JPH0250069B2 - - Google Patents

Info

Publication number
JPH0250069B2
JPH0250069B2 JP57106745A JP10674582A JPH0250069B2 JP H0250069 B2 JPH0250069 B2 JP H0250069B2 JP 57106745 A JP57106745 A JP 57106745A JP 10674582 A JP10674582 A JP 10674582A JP H0250069 B2 JPH0250069 B2 JP H0250069B2
Authority
JP
Japan
Prior art keywords
weight
cement
strength
parts
hydraulic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57106745A
Other languages
Japanese (ja)
Other versions
JPS58223655A (en
Inventor
Kazuyuki Mizushima
Shozo Sakamaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP10674582A priority Critical patent/JPS58223655A/en
Publication of JPS58223655A publication Critical patent/JPS58223655A/en
Publication of JPH0250069B2 publication Critical patent/JPH0250069B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、短時間の強度発現性にすぐれ、ガラ
ス繊維の長期にわたるアルカリ劣化を防止したセ
メント組成物に関する。 一般的なガラス繊維強化モルタル(以下GRC
という)は、通常のモルタルに比べ曲げ強度、引
張り強度、靭性などにすぐれ、耐亀裂性にもすぐ
れたものであることから建造物等に使用されてい
る。 しかし、ガラス繊維は耐アルカリ性のものであ
つても、長期的にはモルタル中のセメントのアル
カリにより劣化を起こし、曲げ強度が低下すると
いう欠点があつた。 また、高炉水砕スラグ−石コウ−セメント系か
らなるアルカリ劣化の少ないGRC用セメント組
成物が提案されているが、短期の強度発現が悪
く、かつ、乾燥収縮が大きいなどの欠点があるの
で、実用上問題である。 本発明者は、この点に留意し、高炉水砕スラグ
のGRCへの応用について種々検討した結果、カ
ルシウムアルミネートと石コウを使用すればよい
との知見により、本発明を完成したものである。 即ち、本発明は、高炉水砕スラグ60〜75重量%
とセメント40〜25重量%からなる水硬性材料100
重量部、カルシウムアルミネート:石コウの重量
比が1:1〜3であるセメント混和材10〜30重量
部及び該水硬性材料と該セメント混和材の合計に
対し1〜10重量%のガラス繊維を含有してなるセ
メント組成物である。 以下、詳しく本発明について説明する。 高炉水砕スラグをセメントの混和材として用
い、セメントの耐硫酸塩性や耐化学薬品性などの
諸性状を改善することはすでに知られており、そ
の混合量により、A、B、C種の高炉セメントと
してJISに規定されている。一方、高炉水砕スラ
グそれ自体は、潜在水硬性のある水硬性物質では
あるが、初期強度はポルトランドセメントよりも
かなり小さいので、実際には広く用いられていな
い。 本発明は、ガラス繊維のアルカリ劣化を防ぐこ
とを目的とし、このような高炉水砕スラグを水硬
性材料の主成分として用いたものである。本発明
に係る水硬性材料は、高炉水砕スラグ60〜75重量
%とセメント40〜25重量%からなるものである。
高炉水砕スラグの60重量%未満ではガラス繊維の
劣化の面で好ましくなく、75重量%を越えて使用
すると初期強度発現の面から好ましくない。 高炉水砕スラグとしては、JIS塩基度が1.80程
度以上であれば問題はなく使用でき、粉末度は、
ブレーン値で2500cm2/g以上、好ましくは3500〜
6000cm2/gである。また、セメントとしては、普
通、早強、超早強、中庸熱、白色のポルトランド
セメントが使用できる。 次に、本発明に係るセメント混和材について説
明する。カルシウムアルミネートは、CaO分と
Al2O3分とを含有する原料を熱処理して得られる
ものであつて、CA、CA2、C3A、C12A7
C3A3CaSO4、C3A3CaF2、C11A7CaF2などの鉱物
や、CaOを20〜65重量%含有するカルシウムアル
ミネート無定形物の1種又は2種以上である。カ
ルシウムアルミネート無定形物の場合に、その
CaO含有量を限定した理由は、20重量%未満で
は、初期強度発現が悪く、また、65重量%をこえ
ると、水硬性材料に混和したときの凝結時間を調
節することができず実用性に欠けるからである。 一方、セメント混和材の他の成分である石コウ
としては、2水石コウ、半水石コウ、無水石コウ
の種別なく使用できるが、なかでも、強度発現の
良好な型無水石コウが望ましい。 カルシウムアルミネート:石コウの割合は、重
量比で1:1〜3であり、これ以外の割合では、
得られたGRCの初期強度が低下するか、もしく
は収縮量又は膨張量が大きくなるので好ましくな
い。セメント混和材の粉末度については、3000
cm2/g以上が好ましい。 水硬性材料100重量部に対するセメント混和材
の配合割合は10〜30重量部、好ましくは15〜25重
量部であり、10重量部未満では初期強度増進効果
はなく、また、30重量部をこえても強度発現の伸
びが少なく、かつ、経済的でない。カルシウムア
ルミネートと石コウは、あらかじめ混合すること
なく別々に配合してもよい。 カルシウムアルミネートと石コウからなるセメ
ント混和材を水硬性材料に混和したとき、カルシ
ウムアルミネートの水和により凝結が極めて短時
間に開始することがある。そのような場合には、
セメントの凝結遅延作用を有するクエン酸、酒石
酸、グルコン酸、リンゴ酸またはそれ等の可溶性
塩やそれらと炭酸アルカリとの混合物からなる遅
延剤が使用される。 GRCを製造する方法としては、モルタル吹付
ガンよりモルタルを、チヨツパーガンより圧搾ガ
スによりガラス繊維を同時に吹付ける方法、ある
いはミキサー中にモルタルとガラス繊維を混合し
型枠中に型詰する方法等のいずれであつてもよ
く、それらの成形法には制約されるものではな
い。 例えば、吹付法でGRCをつくる場合について
説明すると、水硬性材料に所定量の砂と水を配合
してなるモルタルと、セメント混和材の水スラリ
ーとをノズル先端近くで混合しながら型枠面に吹
付ける一方、別にガラス繊維を同時に吹付けする
ことにより、強度のすぐれたGRCが得られる。 本発明のセメント組成物を使用したGRCは、
セメント混和材の作用により凝結硬化を起こし、
短時間で脱型に必要な強度を発現しかつ長期の強
度の伸びがよく耐久性にすぐれたものになる。ま
た、低アルカリであるので、ガラス繊維の劣化も
小さくなる。GRC製品の強度は、セメント混和
材のカルシウムアルミネートと石コウの割合、ま
たはそれのセメントへの添加量により調節され
る。また、温風、蒸気等で保温することによりさ
らに短時間に脱枠に必要な強度を得ることもでき
る。 凝結遅延剤を使用するときは、水硬性材料もし
くはセメント混和材のいずれか一方又は両方に添
加しておけばよく、その量は、水硬性材料とセメ
ント混和材の合計量に対し2重量%以下が適当で
ある。また、市販のセメント減水剤を使用すれ
ば、それ相当の効果がある。 なお、ガラス繊維の種類としては、通常のガラ
ス繊維は適宜用いることができるが、耐久性の点
から耐アルカリ性ガラス繊維が好ましい。これの
水硬性材料とセメント混和材に対する使用割合
は、通常、1〜10重量%であるが、これに限られ
