JPH0250143B2 - - Google Patents

Info

Publication number
JPH0250143B2
JPH0250143B2 JP362582A JP362582A JPH0250143B2 JP H0250143 B2 JPH0250143 B2 JP H0250143B2 JP 362582 A JP362582 A JP 362582A JP 362582 A JP362582 A JP 362582A JP H0250143 B2 JPH0250143 B2 JP H0250143B2
Authority
JP
Japan
Prior art keywords
parts
silicone resin
potassium titanate
binder
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP362582A
Other languages
Japanese (ja)
Other versions
JPS58120677A (en
Inventor
Takuro Morimoto
Kihachiro Nishiuchi
Misao Izumi
Noryoshi Ejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP362582A priority Critical patent/JPS58120677A/en
Priority to GB8300277A priority patent/GB2118201B/en
Priority to US06/455,492 priority patent/US4496469A/en
Priority to CA000418940A priority patent/CA1202439A/en
Priority to DE3300684A priority patent/DE3300684C2/en
Priority to FR8300380A priority patent/FR2519641B1/en
Priority to KR1019830000086A priority patent/KR860001648B1/en
Publication of JPS58120677A publication Critical patent/JPS58120677A/en
Publication of JPH0250143B2 publication Critical patent/JPH0250143B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高温断熱性の優れた断熱塗料に関する
ものである。 断熱性素材は省資源、省エネルギーの観点から
重要な素材であり、特に暖房器機、廚房器機、加
熱熱源、高温反応塔、更には熱輸送に用いられる
貯熱器、配管等の器壁は高温雰囲気下にあり、こ
れら器壁からの熱放散の防止、過熱事故の防止は
省エネルギー、労働安全衛生更には防災面に於て
重要な課題であり、これらに適用出来る高温耐熱
性の優れた断熱材の開発が望まれていた。斯かる
断熱材にあつては200〜400℃の雰囲気下に耐える
耐熱性が必要であるため、有機質の適用は困難で
あるとされており、無機質の断熱材が種々開発さ
れている。 断熱材としての観点からみると、有機質断熱材
にあつてはポリウレタン発泡体、ポリスチレン発
泡体、ポリエチレン発泡体等独立気泡構造を有す
る発泡体が種々開発され、断熱素材として好適で
あるとされてはいるが、長期間使用時の耐熱温度
は150℃以下である。 他方、無機質断熱材にあつては珪酸カルシウ
ム、珪酸アルカリ等の無機質結合剤にアスベスト
等の繊維質を充填、一部発泡構造を有する断熱成
形品、又は単にガラス繊維、アスベスト、ロツク
ウール等無機質繊維を用い、これらを器壁に接触
被覆した断熱方法が採用されているが、複雑な形
状への適用が困難であり、断熱工事が現場施工に
なりやすく、設計通りの施工が完全に実施されて
いることの確認を困難にしている。更にこれらの
断熱工法は器壁と断熱材の間に空気が存在し、こ
の微小空気層を活用した断熱効果を利用したもの
であり、高温側熱源に接しない断熱材外面の温度
を低くする効果はあるが、高温側熱源から余分な
熱量を断熱材が吸収しエネルギー損失量が大き
い。又これら従来の無機質断熱材の大きな欠点は
保護すべき高温側熱源の器壁の外面にしか適用出
来ない点にあり、器壁素材の熱伝導による熱損失
は防止出来ず、器壁内面を被覆し、器壁素材の熱
伝導による熱損失を低減する断熱塗料の開発が望
まれていた。しかし、高温耐熱性の優れた塗料自
体、特に結合剤の開発が塗料業界に於ても大きな
課題であり、斯かる結合剤としては無機質系結合
剤、例えば珪酸質結合剤、リン酸質結合剤がある
が、金属との接着、耐屈曲性、耐水性、耐薬品性
が不充分であり、一方有機質結合剤は上記のよう
に常用断熱温度が150℃以下のものが多いという
問題点があつた。 有機質結合剤としてオルガノポリシロキサン系
結合剤は200℃以上の高温断熱性の優れた結合剤
であることは知られており、耐熱塗料として広く
用いられているものではあるが、適用条件に種々
制限があり、高温耐熱塗料として活用されている
のみで、高温耐熱性が優れ且つ断熱性をも兼ね備
えた断熱塗料の開発には至らなかつた。 本発明者は先にチタン酸アルカリ金属、特にチ
タン酸カリを活用した断熱被覆材として太陽熱遮
断被覆組成物、耐火断熱被覆物に関する発明を完
成し、特許出願中であるが省資源、省エネルギー
の観点から高温耐熱性に優れ、必要により器壁内
面にも適用可能な断熱塗料の開発を計るに際し、
塗料の構成、断熱特性、耐熱性、接着性等、実際
に開発にあたつた者でなければ判らない改良点が
存在することを知り得て鋭意研究の結果、本発明
を完成するに至つた。 本発明はチタン酸カリ、シリコン樹脂系結合剤
及び必要に応じ高密度充填剤、高屈折率充填剤、
板状鉱物質充填剤及びその他の通常の充填剤から
選ばれた無機質充填剤の1種又は2種以上、着色
剤、有機溶媒を配合した高温断熱塗料に係る。 本発明のチタン酸カリとはK2O・nTiO2(但し
nは正の実数)で示される化合物で、繊維状結
晶、結晶粉末、溶融物の破砕品又はこれらの粉末
等である。尚チタン酸カリは一般にK2O・
4TiO2、又はK2O・6TiO2の組成式で示される結
晶をつくりやすく、これらからなる結晶の屈折率
は2.4前後である。本発明にあつては、高屈折率
を示す繊維状結晶のチタン酸カリが特に好適であ
つた。又チタン酸カリの結晶を塩酸等の無機酸で
処理後、水洗、乾燥することにより、チタン酸カ
リ結晶からカリウム原子が一部抽出されたものが
得られる。斯かる方法でカリウム原子が抽出され
たチタン酸カリ結晶は組成式においてK2O・
4TiO2又はK2O・6TiO2(それぞれ4TK、6TKと
略す)を示さずカリウム成分の少ないチタン酸カ
リ結晶(LKTと略す)が得られる。 チタン酸カリを一般に常用されている有機質結
合剤中に分散させる場合はいずれの形態でも良い
が、オルガノポリシロキサン系結合剤中にチタン
酸カリを分散させて塗料として用いる場合、
4TK、6TK及びLKTいずれを用いても断熱塗料
を得ることが出来るが、350℃以上の耐熱が必要
な耐熱塗料をオルガノポリシロキサン結合剤を用
いた耐熱塗料にあつてはLKTを用いるとより塗
膜物性の優れたものが得られた。 本発明のチタン酸カリは上述のように繊維質結
晶及び結晶粉末、溶融物の破砕品又は粉末をその
まま又は酸処理してカリウム原子を一部抽出した
もの及びこれらを焼鈍酸化したもののいずれでも
良いが、更に好適なものとするためには、結晶を
融点(約1300℃)近くまで再加熱後100℃/hr以
下の冷却速度で室温まで徐冷することにより、結
晶内の熱歪みの消失が計れ、本発明の断熱塗料に
用いた時特に好適であつた。 本発明のシリコン樹脂系結合剤とは、オルガノ
ポリシロキサン系結合剤、ポリアクリルオキシア
ルキルアルコキシシラン系結合剤、ポリビニルシ
ラン系結合剤等であり、オルガノポリシロキサン
系結合剤とは、水素、ビニル基、アリル基、ヒド
ロキシル基、炭素数1〜4のアルコキシ基、アミ
ノ基、メルカプト基等の置換基が少なくとも1個
以上含まれているポリジメチルシロキサン、ポリ
ジフエニルシロキサン、ポリメチルフエニルシロ
キサン及びこれらの共重合体等のストレートシリ
コン樹脂、ストレートシリコン樹脂とエポキシ樹
脂を反応させたエポキシ変性シリコン樹脂、スト
レートシリコン樹脂と多塩基酸及び多価アルコー
ル縮合物からなるポリエステル変性シリコン樹
脂、ストレートシリコン樹脂と脂肪酸、多塩基酸
及び多価アルコールの縮合物又はストレートシリ
コン樹脂とアツキツド樹脂を反応させたアツキツ
ド変性シリコーン樹脂、ストレートシリコン樹脂
とメラミンホルムアルデヒド樹脂、尿素ホルムア
ルデヒド樹脂、ベンゾグアナミン、アセトグアナ
ミン等とホルムアルデヒドを反応させたグアナミ
ン樹脂、及びフエノールホルムアルデヒド樹脂等
のアミノ樹脂とを反応させたアミノ樹脂変性シリ
コン樹脂等のストレートシリコン樹脂及び変性シ
リコン樹脂の一種又は二種以上の混合物からなる
シリコン樹脂系結合剤であり、ポリジメチルシロ
キサン系結合剤にあつてはCH3/Si比が1.2以上、
1.8以下、特に1.3〜1.7のものが好適であり、ポリ
ジフエニルシロキサン、ポリメチルフエニルシロ
キサン及びこれらの共重合体ポリジメチルシロキ
サンとポリジフエニルシロキサン又は/及びポリ
メチルフエニルシロキサンとの共重合体等ののフ
エニル基含有ポリシロキサン化合物は、これら単
独でも本発明の結合剤として供し得るが、エポキ
シ変性シリコン樹脂、ポリエステル変性シリコン
樹脂、アルキツド変性シリコン樹脂及びアミノ樹
脂変性シリコン樹脂等の変性シリコン樹脂の一種
又は二種以上の混合物を結合材として用いると優
れた耐熱接着強度、特に200〜300℃の耐熱接着強
度が向上した。尚変性シリコン樹脂又は変性シリ
コン樹脂とストレートシリコン樹脂の混合物を結
合剤として用いる場合にはポリシロキサン成分が
20重量%以上、好適には30重量%以上結合剤成分
中に含まれていることが好ましく、ポリシロキサ
ン成分20重量%以上では200℃以上においても耐
熱性が極めて優れている。本発明のオルガノポリ
シロキサン系結合剤にあつては一般に塗料用バイ
ンダーとして常用されているエポキシ樹脂、ポリ
エステル樹脂、アルキツド樹脂、アミノ樹脂、ア
クリル樹脂、更にはエチレン−酢酸ビニル共重合
体等を結合剤中、ポリシロキサン成分が20重量%
以下にならない範囲であれば、本発明のオルガノ
ポリシロキサン系結合剤と併用出来る。 本発明で用いられるポリアクリルオキシアルキ
ルアルコキシシラン系結合剤としては、一般式 (Rは炭素数1〜10の一価炭化水素基、R′は水
素又は炭素数1〜12の一価炭化水素基、R″は炭
素数2〜10の二価炭化水素基であり、nは1〜3
の整数である)で表わされるアクリルオキシアル
キルアルコキシシラン化合物の単独又はこれらの
アクリルオキシアルキルアルコキシシラン化合物
と一般式
