて検出される過給圧およびタービン9下
流の排気通路6に設置した圧力センサ28によつ
て検出される排圧を入力データとして、以下の制
御を実行する。
This computer 25 is connected to the air flow meter 1.
2 detected by the intake air amount and rotation speed sensor 26
The engine speed is detected by the pressure sensor 2 installed in the intake passage 5 downstream of the throttle valve 13.
The following control is executed using the supercharging pressure detected by 7 and the exhaust pressure detected by the pressure sensor 28 installed in the exhaust passage 6 downstream of the turbine 9 as input data.

(イ) 切替バルブ18に対する制御 上記切替バルブ18に対する制御は、第2図
に示すように、排気通路6のタービン9下流に
設置した圧力センサ28によつて検出される排
圧Peが予め設定した排圧Peo以下では、切替バ
ルブ18を閉作動し、設定排圧Peoを越えて上
昇すると、切替バルブ18を開作動することに
より行なう。
(B) Control over the switching valve 18 As shown in FIG. When the exhaust pressure Peo is below, the switching valve 18 is closed, and when the exhaust pressure exceeds the set exhaust pressure Peo, the switching valve 18 is opened.

上記の設定排圧Peoは、例えばスロツトル弁
13が全開で、エンジン回転数が3000rpmのと
きの排圧に相当する200mmHgに設定する。
The above-mentioned set exhaust pressure Peo is set to, for example, 200 mmHg, which corresponds to the exhaust pressure when the throttle valve 13 is fully open and the engine speed is 3000 rpm.

第1図に示すように、この切替バルブ18を
開閉作動する切替アクチユエータ29は、切替
バルブ18を設置した部分(タービン9上流)
の排圧を作動源とするダイヤフラム装置であつ
て、排圧導入通路30の途中に介設した電磁作
動の開閉バルブよりなるコントロールバルブ3
1がコンピユータ25からの開作動指令信号に
より開作動されると、ダイヤフラム29aに一
端が固定された作動ロツド29bをコイルスプ
リング29cのバネ力に抗して矢印A方向に押
し、適当なリンク機構32を介して連結された
切替バルブ18を開作動し、高速用排気ガス導
入通路17を開く。つまり、設定排圧Peoに達
するまでは、エンジン1の排気ガスは、専ら、
低速用排気ガス導入通路16によつて絞り込ま
れた状態でタービン9に導入され(以下ではこ
の状態を通路径A/R小の状態という。)、設定
排圧Peoを越えて排圧Peが上昇すると、切替バ
ルブ18が高速用排気ガス導入通路17を開い
て、以後、高速用、高速用の両方の排気ガス導
入通路16,17を通じて排気ガスがタービン
9に導入されることになり、全体の通路径が拡
大されることになる(以下では、この状態を通
路径A/R大の状態という)。
As shown in FIG. 1, a switching actuator 29 that opens and closes this switching valve 18 is located at a portion where the switching valve 18 is installed (upstream of the turbine 9).
The control valve 3 is a diaphragm device whose operation source is the exhaust pressure of
1 is opened by an opening command signal from the computer 25, the actuating rod 29b, one end of which is fixed to the diaphragm 29a, is pushed in the direction of arrow A against the spring force of the coil spring 29c, and an appropriate link mechanism 32 The switching valve 18 connected through the switch valve 18 is opened to open the high-speed exhaust gas introduction passage 17. In other words, until the set exhaust pressure Peo is reached, the exhaust gas from engine 1 is exclusively
The exhaust gas is introduced into the turbine 9 in a narrowed state by the low-speed exhaust gas introduction passage 16 (hereinafter, this state is referred to as a state with a small passage diameter A/R), and the exhaust pressure Pe increases beyond the set exhaust pressure Peo. Then, the switching valve 18 opens the high-speed exhaust gas introduction passage 17, and from then on, the exhaust gas is introduced into the turbine 9 through both the high-speed and high-speed exhaust gas introduction passages 16, 17. The passage diameter will be enlarged (hereinafter, this state will be referred to as a state where the passage diameter A/R is large).