るものではない。 次に実施例をあげてさらに本発明を説明する。 実施例 1 高炉水砕スラグ(ブレーン値3800cm2/g)70重
量%と普通ポルトランドセメント30重量%からな
る水硬性材料100重量部、珪砂80重量部、水32重
量部及びセメント減水剤花王石鹸(株)商品名(「マ
イテイ150」)1重量部をモルタルミキサーで混合
してモルタルを調合した。また、これとは別に、
CaO42重量%含有のカルシウムアルミネート無定
形物と型無水石コウの重量比が1:2からなる
セメント混和材100重量部、クエン酸ソーダ4重
量部、水60重量部を混合してセメント混和材スラ
リーを調合した。 このモルタルと、水硬性材料に対してセメント
混和材成分が20重量%となる割合のセメント混和
材スラリーと、水硬性材料及びセメント混和材成
分の合計量に対し5重量%の市販耐アルカリガラ
ス繊維(長さ20mm)とを型枠上に成形する直前で
混合して厚さ10mmのGRC板を成形したところ、
約20分で硬化し60分後には脱型ができた。5時間
後の曲げ強度は114Kgf/cm2であつた。 また、GRC板の成形後20分後に50℃蒸気養生
を30分間行なつたところ、曲げ強度130Kgf/cm2
のGRC板が得られた。 さらに、材令28日経過した供試体を、70℃の温
水に10日間浸漬して曲げ強度を測定し、温水に浸
漬する前の曲げ強度に対する強度比を求めたとこ
ろ、0.82であつた。 次に、表に示す通り、水硬性材料とセメント混
和材の組成と添加量を変化させ、同様に試験を行
つた。結果を表に併記する。
The present invention relates to a cement composition that exhibits excellent short-term strength development and prevents long-term alkali deterioration of glass fibers. General glass fiber reinforced mortar (GRC)
) is used in buildings, etc. because it has superior bending strength, tensile strength, toughness, and crack resistance compared to ordinary mortar. However, even though glass fibers are alkali-resistant, they have the disadvantage that over the long term they deteriorate due to the alkali of the cement in the mortar, resulting in a decrease in bending strength. In addition, a cement composition for GRC consisting of a granulated blast furnace slag-gypsum-cement system with less alkali deterioration has been proposed, but it has drawbacks such as poor short-term strength development and large drying shrinkage. This is a practical problem. With this in mind, the inventor of the present invention has conducted various studies on the application of granulated blast furnace slag to GRC, and has completed the present invention based on the knowledge that calcium aluminate and gypsum should be used. . That is, the present invention uses 60 to 75% by weight of granulated blast furnace slag.
Hydraulic material 100 consisting of 40-25% by weight of cement and
parts by weight, 10 to 30 parts by weight of a cement admixture in which the weight ratio of calcium aluminate:gypsum is 1:1 to 3, and 1 to 10 parts by weight of glass fiber based on the total of the hydraulic material and the cement admixture. A cement composition comprising: The present invention will be explained in detail below. It is already known that granulated blast furnace slag can be used as an admixture for cement to improve various properties such as sulfate resistance and chemical resistance. It is specified by JIS as blast furnace cement. On the other hand, although granulated blast furnace slag itself is a hydraulic material with latent hydraulic properties, its initial strength is considerably lower than that of Portland cement, so it is not widely used in practice. The present invention uses such granulated blast furnace slag as the main component of a hydraulic material for the purpose of preventing alkali deterioration of glass fibers. The hydraulic material according to the present invention consists of 60 to 75% by weight of granulated blast furnace slag and 40 to 25% by weight of cement.
If it is less than 60% by weight of the granulated blast furnace slag, it is unfavorable from the viewpoint of deterioration of the glass fibers, and if it is used in excess of 75% by weight, it is unfavorable from the viewpoint of initial strength development. As granulated blast furnace slag, it can be used without any problem if the JIS basicity is about 1.80 or higher, and the fineness is
Blaine value of 2500cm 2 /g or more, preferably 3500~