The present invention relates to a heat-insulating paint with excellent high-temperature heat insulation properties. Insulating materials are important materials from the viewpoint of resource and energy conservation, and in particular, the walls of heaters, heating equipment, heating heat sources, high-temperature reaction towers, and even heat storage devices and piping used for heat transport are exposed to high-temperature atmospheres. Preventing heat dissipation from the walls of these vessels and preventing overheating accidents are important issues in terms of energy conservation, occupational safety and health, and disaster prevention. development was desired. Such heat insulating materials must have heat resistance that can withstand an atmosphere of 200 to 400°C, so it is considered difficult to use organic materials, and various inorganic heat insulating materials have been developed. From the viewpoint of heat insulating materials, various types of organic heat insulating materials with closed cell structures such as polyurethane foam, polystyrene foam, and polyethylene foam have been developed, and are considered suitable as heat insulating materials. However, the heat resistance temperature during long-term use is 150℃ or less. On the other hand, inorganic heat insulating materials include inorganic binders such as calcium silicate and alkali silicate filled with fibers such as asbestos, insulating molded products with a partially foamed structure, or simply inorganic fibers such as glass fiber, asbestos, and rock wool. An insulation method has been adopted in which these materials are used and coated on the vessel wall, but it is difficult to apply to complex shapes, and insulation work tends to be carried out on-site, and construction is not completely carried out as designed. This makes it difficult to confirm. Furthermore, these insulation methods utilize the insulation effect of the presence of air between the vessel wall and the insulation material, and utilize this micro air layer, which has the effect of lowering the temperature of the outside surface of the insulation material that is not in contact with the high-temperature heat source. However, the insulation material absorbs excess heat from the high-temperature heat source, resulting in a large amount of energy loss. A major drawback of these conventional inorganic insulation materials is that they can only be applied to the outer surface of the vessel wall of the high-temperature heat source to be protected, and cannot prevent heat loss due to heat conduction through the vessel wall material. However, there was a desire to develop a heat insulating paint that would reduce heat loss due to heat conduction through the wall material. However, the development of paints with excellent high-temperature resistance, especially binders, is a major challenge in the paint industry. However, the adhesion to metals, bending resistance, water resistance, and chemical resistance are insufficient, while organic binders have the problem that their normal insulation temperature is often below 150℃ as mentioned above. Ta. As an organic binder, organopolysiloxane binders are known to have excellent heat insulation properties at temperatures above 200°C, and although they are widely used as heat-resistant paints, there are various limitations in the application conditions. However, it has only been used as a high-temperature heat-resistant paint, and it has not been possible to develop a heat-insulating paint that has both excellent high-temperature heat resistance and heat insulation properties. The present inventor has previously completed an invention relating to a solar heat shielding coating composition and a fireproof heat insulating coating as a heat insulating coating material utilizing alkali metal titanate, particularly potassium titanate, and the invention is pending for patent application, but from the viewpoint of resource saving and energy saving. When developing a heat-insulating paint that has excellent high-temperature resistance and can be applied to the inner surface of the vessel wall if necessary,
After learning that there were improvements that could be made in the composition of the paint, heat insulation properties, heat resistance, adhesiveness, etc. that only those who were actually involved in the development could understand, they conducted extensive research and were able to complete the present invention. . The present invention comprises potassium titanate, a silicone resin binder, and if necessary, a high density filler, a high refractive index filler,
The present invention relates to a high-temperature insulation paint containing one or more inorganic fillers selected from platy mineral fillers and other ordinary fillers, a colorant, and an organic solvent. The potassium titanate of the present invention is a compound represented by K 2 O.nTiO 2 (where n is a positive real number), and is a fibrous crystal, a crystal powder, a crushed product of a melt, or a powder thereof. Potassium titanate is generally K 2 O.