かかる切替バルブ18に対する制御に応じ
て、第3図に実線Peで示すように、排圧Peは、
低速域においてエンジン回転数rpmの増大とと
もに急速に上昇し、切替点SPで一段階低下し
た後、再び低下した排圧からエンジン回転数の
増大に伴つて増加するといつた変化特性を示
す。なお、図中点線Pe′は、切替バルブ18を
設けない場合(つまり、通路径A/R大の場
合)の排圧上昇特性を示す。
Depending on the control of the switching valve 18, the exhaust pressure Pe becomes as shown by the solid line Pe in FIG.
In the low speed range, the exhaust pressure increases rapidly as the engine speed increases, drops by one step at the switching point SP, and then decreases again to increase as the engine speed increases. Note that the dotted line Pe' in the figure shows the exhaust pressure increase characteristic when the switching valve 18 is not provided (that is, when the passage diameter A/R is large).

(ロ) 過給圧の制御 過給圧の制御、特に最高過給圧の制御は、前
述したウエストゲートバルブ21の開閉制御に
よつて行なう。
(b) Control of supercharging pressure The control of supercharging pressure, especially the maximum supercharging pressure, is performed by controlling the opening and closing of the waste gate valve 21 described above.

このウエストゲートバルブ21に対しては、
ブロア10の吐出側に圧力取出口を有する過給
圧導入通路33によつて導入される過給圧を作
動源とするダイヤフラム装置よりなるウエスト
ゲート・アクチユエータ34を設けるととも
に、過給圧導入通路33の途中から分岐してブ
ロア10の上流側の吸気通路5に連通するリリ
ーフ通路35を設け、このリリーフ通路35を
開閉する電磁作動のコントロールバルブ36を
設ける。
For this waste gate valve 21,
A wastegate actuator 34 is provided on the discharge side of the blower 10 and is made of a diaphragm device whose operation source is the supercharging pressure introduced by the supercharging pressure introduction passage 33 having a pressure outlet. A relief passage 35 is provided which branches off from the middle and communicates with the intake passage 5 on the upstream side of the blower 10, and an electromagnetically actuated control valve 36 for opening and closing this relief passage 35 is provided.

コンピユータ25は、吸気通路5下流に設置
した圧力センサ27によつて検出される過給圧
Pが、第3図に示すように、最高過給圧Pmax
に達したときに、コントロールバルブ36に開
作動信号を出力してリリーフ通路35を開通さ
せて過給圧をブロア10の上流側にリリーフさ
せる。その結果、ウエストゲート・アクチユエ
ータ34には過給圧が作用しなくなり、それま
で閉状態に保持していたウエストゲートバルブ
21を開作動し、タービン9をバイパスさせて
排気ガスの一部をタービン9下流に直接に導
く。かかる制御の結果、最高過給圧Pmaxを越
えて過給圧が上昇することのないように、過給
圧が制御される。
The computer 25 determines that the supercharging pressure P detected by the pressure sensor 27 installed downstream of the intake passage 5 is the maximum supercharging pressure Pmax
When it reaches, an opening operation signal is output to the control valve 36 to open the relief passage 35 and relieve the supercharging pressure to the upstream side of the blower 10. As a result, supercharging pressure no longer acts on the wastegate actuator 34, and the wastegate valve 21, which had been kept closed, is opened, bypassing the turbine 9, and directing some of the exhaust gas to the turbine 9. lead directly downstream. As a result of such control, the boost pressure is controlled so that the boost pressure does not increase beyond the maximum boost pressure Pmax.

この場合、切替バルブ18は低速域で閉じら
れているので、過給圧Pは低速域においても、
エンジン回転数の増大とともに早期に上昇し
て、切替バルブ18の切替点SPより十分以前
に最高過給圧Pmaxに達するので、低速域にお
ける過給の実を上げることができる。
In this case, since the switching valve 18 is closed in the low speed range, the supercharging pressure P remains constant even in the low speed range.
As the engine speed increases, the pressure increases quickly and reaches the maximum supercharging pressure Pmax well before the switching point SP of the switching valve 18, so that supercharging can be effectively achieved in the low speed range.

なお、第3図には、参考のため、切替バルブ
18を設けない場合、つまり通路径A/R大の
場合の過給圧の上昇特性を点線P′で示す。
For reference, in FIG. 3, the boost pressure increase characteristic when the switching valve 18 is not provided, that is, when the passage diameter A/R is large, is shown by a dotted line P'.

(ハ) 進角量の制御 点火プラグ24に対する点火進角制御は、基
本的には、第4図に示す制御特性によつて行な
う。
(C) Control of Advance Amount Ignition advance control for the spark plug 24 is basically performed according to the control characteristics shown in FIG. 4.