It is 6000cm 2 /g. Further, as the cement, normal, early strength, super early strength, moderate heat, and white Portland cement can be used. Next, the cement admixture according to the present invention will be explained. Calcium aluminate has CaO content and
CA, CA 2 , C 3 A, C 12 A 7 ,
One or more minerals such as C3A3CaSO4 , C3A3CaF2 , C11A7CaF2 , and amorphous calcium aluminate containing 20 to 65 % by weight of CaO. In the case of calcium aluminate amorphous, its
The reason for limiting the CaO content is that if it is less than 20% by weight, initial strength development will be poor, and if it exceeds 65% by weight, it will not be possible to adjust the setting time when mixed with hydraulic materials, making it impractical. This is because it is lacking. On the other hand, as the other component of the cement admixture, gypsum can be used regardless of its type, including dihydrate, hemihydrate, and anhydrite, but type anhydrite is especially desirable because it exhibits good strength. The ratio of calcium aluminate to gypsum is 1:1 to 3 by weight, and at other ratios,
This is not preferable because the initial strength of the obtained GRC decreases or the amount of contraction or expansion increases. Regarding the fineness of cement admixture, 3000
cm 2 /g or more is preferable. The blending ratio of the cement admixture to 100 parts by weight of the hydraulic material is 10 to 30 parts by weight, preferably 15 to 25 parts by weight; if it is less than 10 parts by weight, there is no effect of increasing initial strength, and if it exceeds 30 parts by weight, Also, the development of strength is low and it is not economical. Calcium aluminate and gypsum may be blended separately without being mixed in advance. When a cement admixture consisting of calcium aluminate and gypsum is mixed into a hydraulic material, setting may begin in a very short time due to hydration of the calcium aluminate. In such a case,
A retarder consisting of citric acid, tartaric acid, gluconic acid, malic acid, or a soluble salt thereof, or a mixture of these and an alkali carbonate, which has a retarding effect on the setting of cement, is used. GRC can be produced by simultaneously spraying mortar with a mortar spray gun and glass fiber with compressed gas using a choker gun, or by mixing mortar and glass fiber in a mixer and packing them into a mold. However, there are no restrictions on the molding method. For example, to explain the case of making GRC using the spraying method, mortar made by mixing a predetermined amount of sand and water with a hydraulic material and a water slurry of cement admixture are mixed near the tip of the nozzle and applied to the formwork surface. GRC with excellent strength can be obtained by spraying and simultaneously spraying glass fiber. GRC using the cement composition of the present invention is
Due to the action of the cement admixture, it hardens and hardens.
It develops the strength necessary for demolding in a short period of time, and has good long-term strength growth and excellent durability. Furthermore, since it is low in alkali, deterioration of glass fibers is also reduced. The strength of GRC products is controlled by the ratio of calcium aluminate and gypsum in the cement admixture, or by the amount added to the cement. In addition, by insulating with hot air, steam, etc., it is possible to obtain the strength necessary for removing the frame in a shorter time. When using a setting retarder, it