Crystals represented by the compositional formula of 4TiO 2 or K 2 O.6TiO 2 are easily produced, and the refractive index of crystals made of these is around 2.4. In the present invention, fibrous crystalline potassium titanate having a high refractive index was particularly suitable. In addition, by treating potassium titanate crystals with an inorganic acid such as hydrochloric acid, washing with water, and drying, potassium titanate crystals with some potassium atoms extracted can be obtained. Potassium titanate crystals from which potassium atoms have been extracted by this method have a composition formula of K 2 O.
Potassium titanate crystals (abbreviated as LKT) that do not exhibit 4TiO 2 or K 2 O/6TiO 2 (abbreviated as 4TK and 6TK, respectively) and have a low potassium component are obtained. When potassium titanate is dispersed in a commonly used organic binder, any form may be used, but when potassium titanate is dispersed in an organopolysiloxane binder and used as a paint,
Insulating paints can be obtained using any of 4TK, 6TK, and LKT, but LKT is more effective when it comes to heat-resistant paints that require heat resistance of 350°C or higher that use an organopolysiloxane binder. A film with excellent physical properties was obtained. As mentioned above, the potassium titanate of the present invention may be fibrous crystals and crystal powders, crushed melt products or powders as they are, those obtained by acid treatment to partially extract potassium atoms, or those obtained by annealing and oxidation. However, in order to make it even more suitable, the thermal strain within the crystal disappears by reheating the crystal to near its melting point (approximately 1300°C) and then slowly cooling it to room temperature at a cooling rate of 100°C/hr or less. As a result, it was particularly suitable when used in the heat insulating coating of the present invention. The silicone resin binder of the present invention includes an organopolysiloxane binder, a polyacryloxyalkylalkoxysilane binder, a polyvinylsilane binder, and the like. , polydimethylsiloxane, polydiphenylsiloxane, polymethylphenylsiloxane containing at least one substituent such as an allyl group, a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, an amino group, a mercapto group, and the like. Straight silicone resin such as a copolymer, epoxy-modified silicone resin made by reacting straight silicone resin with epoxy resin, polyester-modified silicone resin made of straight silicone resin, polybasic acid and polyhydric alcohol condensate, straight silicone resin and fatty acid. , a condensate of a polybasic acid and a polyhydric alcohol, or a thick modified silicone resin made by reacting a straight silicone resin with a thick resin, a straight silicone resin and a melamine formaldehyde resin, a urea formaldehyde resin, a benzoguanamine, acetoguanamine, etc., and formaldehyde reacted. A silicone resin binder made of one or a mixture of two or more straight silicone resins and modified silicone resins, such as amino resin-modified silicone resins made by reacting guanamine resins and amino resins such as phenol formaldehyde resins, and polydimethyl For siloxane binders, the CH 3 /Si ratio is 1.2 or more;
1.8 or less, particularly 1.3 to 1.7 is preferred, and polydiphenylsiloxane, polymethylphenylsiloxane, and copolymers of these polydimethylsiloxane and polydiphenylsiloxane or/and polymethylphenylsiloxane are preferred. Phenyl group-containing polysiloxane compounds such as those of combinations can be used alone as the binder of the present invention, but modified silicone resins such as epoxy-modified silicone resins, polyester-modified silicone resins, alkyd-modified silicone resins, and amino resin-modified silicone resins When one or a mixture of two or more of the above was used as a binder, excellent heat-resistant adhesive strength, especially heat-resistant adhesive strength at 200 to 300°C, was improved. In addition, when using modified silicone resin or a mixture of modified silicone resin and straight silicone resin as a binder, the polysiloxane component
It is preferable that the binder component contains 20% by weight or more, preferably 30% by weight or more, and if the polysiloxane component is 20% by weight or more, the heat resistance is extremely excellent even at 200° C. or higher. For the organopolysiloxane binder of the present invention, epoxy resins, polyester resins, alkyd resins, amino resins, acrylic resins, and even ethylene-vinyl acetate copolymers, which are commonly used as paint binders, are used as binders. Inside, polysiloxane component is 20% by weight
It can be used in combination with the organopolysiloxane binder of the present invention as long as it does not fall below. The polyacryloxyalkylalkoxysilane binder used in the present invention has the general formula (R is a monovalent hydrocarbon group having 1 to 10 carbon atoms, R' is hydrogen or a monovalent hydrocarbon group having 1 to 12 carbon atoms, R'' is a divalent hydrocarbon group having 2 to 10 carbon atoms, and n is 1-3
an acryloxyalkylalkoxysilane compound represented by (an integer of