この点火進角制御の特徴は、第4図に示す如
く、切替点SP以前の低速域では、通路径A/
R大の場合の進角特性Tθ′に比して、若干小さ
い傾きを有する進角特性Tθで制御することに
ある。これは、切替バルブ18を設けて低速域
で排気ガス導入通路16,17の径を絞つた場
合には、第3図で説明したように、排圧Peが
高くなるために、燃焼室4内における内圧が高
くなつてノツキングが生じやすくなるので、進
角量を抑えることにより、ノツキングを防止す
るためである。
The feature of this ignition advance control is that, as shown in Fig. 4, in the low speed range before the switching point SP, the passage diameter A/
The aim is to control with a lead angle characteristic Tθ having a slightly smaller slope than the lead angle characteristic Tθ′ in the case of large R. This is because when the switching valve 18 is provided to reduce the diameter of the exhaust gas introduction passages 16 and 17 in the low speed range, the exhaust pressure Pe increases as explained in FIG. This is to prevent knocking by suppressing the amount of advance since the internal pressure in the engine increases and knocking becomes more likely to occur.

そして、切替点SPでは、点火進角量を一段
上昇させ、それ以降は、それまでの傾きより大
きい傾きの特性ラインにより、エンジン回転数
の増加に応じて点火進角量を増加する通常の進
角制御に移行する。
Then, at the switching point SP, the ignition advance amount is increased by one step, and from then on, the ignition advance amount is increased by a characteristic line with a slope larger than the previous one, and the ignition advance amount is increased according to the increase in engine speed. Shift to angle control.

(ニ) EGR制御 EGR制御によるEGR特性は、第5図に示す。
第5図に明らかように、EGR量は、エンジン
回転数と負荷とに応じて可変制御されるが、切
替点SP以前の低速域(通路径A/R小)では、
切替点SP以降の高速域(通路径A/R大)に
比して一段低いEGR特性に設定されている。
これは、タービン9上流の排圧が低速域で早期
に上昇すると、それだけ低速域における内部
EGR量(即ち、燃焼室4から排出されずにそ
のまま残留する排気ガス量)が多くなるので、
切替バルブ18を設けていない通常の排圧時と
同様のEGR制御を行なうと、EGRの絶対量が
過剰となつてエンジン1の燃焼性が極端に悪化
するためである。
(d) EGR control The EGR characteristics by EGR control are shown in Figure 5.
As is clear from Fig. 5, the EGR amount is variably controlled according to the engine speed and load, but in the low speed range (passage diameter A/R small) before the switching point SP,
The EGR characteristics are set to be one step lower than the high speed range (large passage diameter A/R) after switching point SP.
This is because the earlier the exhaust pressure upstream of the turbine 9 rises in the low speed range, the more the internal pressure in the low speed range increases.
Since the amount of EGR (that is, the amount of exhaust gas that remains without being exhausted from the combustion chamber 4) increases,
This is because if EGR control is performed in the same way as during normal exhaust pressure without the switching valve 18, the absolute amount of EGR will become excessive and the combustibility of the engine 1 will be extremely deteriorated.

以上のEGR制御は、コンピユータ25によ
るEGRバルブ23の駆動制御によつて行なわ
れる。
The above EGR control is performed by controlling the drive of the EGR valve 23 by the computer 25.

(ホ) 燃料制御 コンピユータ25による燃料噴射弁14に対
する制御は、エアフローメータ12によつて検
出される吸気量および回転数センサ26によつ
て検出されるエンジン回転数を基本入力情報と
して、例えば、第6図に示す如きマツプ制御に
よつて行なう。
(E) Fuel control The computer 25 controls the fuel injection valve 14 using, for example, the intake air amount detected by the air flow meter 12 and the engine rotation speed detected by the rotation speed sensor 26 as basic input information. This is done by map control as shown in FIG.

第6図に示すように、全運転領域は、アイド
ルゾーンI―D,ロードラインR.L以下の減速
ゾーン(燃料カツト領域)および、空燃比を理
論空燃比付近の設定空燃比にフイードバツク制
御するF/Bゾーンと、低回転増量ゾーンCと
切替点SP以前の中,高負荷域における増量ゾ
ーンAと、切替点SP以降の高負荷域での増量
ゾーンBの計6つのゾーンに区分けされてい
る。
As shown in Fig. 6, the entire operating range includes an idle zone ID, a deceleration zone below the load line RL (fuel cut range), and an F/F/200 range that performs feedback control of the air-fuel ratio to a set air-fuel ratio near the stoichiometric air-fuel ratio. It is divided into six zones in total: zone B, low rotation increase zone C, increase zone A in the medium and high load ranges before switching point SP, and increase zone B in the high load range after switching point SP.