is sufficient to add it to either or both of the hydraulic material and the cement admixture, and the amount is 2% by weight or less based on the total amount of the hydraulic material and the cement admixture. is appropriate. Also, if you use a commercially available cement water reducer, it will have a corresponding effect. As for the type of glass fiber, ordinary glass fibers can be used as appropriate, but alkali-resistant glass fibers are preferred from the viewpoint of durability. The ratio of this to the hydraulic material and cement admixture is usually 1 to 10% by weight, but is not limited to this. Next, the present invention will be further explained with reference to Examples. Example 1 100 parts by weight of a hydraulic material consisting of 70% by weight of granulated blast furnace slag (Blaine value 3800 cm 2 /g) and 30% by weight of ordinary Portland cement, 80 parts by weight of silica sand, 32 parts by weight of water, and cement water reducer Kao soap ( A mortar was prepared by mixing 1 part by weight of the product ("Mighty 150") manufactured by Co., Ltd. in a mortar mixer. Also, apart from this,
A cement admixture is prepared by mixing 100 parts by weight of a cement admixture consisting of calcium aluminate amorphous material containing 2% by weight of CaO and molded anhydrite in a weight ratio of 1:2, 4 parts by weight of sodium citrate, and 60 parts by weight of water. A slurry was prepared. This mortar, cement admixture slurry in a ratio of 20% by weight of cement admixture component to hydraulic material, and commercially available alkali-resistant glass fiber of 5% by weight to the total amount of hydraulic material and cement admixture component. (length 20mm) and were mixed just before forming on the formwork to form a 10mm thick GRC board.
It hardened in about 20 minutes and could be removed from the mold after 60 minutes. The bending strength after 5 hours was 114 Kgf/cm 2 . In addition, after 20 minutes of forming the GRC board, steam curing at 50℃ was performed for 30 minutes, and the bending strength was 130Kgf/cm2 .
GRC plates were obtained. Furthermore, the flexural strength of the 28-day-old specimen was immersed in hot water at 70°C for 10 days, and the strength ratio to the flexural strength before immersion in hot water was determined to be 0.82. Next, as shown in the table, the composition and addition amount of the hydraulic material and cement admixture were changed, and a similar test was conducted. The results are also listed in the table.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 高炉水砕スラグ60〜75重量%とセメント40〜
25重量%からなる水硬性材料100重量部、カルシ
ウムアルミネート:石コウの重量比が1:1〜3
であるセメント混和材10〜30重量部及び該水硬性
材料と該セメント混和材の合計に対し1〜10重量
%のガラス繊維を含有してなるセメント組成物。
1 60~75% by weight of granulated blast furnace slag and 40~40% cement
100 parts by weight of hydraulic material consisting of 25% by weight, calcium aluminate:gypsum weight ratio of 1:1-3
A cement composition comprising 10 to 30 parts by weight of a cement admixture, and 1 to 10% by weight of glass fiber based on the total of the hydraulic material and the cement admixture.
JP10674582A 1982-06-23 1982-06-23 Cement composition for glass fiber reinforced mortar Granted JPS58223655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10674582A JPS58223655A (en) 1982-06-23 1982-06-23 Cement composition for glass fiber reinforced mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10674582A JPS58223655A (en) 1982-06-23 1982-06-23 Cement composition for glass fiber reinforced mortar