【式】 〔XはH、CH3又はCl、Yは水素、Cl、炭素数1
〜10の一価炭化水素基、ビニルフエニル基、ピリ
ジル基、2−オキソ−1−ピロリジニル基、ニト
リル基、
[Formula] [X is H, CH 3 or Cl, Y is hydrogen, Cl, carbon number 1
~10 monovalent hydrocarbon groups, vinyl phenyl groups, pyridyl groups, 2-oxo-1-pyrrolidinyl groups, nitrile groups,

【式】【formula】 【式】【formula】

【式】から選 ばれる基、 (但しR′は前記と同じ、ZはOCH2CH2OH、
OCH2
A group selected from [Formula], (where R' is the same as above, Z is OCH 2 CH 2 OH,
OCH 2

【式】NH2、N−メチロール基、 N−アルコキシメチロール基から選ばれる基)を
示す〕で表わされるα、β−不飽和化合物又はそ
の誘導体の一種又は二種以上の混合物との遊離基
開始剤および有機溶媒の存在下における反応から
得られた重合体を挙げることができる。 上記アクリルオキシアルキルアルコキシシラン
化合物のR、R′として適当な一価炭化水素の例
としては例えばメチル、エチル、プロピル、ブチ
ル、ペンチル、ヘキシル、オクチル、デシル等の
アルキル基、フエニル、ナフチル、トリル、キシ
リル、クメニル、エチルフエニル等のアリール
基、ベンジル、α−フエニルエチル、β−フエニ
ルエチル、α−フエニルブチル等のアラルキル基
を、またR″として適当な二価炭化水素基の例と
してはエチレン、トリメチレン、テトラメチレ
ン、ヘキサメチレン、オクタメチレン等を例示で
きる。 本発明で使用される一般式
Free radical initiation with one or a mixture of two or more of α, β-unsaturated compounds or derivatives thereof represented by [Formula] NH 2 , N-methylol group, N-alkoxymethylol group) Mention may be made of polymers obtained from reactions in the presence of agents and organic solvents. Examples of monovalent hydrocarbons suitable as R and R' in the acryloxyalkylalkoxysilane compound include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, and decyl, phenyl, naphthyl, tolyl, Aryl groups such as xylyl, cumenyl, and ethyl phenyl, aralkyl groups such as benzyl, α-phenylethyl, β-phenylethyl, and α-phenylbutyl, and examples of divalent hydrocarbon groups suitable as R″ include ethylene, trimethylene, and tetramethylene. , hexamethylene, octamethylene, etc. General formula used in the present invention

【式】(X、 Yは前記と同じ)で示されるα、β−不飽和化合
物又はその誘導体として適当なものの例は、塩化
ビニル、塩化ビニリデン、酢酸ビニル、プロピオ
ン酸ビニル、酢酸ビニル、スチレン、ビニルトル
エン、ジビニルベンゼン、ビニルピリジン、ビニ
ルピロリドン等のビニル化合物、アクリロニトリ
ル、メタアクリロニトリル、メチルアクリレー
ト、エチルアクリレート、ブチルアクリレート、
2−エチルヘキシルアクリレート、ラウリルアク
リレート等のアクリル酸エステル類、メチルメタ
アクリレート、エチルメタアクリレート、ブチル
メタアクリレート、2−エチルヘキシルメタアク
リレート、ラウリルメタアクリレート等のメタア
クリル酸エステル類、アクリル酸、アクリルアミ
ド、N−メチロールアクリルアミド、N−メトキ
シメチルアクリルアミド、N−ブトキシメチルア
クリルアミド、グリシジルアクリレート、2−ヒ
ドロキシエチルアクリレート、メタアクリル酸、
メタアクル酸アミド、N−メチロールメタアクリ
ルアミド、N−メトキシメチルメタアクリルアミ
ド、N−ブトキシメチルメタアクリルアミド、グ
リシジルメタアクリレート、2−ヒドロキシエチ
ルメタアクリレート等の反応基を有するアクリル
及びメタアクリル化合物等である。 本発明のポリアクリロオキシアルキルアルコキ
シシラン系結合剤に於て、少なくともアクリロオ
キシアルキルアルコキシシラン化合物が結合剤中
に20重量%、好適には30重量%以上含まれている
ことが必要でアクリロオキシアルキルアルコキシ
シラン化合物がこの範囲で特に耐熱性が優れてい
る。 又本発明のポリアクリロオキシアルキルアルコ
キシシラン系結合剤に於て反応基を有するアクリ
ル及びメタアクリル化合物、特にN−メチロール
アクリルアミド、N−メトキシメチルアクリルア
ミド、N−ブトキシメチルアクリルアミド等のア
クリルアミド及びその誘導体並びにグリシジルメ
タアクリレート、2−ヒドロキシエチルメタアク
リレート等が結合剤中に5〜20重量%含まれてい
ると好適であり、その他の化合物としてアクリロ
ニトリルが5〜30重量%含まれていると特に好適
であつた。 本発明のポリアクリロオキシアルキルアルコキ
シシラン系結合剤を用いる特徴は金属に対する接
着性、塗膜の可撓性、耐水性、耐沸騰水性、耐候
性に好適な結果を与えるものであり、特に アクリロオキシアルキルアルコキシシラン
20〜50重量% アクリロニトリル 5〜30 〃 反応性アクリル化合物 5〜20 〃 アクリル酸又はメタアクリル酸のエステル
5〜60 〃 の共重合組成からなり、30℃ジメチルホルムアミ
ド溶液中の極限粘度〔η〕が0.5〜2.0を示すポリ
アクリロオキシアルキルアルコキシシラン系結合
剤が接着性、耐水性、耐候性、耐熱性に於て好適
であつた。 本発明の結合剤に於て一般式 〔BはOR′又はOR″−OR′(R′、R″は前と同じ)
を示す〕で表わされるビニルシラン化合物もアク
リルオキシアルキルアルコキシシラン化合物同
様、単独又はこれらと
Examples of suitable α,β-unsaturated compounds or derivatives thereof represented by the formula (where X and Y are the same as above) include vinyl chloride, vinylidene chloride, vinyl acetate, vinyl propionate, vinyl acetate, styrene, Vinyl compounds such as vinyltoluene, divinylbenzene, vinylpyridine, vinylpyrrolidone, acrylonitrile, methacrylonitrile, methyl acrylate, ethyl acrylate, butyl acrylate,
Acrylic acid esters such as 2-ethylhexyl acrylate and lauryl acrylate, methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and lauryl methacrylate, acrylic acid, acrylamide, N- Methyloracrylamide, N-methoxymethylacrylamide, N-butoxymethylacrylamide, glycidyl acrylate, 2-hydroxyethyl acrylate, methacrylic acid,
These include acrylic and methacrylic compounds having reactive groups such as methacrylic acid amide, N-methylol methacrylamide, N-methoxymethyl methacrylamide, N-butoxymethyl methacrylamide, glycidyl methacrylate, and 2-hydroxyethyl methacrylate. In the polyacrylooxyalkylalkoxysilane binder of the present invention, it is necessary that the binder contains at least 20% by weight, preferably 30% by weight or more of the acrylooxyalkylalkoxysilane compound. Oxyalkylalkoxysilane compounds have particularly excellent heat resistance within this range. In addition, the polyacrylooxyalkylalkoxysilane binder of the present invention may include acrylic and methacrylic compounds having reactive groups, particularly acrylamide and its derivatives such as N-methylolacrylamide, N-methoxymethylacrylamide, N-butoxymethylacrylamide, etc. It is preferable that glycidyl methacrylate, 2-hydroxyethyl methacrylate, etc. be contained in the binder in an amount of 5 to 20% by weight, and it is particularly preferable that acrylonitrile be contained as another compound in an amount of 5 to 30% by weight. Ta. The characteristics of using the polyacrylooxyalkylalkoxysilane binder of the present invention are that it gives favorable results in adhesion to metal, flexibility of coating film, water resistance, boiling water resistance, and weather resistance. Oxyalkylalkoxysilane
20-50% by weight Acrylonitrile 5-30 〃 Reactive acrylic compound 5-20 〃 Acrylic acid or methacrylic acid ester
The polyacrylooxyalkyl alkoxysilane binder has a copolymer composition of 5 to 60 〃 and exhibits an intrinsic viscosity [η] of 0.5 to 2.0 in dimethylformamide solution at 30°C, which has excellent adhesive properties, water resistance, weather resistance, and heat resistance. It was suitable for In the binder of the present invention, the general formula [B is OR' or OR''-OR'(R' and R'' are the same as before)
Similar to acryloxyalkylalkoxysilane compounds, vinylsilane compounds represented by