上記低回転増量ゾーンCにおける燃料増量率
は、低回転時における燃焼性の悪さを補償する
ことができる値に設定する一方、高負荷域での
増量ゾーンBでは、エンジン1の高出力を保証
することができる増量率に設定する。
The fuel increase rate in the low-speed increase zone C is set to a value that can compensate for poor combustibility at low speeds, while in the increase zone B in the high-load range, high output of the engine 1 is guaranteed. Set the rate of increase that is possible.

本実施例における燃料制御の特徴は、切替点
SP以前の中,高負荷域における増量ゾーンAの
中負荷域への拡大にある。その拡大領域を第6図
にA′で示す。
The characteristics of the fuel control in this embodiment are as follows:
This is due to the expansion of zone A in the medium and high load range before SP to the medium load range. The enlarged area is shown as A' in FIG.

この増量ゾーンAの中負荷側への拡大は、前述
した切替点SP以前における排圧Peの急激な上昇
を考慮したためである。つまり、比較的排圧の高
い条件下では、内部EGRの増大等、燃焼性の阻
害要因が存在しているため、中負荷域において必
要な出力性能が確保し難いので、これを救済する
ためである。
This expansion of the increase zone A toward the medium load side was done in consideration of the sudden increase in exhaust pressure Pe before the switching point SP mentioned above. In other words, under relatively high exhaust pressure conditions, there are factors that inhibit combustibility, such as an increase in internal EGR, making it difficult to secure the necessary output performance in the medium load range. be.

なお、以上の実施例では、エンジン9への排気
ガス導入通路を低速用,高速用の2つの排気ガス
導入通路16,17に分けて、高速用排気ガス導
入通路17を切替バルブ18によつて開閉するこ
とによつて通路径を切替えるようにしたが、本発
明は、比較的小径の排気ガス導入通路を有する低
速用ターボ過給機と、比較的大径の排気ガス導入
通路を有する高速用ターボ過給機とを備え、低速
時においては低速用ターボ過給機を専用するよう
にし、高速時には高速用ターボ過給機を専用する
か両ターボ過給機を併用するようにした型式のエ
ンジンにも適用しうることはいうまでもない。
In the above embodiment, the exhaust gas introduction passage to the engine 9 is divided into two exhaust gas introduction passages 16 and 17 for low speed and high speed, and the high speed exhaust gas introduction passage 17 is controlled by the switching valve 18. Although the passage diameter is changed by opening and closing, the present invention provides a low-speed turbo supercharger having a relatively small-diameter exhaust gas introduction passage and a high-speed turbo supercharger having a relatively large-diameter exhaust gas introduction passage. A type of engine equipped with a turbo supercharger, in which the low speed turbo supercharger is used exclusively at low speeds, and the high speed turbo supercharger is dedicated or both turbo superchargers are used at high speeds. Needless to say, it can also be applied to

また、例えば、燃料制御方式にしても、第6図
について説明した所謂マツプ制御方式に限定され
るものではない。
Further, for example, the fuel control method is not limited to the so-called map control method described with reference to FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例にかかるエンジンのシ
ステム構成図、第2図は切替バルブの開閉制御方
式を示すグラフ、第3図は過給圧の制御特性と排
圧の変化特性の両方を示すグラフ、第4図,第5
図,第6図は各々進角量,EGR量,燃料量の制
御特性を示す各グラフである。 1…エンジン、5…吸気通路、6…排気通路、
7…ターボ過給機、9…タービン、10…ブロ
ア、14…燃料噴射弁、16,17…低速用,高
速用排気ガス導入通路、18…切替バルブ、23
…EGRバルブ、24…点火プラグ、25…コン
ピユータ。
Fig. 1 is a system configuration diagram of an engine according to an embodiment of the present invention, Fig. 2 is a graph showing the switching valve opening/closing control method, and Fig. 3 shows both the control characteristics of boost pressure and the change characteristics of exhaust pressure. Graphs shown in Figures 4 and 5
6 are graphs showing the control characteristics of the advance angle amount, EGR amount, and fuel amount, respectively. 1...Engine, 5...Intake passage, 6...Exhaust passage,
7...Turbocharger, 9...Turbine, 10...Blower, 14...Fuel injection valve, 16, 17...Low speed, high speed exhaust gas introduction passage, 18...Switching valve, 23
...EGR valve, 24...spark plug, 25...computer.