Publications (2)

Publication Number Publication Date
JPS58223655A JPS58223655A (en) 1983-12-26
JPH0250069B2 true JPH0250069B2 (en) 1990-11-01

Family

ID=14441451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10674582A Granted JPS58223655A (en) 1982-06-23 1982-06-23 Cement composition for glass fiber reinforced mortar

Country Status (1)

Country Link
JP (1) JPS58223655A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166345A (en) * 1981-04-02 1982-10-13 Chichibu Cement Kk Manufacture of hydraulic cement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166345A (en) * 1981-04-02 1982-10-13 Chichibu Cement Kk Manufacture of hydraulic cement

Also Published As

Publication number Publication date
JPS58223655A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
US6730162B1 (en) Hydraulic binder resulting from mixing a sulfate binder and a binder comprising the mineral compound C4A3{overscore (S)}
RU2002128924A (en) NON-DEFLECTIVE CEMENT CEMENT MATERIALS
EP0312323B1 (en) Cement compositions
JPH08268738A (en) Crystalline high hydration active material and cement admixture using the same and method for accelerating hardening of concrete
US6197107B1 (en) Gypsum-rich Portland cement
JPH10231165A (en) Hydraulic composition having self-fluidity
JPS6363505B2 (en)
JP2000302519A (en) Self-fluidity hydraulic composition
JPH0337145A (en) Quick setting agent for cement
JP2021119115A (en) Quick-hardening polymer cement composition and quick-hardening polymer cement mortar
JPH0235699B2 (en)
JPH0250069B2 (en)
JPH025705B2 (en)
JP3529052B2 (en) Setting retarder and method for constructing fast-setting concrete using the same
JPS6250428B2 (en)
JP2503772B2 (en) Fast-curing self-leveling flooring composition
WO2001019751A9 (en) Gypsum-rich portland cement
JP7278070B2 (en) Rapid hardening material
JPH08253354A (en) Crystalline substance having high hydration activity, set accelerating agent for cement and method for accelerating setting and hardening of concrete or mortar
JP3728340B2 (en) High strength shotcrete cement and high strength shotcrete
JP2024501295A (en) Three-component hydraulic binder composition
JPH0235698B2 (en)
JPH11310443A (en) Admixture for cement and production of cement-based hardened product
JPS62202852A (en) Glass fiber reinforced concrete composition
JPH0450265B2 (en)