【式】(X、Yは前 記と同じ)で示されるα、β−不飽和化合物又は
その誘導体の一種又は二種以上の混合物との遊離
基開始剤および有機溶媒の存在下における反応か
ら重合体が得られ、これらのビニルシラン化合物
はアクリルオキシアルキルアルコキシシラン化合
物と等価に置換して又は混合使用しても本発明の
結合剤を得ることができる。尚本発明のビニルシ
ラン化合物として好適な例を示すと、R′がメチ
ル、エチル、プロピル又はブチル基であり、
R″がエチレン、トリメチレン又はテトラメチレ
ン基の化合物である。 本発明の高温耐熱性の断熱塗料は本発明に係る
チタン酸カリ及びシリコン樹脂系結合剤に、必要
により常用されている着色剤、無機質充填剤及び
有機溶媒等を併用することにより得られるが、特
に無機質充填剤として高密度充填剤、高屈折率充
填剤及び板状鉱物質充填剤を併用すると好適であ
つた。 本発明に適用出来る高密度充填剤とは特に比重
2.8以上のもの、例えばドロマイト(苦灰石)、ア
ラゴナイト(あられ石)、アバタイト(燐灰石)、
スピネル、コランダム、ジルコン系鉱物又は合成
鉱物の粉末及び固溶剤として熔成燐肥又はこれと
同法で製造される類似組成物、フリツト、更には
高密度ガラスの粉末粒状物、繊維及び発泡体があ
る。 又高屈折率充填剤としては屈折率1.50以上のも
のが好適であり、上記に例示した高密度充填剤は
全て屈折率が1.50以上であり、本発明の好適な無
機質充填剤である。 斯かる高密度、高屈折率充填剤としては ドロマイト (SG2.8〜2.9 n1.50〜1.68) マグネサイト (SG3.0〜3.1 n1.51〜1.72) アラゴナイト (SG2.9〜3.0 n1.53〜1.68) アパタイト (SG3.1〜3.2 n1.63〜1.64) スピネル (SG3.5〜3.6 n1.72〜1.73) コランダム (SG3.9〜4.0 n1.76〜1.77) ジルコン (SG3.9〜4.1 n1.79〜1.81) 炭化珪素 (SG3.17 n2.65〜2.69) の天然及び合成鉱物の破砕品の粉末が、又固熔体
としては熔成燐肥が好適であつた。又板状鉱物質
充填剤としては、粘土質、雲母質等の鉱物がある
が特に天然及び合成の雲母粉末が好適であつた。 本発明の無機質充填剤は単独又は任意の割合で
混合して使用出来るが、特にアパタイト、ジルコ
ンサイド、ジルコンフラワー、合成スピネル及び
コランダム等は比較的安価に供給可能なものであ
り、固熔体としてはフリツトは容易に入手出来る
ものとして、又熔成燐肥又はその類似物は安価な
素材であり、更に粒状、繊維状及び発泡体として
加工出来、断熱性の向上及び塗膜の補強に好適で
あつた。 又本発明の無機質充填剤として一般に常用され
ている着色顔料、体質顔料等の通常の充填剤の併
用も可能であるが、シラスバルーン、アルミナバ
ルーン等の高屈折率の無機質微小中空体の併用も
効果的であつた。 本発明の断熱塗料はチタン酸カリ、シリコン樹
脂系結合材及び必要により着色剤、無機質充填剤
及び有機溶媒等を使用することを特徴とするもの
であり、その混合割合には特に留意する必要があ
る。本発明に於て、チタン酸カリとシリコン樹脂
系結合剤の割合(以下特記しない限り重量で示
す)はチタン酸カリ100部に対し、シリコン樹脂
系結合剤が25〜2000部、特に50〜1000部、更には
100〜500部用いることが好適であつた。これらの
混合割合は使用するシリコン樹脂系結合剤の種類
により厳格に特定できないが、一般にチタン酸カ
リ100部に対しシリコン樹脂系結合剤が上記25〜
2000部の範囲では結合剤の結合力が高く塗膜とし
ての機能が十分に発揮され、断熱効果も優れてお
り好ましい。又本発明に於て無機質充填剤を用い
る場合にはチタン酸カリ10〜90部、無機質充填剤
90〜10部の範囲でこれらの合計100部に対し結合
剤が25〜2000部、特に50〜1000部、更には100〜
500部が好適であつた。尚チタン酸カリと無機質
充填剤の配合割合には交互作用があり、特にチタ
ン酸カリ20〜70部、無機質充填剤80〜30部の配合
の時優れた断熱性を示した。 本発明の断熱塗料はチタン酸カリ、シリコン樹
脂系結合剤及び必要により着色剤、無機充填剤、
有機溶媒の混合分散物からなり、その製法として
は例えばシリコン樹脂系結合剤の有機溶媒溶液と
チタン酸カリ、着色剤、無機質充填剤、更には常
用されているシリコン樹脂系結合剤の硬化助剤、
分散剤、粘度調整剤等を混合後、これらを高速度
回転混合機、ロールミル、ボールミル、サンドミ
ル等で混合分散することにより製造できる。 又本発明の断熱塗料からなる塗膜の形成方法と
しては、本発明の塗料を通常用いられている塗装
方法、ハケ塗り、エアスプレー塗装、エアレスプ
レス塗装、更には浸漬塗装法等が適用出来、この
時必要により稀釈溶媒を添加しても良い。斯かる
方法で塗装したものを室温又は必要により、150
〜200℃、20〜120分程度加熱乾燥することによ
り、本発明の断熱塗料の塗膜が得られる。 以下に実施例を挙げて本発明を説明する。 実施例 1 チタン酸カリ(大塚化学薬品(株)製)20部、スト
レートシリコン樹脂系結合剤(東芝シリコーン(株)
製、メトキシ基を有するフエニルメチルシロキサ
ンとジメチルシロキサンの共重合物)の固形分60
%キシレン溶液80部をTKラボミキサー(特殊機
化工業(株)製)により5分間高速撹拌を行い不揮発
分68%の白色の断熱塗料を得た。 実施例 2 チタン酸カリ15部、ジルコンフラワー10部、エ
ポキシ変性シリコン樹脂系結合剤(東芝シリコー
ン(株)製、商品名TSR194)の60%キシレン溶液75
部を用い、以下実施例1と同法で塗料化を行い、
不揮発分70%の白色の断熱塗料を得た。 実施例 3 撹拌機、冷却管、窒素導入管及び滴下ロートを
付したガラス製の4ツ口セパラブルフラスコ(容
量500ml)を湯浴上に設置し窒素置換後、アセト
ン40部、トルエン60部次いで γ−メタアクリロプロピルトリメトキシシラン
35部 アクリロニトリル 15部 グリシジルメタアクリレート 10部 ブチルメタアクリレート 40部 を順次仕込み撹拌下10%のアゾビスイソブチロニ
トリル(AIBN)のアセトン溶液10部を添加後、
液温を80℃に保ち撹拌下で16時間反応後、室温迄
冷却し、不揮発分45%の樹脂液を得た。尚上記樹
脂液の一部をとり、石油ベンジンを加え、樹脂質
を沈澱させ、この沈澱をアセトンで再溶解し、更
に石油ベンジンで樹脂質を沈澱させた後室温で48
時間真空乾燥させた精製樹脂試料を用い、30℃の
DMF溶液による極限粘度〔η〕を測定した所、
〔η〕1.5dl/gの結果を得た。 上述の方法で得た樹脂液 80部 チタン酸カリ 10部 酸化アルミニウム粉末 10部 を用い実施例1と同法で塗料化を行い、不揮発分
56%の白色塗料を得た。 実施例 4 ビニルトリ(β−メトキシエトキシ)シラン30部 アクリロニトリル 20部 N−ブトキシメチルアクリルアミド 10部 メチルメタアクリレート 10部 ブチルメタアクリレート 30部 を用いた以外実施例3と同法で反応を行い、不揮
発分44%、〔η〕1.8/gの樹脂液を得た。上述
方法で得た樹脂液を用い実施例3と同法で不揮発
分55%の白色塗料を得た。 比較例 1 実施例1のチタン酸カリの代わりに酸化チタン
系顔料(石原産業(株)製)を用いた以外実施例1と
同法で白色顔料を得た。 比較例 2及び3 実施例2及び3のチタン酸カリの代わりに酸化
チタン系顔料を用いた以外実施例2及び3と同法
で白色顔料を得た。 試験例 1 内径10cm、鋼管の肉厚0.8mm、長さ50cmの鋼管
の表面に実施例1〜4及び比較例1〜3の塗料を
塗布後焼付乾燥を行い、断熱試験用の試験体を得
た。上記の試験体を排気温度200℃の熱風乾燥炉
の排気口に接続し、塗膜の表面温度の変化を測定
した結果を表1に示した。
[Formula] (X, Y are the same as above) A polymer is produced by reaction with one or a mixture of two or more of its derivatives (X, Y are the same as above) in the presence of a free radical initiator and an organic solvent. are obtained, and the binder of the present invention can also be obtained by using these vinylsilane compounds in equivalent substitution with an acryloxyalkylalkoxysilane compound or in combination. Suitable examples of the vinyl silane compound of the present invention include R' being a methyl, ethyl, propyl or butyl group,
R'' is a compound having an ethylene, trimethylene, or tetramethylene group.The high temperature heat-resistant heat insulating coating of the present invention includes the potassium titanate and silicone resin binder according to the present invention, and if necessary, commonly used colorants and inorganic It can be obtained by using a filler, an organic solvent, etc. in combination, but it was particularly suitable to use a high density filler, a high refractive index filler, and a plate-like mineral filler as an inorganic filler.Applicable to the present invention. High-density filler is especially