Claims (1)

【特許請求の範囲】 1 吸気を過給するための排気ターボ過給機を備
えるとともに、該排気ターボ過給機のタービンへ
の排気ガス導入通路の径をエンジン運転状態に応
じて可変にする径可変手段を設けたエンジンにお
いて、 エンジンに供給される混合気の燃焼状態を支配
する燃焼状態制御手段のエンジン運転状態に対す
る制御量の特性を上記径可変手段による径の大小
の変更に切替えして該切替えに伴なう燃焼状態の
変化を抑制するように変更する制御量変更手段を
設けたことを特徴とする排気ターボ過給機付エン
ジンの制御装置。
[Claims] 1. An exhaust turbo supercharger for supercharging intake air, and a diameter that allows the diameter of the exhaust gas introduction passage to the turbine of the exhaust turbo supercharger to be varied according to engine operating conditions. In an engine provided with a variable means, the characteristic of the control amount for the engine operating state of the combustion state control means that governs the combustion state of the air-fuel mixture supplied to the engine is switched to change the size of the diameter by the diameter variable means. 1. A control device for an engine with an exhaust turbo supercharger, characterized in that a control amount changing means is provided for changing the combustion state so as to suppress a change in combustion state due to switching.
JP16197884A 1984-07-31 1984-07-31 Control device for engine with exhaust turbo supercharger Granted JPS6140415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16197884A JPS6140415A (en) 1984-07-31 1984-07-31 Control device for engine with exhaust turbo supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16197884A JPS6140415A (en) 1984-07-31 1984-07-31 Control device for engine with exhaust turbo supercharger

Publications (2)

Publication Number Publication Date
JPS6140415A JPS6140415A (en) 1986-02-26
JPH0250299B2 true JPH0250299B2 (en) 1990-11-01

Family

ID=15745696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16197884A Granted JPS6140415A (en) 1984-07-31 1984-07-31 Control device for engine with exhaust turbo supercharger

Country Status (1)

Country Link
JP (1) JPS6140415A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394024A (en) * 1986-10-07 1988-04-25 Mazda Motor Corp Output power control device for engine
JPS63289252A (en) * 1987-05-20 1988-11-25 Mazda Motor Corp Exhaust gas recirculation device for engine with supercharger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5675922A (en) * 1979-10-30 1981-06-23 Maschf Augsburg Nuernberg Ag Method for operating selffignition type internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5675922A (en) * 1979-10-30 1981-06-23 Maschf Augsburg Nuernberg Ag Method for operating selffignition type internal combustion engine

Also Published As

Publication number Publication date
JPS6140415A (en) 1986-02-26

Similar Documents

Publication Publication Date Title
US5261236A (en) Turbocharged engine control system
US6314735B1 (en) Control of exhaust temperature in lean burn engines
JPH0520566B2 (en)
JP3341087B2 (en) Exhaust recirculation system for turbocharged engines
JPH07293262A (en) Sequential supercharger for diesel engine
JP3203445B2 (en) Exhaust gas recirculation system for turbocharged engine
JPH0250299B2 (en)
JP7296841B2 (en) engine controller
JPH01104928A (en) Intake device for engine
JPS6143220A (en) Control device of engine with exhaust turbosupercharger
JPH0346653B2 (en)
JP2605053B2 (en) Engine boost pressure control device
JPH03202636A (en) Engine with turbo-supercharger
JPH0324571B2 (en)
JPS58170827A (en) Supercharging device for internal-combustion engine
JPH0574696B2 (en)
JPS5848716A (en) Controller of turbo charger for engine
JPS61160523A (en) Turbo supercharged engine equipped with intercooler
JPH055223Y2 (en)
JPS6189929A (en) Intake device of supercharged engine
JPS6161918A (en) Air intake device of internal-combustion engine
JPH04370369A (en) Ignition timing control device for engine with supercharger
JPH09112285A (en) Boost pressure control device for internal combustion engine
JPH0415954Y2 (en)
JP4395975B2 (en) Engine supercharging pressure control device