2.8 or higher, such as dolomite, aragonite, abatite,
Powders of spinel, corundum, zircon minerals or synthetic minerals, fused phosphorous fertilizers as solid solvents or similar compositions produced by the same method, frits, as well as powder granules, fibers and foams of high-density glass. be. Further, the high refractive index filler is preferably one having a refractive index of 1.50 or more, and the high-density fillers exemplified above all have a refractive index of 1.50 or more and are suitable inorganic fillers for the present invention. Such high density, high refractive index fillers include dolomite (SG2.8~2.9 n1.50~1.68) magnesite (SG3.0~3.1 n1.51~1.72) aragonite (SG2.9~3.0 n1.53~ 1.68) Apatite (SG3.1~3.2 n1.63~1.64) Spinel (SG3.5~3.6 n1.72~1.73) Corundum (SG3.9~4.0 n1.76~1.77) Zircon (SG3.9~4.1 n1. Powders of crushed natural and synthetic minerals such as silicon carbide (SG3.17 n2.65-2.69) were suitable, and molten phosphorus fertilizer was suitable as a solid melt. As the platy mineral filler, there are clay minerals, mica minerals, etc., and natural and synthetic mica powders are particularly suitable. The inorganic fillers of the present invention can be used alone or mixed in any proportion, but in particular apatite, zirconside, zircon flour, synthetic spinel, corundum, etc. can be supplied at relatively low cost and can be used as a solid melt. Frits are readily available, and fused phosphorus or its analogues are inexpensive materials that can be processed into granules, fibers, and foams, making them suitable for improving thermal insulation and reinforcing coatings. It was hot. In addition, it is possible to use ordinary fillers such as colored pigments and extender pigments that are commonly used as the inorganic filler of the present invention, but it is also possible to use inorganic minute hollow bodies with a high refractive index such as shirasu balloons and alumina balloons. It was effective. The heat insulating paint of the present invention is characterized by using potassium titanate, a silicone resin binder, and if necessary, a coloring agent, an inorganic filler, an organic solvent, etc., and special attention must be paid to the mixing ratio thereof. be. In the present invention, the ratio of potassium titanate and silicone resin binder (expressed by weight unless otherwise specified) is 25 to 2000 parts, particularly 50 to 1000 parts of silicone resin binder to 100 parts of potassium titanate. department, and even
It was suitable to use 100 to 500 parts. The mixing ratio of these cannot be strictly specified depending on the type of silicone resin binder used, but in general, the silicone resin binder is mixed in the above 25 to 100 parts of potassium titanate.
A content in the range of 2000 parts is preferable because the binding force of the binder is high, the coating function is fully exhibited, and the heat insulating effect is also excellent. In addition, in the case of using an inorganic filler in the present invention, 10 to 90 parts of potassium titanate, the inorganic filler
In the range of 90 to 10 parts, the binder is 25 to 2000 parts, especially 50 to 1000 parts, and even 100 to 100 parts.
500 copies was suitable. There was an interaction between the mixing ratios of potassium titanate and the inorganic filler, and especially excellent heat insulation properties were exhibited when 20 to 70 parts of potassium titanate and 80 to 30 parts of the inorganic filler were mixed. The insulating paint of the present invention contains potassium titanate, a silicone resin binder, and if necessary, a coloring agent and an inorganic filler.
It consists of a mixed dispersion of organic solvents, and its manufacturing method includes, for example, an organic solvent solution of a silicone resin binder, potassium titanate, a coloring agent, an inorganic filler, and a curing aid for a commonly used silicone resin binder. ,
It can be manufactured by mixing and dispersing a dispersant, a viscosity modifier, etc. using a high-speed rotating mixer, roll mill, ball mill, sand mill, etc. In addition, as a method for forming a coating film made of the heat insulating paint of the present invention, coating methods commonly used for the paint of the present invention, such as brush coating, air spray coating, airless press coating, and furthermore, dip coating, etc. can be applied. At this time, a diluting solvent may be added if necessary. Painted items using this method can be kept at room temperature or if necessary, at 150°C.
By heating and drying at ~200°C for about 20 to 120 minutes, a coating film of the heat insulating paint of the present invention can be obtained. The present invention will be explained below with reference to Examples. Example 1 Potassium titanate (manufactured by Otsuka Chemical Co., Ltd.) 20 parts, straight silicone resin binder (Toshiba Silicone Co., Ltd.)
solid content of methoxy group-containing phenylmethylsiloxane and dimethylsiloxane copolymer) 60
% xylene solution was stirred at high speed for 5 minutes using a TK Lab mixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) to obtain a white heat insulating paint with a non-volatile content of 68%. Example 2 A 60% xylene solution of 15 parts of potassium titanate, 10 parts of zircon flour, and an epoxy-modified silicone resin binder (manufactured by Toshiba Silicone Corporation, trade name: TSR194) 75%
Using the same method as in Example 1 below, the mixture was made into a paint.
A white heat-insulating paint with a non-volatile content of 70% was obtained. Example 3 A four-neck separable glass flask (capacity 500 ml) equipped with a stirrer, cooling tube, nitrogen introduction tube, and dropping funnel was placed on a hot water bath, and after purging with nitrogen, 40 parts of acetone and 60 parts of toluene were added. γ-methacrylopropyltrimethoxysilane
35 parts acrylonitrile 15 parts glycidyl methacrylate 10 parts 40 parts butyl methacrylate were sequentially charged and after stirring, 10 parts of a 10% azobisisobutyronitrile (AIBN) acetone solution was added.
After reaction for 16 hours with stirring while maintaining the liquid temperature at 80°C, the mixture was cooled to room temperature to obtain a resin liquid with a nonvolatile content of 45%. A portion of the above resin solution was taken, petroleum benzine was added to precipitate the resin, this precipitate was redissolved with acetone, and the resin was further precipitated with petroleum benzine, and then heated at room temperature for 48 hours.
Using a purified resin sample that had been vacuum dried for an hour,
When measuring the intrinsic viscosity [η] of DMF solution,
[η] A result of 1.5 dl/g was obtained. A coating was prepared in the same manner as in Example 1 using 80 parts of the resin liquid obtained by the above method, 10 parts of potassium titanate, and 10 parts of aluminum oxide powder.
A 56% white paint was obtained. Example 4 Vinyltri(β-methoxyethoxy)silane 30 parts Acrylonitrile 20 parts N-butoxymethylacrylamide 10 parts Methyl methacrylate 10 parts Butyl methacrylate A reaction was carried out in the same manner as in Example 3 except that 30 parts were used. A resin liquid of 44% and [η] 1.8 r /g was obtained. A white paint with a non-volatile content of 55% was obtained in the same manner as in Example 3 using the resin liquid obtained as described above. Comparative Example 1 A white pigment was obtained in the same manner as in Example 1 except that a titanium oxide pigment (manufactured by Ishihara Sangyo Co., Ltd.) was used instead of potassium titanate in Example 1. Comparative Examples 2 and 3 White pigments were obtained in the same manner as in Examples 2 and 3, except that a titanium oxide pigment was used instead of potassium titanate in Examples 2 and 3. Test Example 1 The paints of Examples 1 to 4 and Comparative Examples 1 to 3 were applied to the surface of a steel pipe with an inner diameter of 10 cm, a steel pipe wall thickness of 0.8 mm, and a length of 50 cm, and then baked and dried to obtain a specimen for insulation testing. Ta. The above test specimen was connected to the exhaust port of a hot air drying oven with an exhaust temperature of 200°C, and changes in the surface temperature of the coating film were measured. Table 1 shows the results.

【表】 実施例 5〜12 表2に記載した各成分、割合で実施例1又は実
施例3と同様にして断熱塗料を得た。得られた塗
料の断熱試験を試験例1と同法で行い、その結果
を同様表2に示す。尚、実施例7では酸処理によ
りカリ成分を取り除いたチタン酸カリを使用し、
また実施例12ではこの酸処理したものを焼鈍酸化
した後に徐冷して得たチタン酸カリを使用した。
[Table] Examples 5 to 12 Insulating paints were obtained in the same manner as in Example 1 or Example 3 using the components and proportions listed in Table 2. The resulting paint was subjected to a heat insulation test using the same method as in Test Example 1, and the results are also shown in Table 2. In addition, in Example 7, potassium titanate from which the potassium component was removed by acid treatment was used,
Further, in Example 12, potassium titanate obtained by annealing and oxidizing the acid-treated material and then slowly cooling was used.

【表】【table】

Claims (1)

【特許請求の範囲】 1 チタン酸カリ及びシリコン樹脂系結合剤から
なる高温断熱塗料。 2 高密度充填剤、高屈折率充填剤、板状鉱物質
充填剤及びその他の通常の充填剤から選ばれた無
機質充填剤の1種又は2種以上を更に配合した特
許請求の範囲第1項の高温断熱塗料。 3 着色剤及び有機溶媒を更に配合した特許請求
の範囲第1項又は第2項の高温断熱塗料。 4 チタン酸カリ100重量部に対しシリコン樹脂
系結合剤を25〜2000重量部使用する特許請求の範
囲第1〜3項のいずれかの高温断熱塗料。 5 無機質充填剤の形状が粒状、微少中空体又は
発泡粒状物である特許請求の範囲第2〜3項のい
ずれかの高温断熱塗料。 6 チタン酸カリ10〜90重量部、無機質充填剤90
〜10重量部、シリコン樹脂系結合剤25〜2000重量
部使用する特許請求の範囲第2〜3項のいずれか
の高温断熱塗料。
[Claims] 1. A high-temperature heat-insulating paint comprising potassium titanate and a silicone resin binder. 2 Claim 1 further contains one or more inorganic fillers selected from high-density fillers, high refractive index fillers, platy mineral fillers, and other ordinary fillers. high temperature insulation paint. 3. The high-temperature insulation paint according to claim 1 or 2, which further contains a colorant and an organic solvent. 4. The high-temperature insulation paint according to any one of claims 1 to 3, wherein 25 to 2000 parts by weight of a silicone resin binder is used per 100 parts by weight of potassium titanate. 5. The high-temperature heat insulating paint according to any one of claims 2 to 3, wherein the inorganic filler is in the form of granules, micro hollow bodies, or foamed granules. 6 Potassium titanate 10-90 parts by weight, inorganic filler 90
10 parts by weight of a silicone resin binder and 25 to 2000 parts by weight of a silicone resin binder.
JP362582A 1982-01-12 1982-01-12 High-temperature heat-insulating coating meterial Granted JPS58120677A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP362582A JPS58120677A (en) 1982-01-12 1982-01-12 High-temperature heat-insulating coating meterial
GB8300277A GB2118201B (en) 1982-01-12 1983-01-04 Heat-insulating refractory material
US06/455,492 US4496469A (en) 1982-01-12 1983-01-04 Heat-insulating refractory material consisting alkali titanate and silicon resin
CA000418940A CA1202439A (en) 1982-01-12 1983-01-05 Heat-insulating refractory material
DE3300684A DE3300684C2 (en) 1982-01-12 1983-01-11 Silicone resin composition and its use
FR8300380A FR2519641B1 (en) 1982-01-12 1983-01-12 THERMAL-INSULATING REFRACTORY MATERIAL BASED ON AN ALKALI METAL TITANATE AND A SILICONE RESIN
KR1019830000086A KR860001648B1 (en) 1982-01-12 1983-01-12 Method for preparing refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP362582A JPS58120677A (en) 1982-01-12 1982-01-12 High-temperature heat-insulating coating meterial

Publications (2)

Publication Number Publication Date
JPS58120677A JPS58120677A (en) 1983-07-18
JPH0250143B2 true JPH0250143B2 (en) 1990-11-01

Family

ID=11562672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP362582A Granted JPS58120677A (en) 1982-01-12 1982-01-12 High-temperature heat-insulating coating meterial

Country Status (1)

Country Link
JP (1) JPS58120677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242897A (en) * 1990-12-28 1992-08-31 Mitsubishi Motors Corp Device for detecting/alarming inter-vehicle distance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203680A (en) * 1984-03-28 1985-10-15 Otsuka Chem Co Ltd Coating having high-temperature heat resistance, heat insulating property, and corrosion resistance
DE102008047534A1 (en) * 2008-09-16 2010-04-15 Sachtleben Chemie Gmbh Paints with a basic additive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242897A (en) * 1990-12-28 1992-08-31 Mitsubishi Motors Corp Device for detecting/alarming inter-vehicle distance

Also Published As

Publication number Publication date
JPS58120677A (en) 1983-07-18

Similar Documents

Publication Publication Date Title
US4496469A (en) Heat-insulating refractory material consisting alkali titanate and silicon resin
US10689528B2 (en) High performance silicon based thermal coating compositions
CA2150114C (en) Polysiloxane coating
CA2581301C (en) Heat-resistant coating compositions, coated articles, and methods
JP2774235B2 (en) Organosiloxane liquid composition and use thereof
JPH0772250B2 (en) Solvent-free room temperature curable organosiloxane composition, method for producing the same, and use thereof
JP2007169496A (en) Foamable fireproof coating
JPH11510536A (en) Coating mixture, process for its preparation and its use in coating applications
CN109111845A (en) Heat-resistant coating compositions, fireproof coating film, attached fireproof coating film substrate and manufacturing method
JPH0250143B2 (en)
JPH05230375A (en) Heating type solvent-free, catalyst-free organosiloxane composition and its use
UA72510C2 (en) Silicate material, a method for producing thereof and a method for making coating from silicate material
PT2222803E (en) Moisture cure alpha-silane modified acrylic coatings
JPS5912964A (en) Polyorganosiloxane composition
JPH0472594B2 (en)
JPH07268216A (en) Coating mixture, its production and its usage
US20220135837A1 (en) Ambient Cure High Temperature Protective Coating
JPS5926987A (en) Refractory heat insulating sheet
JPS6137105B2 (en)
JPH0827424A (en) Inorganic coating material
JPS60199075A (en) Anticorrosive paint of heat resistance and heat insulation
RU2771822C2 (en) Composition
TW202233772A (en) Coating composition and coated article
JPS63100987A (en) Composite coated film
Easton et al. 7. Silicones in Coatings