JPH0250068B2 - - Google Patents

Info

Publication number
JPH0250068B2
JPH0250068B2 JP58160151A JP16015183A JPH0250068B2 JP H0250068 B2 JPH0250068 B2 JP H0250068B2 JP 58160151 A JP58160151 A JP 58160151A JP 16015183 A JP16015183 A JP 16015183A JP H0250068 B2 JPH0250068 B2 JP H0250068B2
Authority
JP
Japan
Prior art keywords
cement
water
copolymer
parts
water reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58160151A
Other languages
Japanese (ja)
Other versions
JPS6051649A (en
Inventor
Hiromitsu Sumino
Yoshio Natsume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP16015183A priority Critical patent/JPS6051649A/en
Publication of JPS6051649A publication Critical patent/JPS6051649A/en
Publication of JPH0250068B2 publication Critical patent/JPH0250068B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低温時におけるセメント硬化物の製造
方法に関し、更に詳しくは、減水剤成分として高
性能減水剤(A)と鎖状オレフインとエチレン性不飽
和ジカルボン酸無水物の共重合体の水溶性塩(B)を
併用し低温下で打設するセメント硬化物の製造方
法に関する。 従来、5℃以下の低温時に製造されるセメント
硬化物は、寒中コンクリート施工指針にも指示さ
れているようにできるだけ水・セメント比(W/
C)を下げて初期強度を上げることが必要とされ
ている。 特に高強度を要求されるコンクリート二次製品
や高流動化コンクリートなどでは極めて小さい水
−セメント比が必要とされる。 そのため種々の減水剤が開発されており、なか
でも凝結遅延や空気連行量の増大を生ずることな
しに高い分散性を与える高性能減水剤が現在広く
賞用されている。 しかし、ナフタレンスルホン酸塩ホルマリン縮
合物系やメラミンスルホン酸塩ホルマリン縮合物
系などの公知の高性能減水剤は常温下では優れた
減水効果を示すものの、5℃以下の低温において
はその減水効果が著しく減少するという大きな欠
点を有している。そのため、かかる高性能減水剤
と少量のグルコン酸塩を併用する方法が提案され
ている(特開昭56−164052号)が、この方法とい
えども減水効果の減少防止策として必ずしも充分
なものとは云えない。 そこで本発明者らは従来技術のかかる欠点を克
服すべく鋭意検討を重ねた結果、低温下での打設
に際して減水剤成分として高性能減水剤(A)と鎖状
オレフインとエチレン性不飽和ジカルボン酸無水
物の共重合体の水溶性塩(B)とを特定の割合で併用
すると、減水効果の減少を防止することができ、
打設時のワーカビリテイを低下させることなく、
かつ初期強度、長期強度の大きいコンクリート硬
化物が得られることを見出し、本発明を完成する
に至つた。 かくして本発明によれば、セメント、減水剤成
分、水及び所望の配合剤を混練したのち5℃以下
の温度で打設しセメント硬化物を製造するに際
し、減水剤成分として高性能減水剤(A)と炭素数4
〜6の鎖状オレフインとエチレン性不飽和ジカル
ボン酸無水物の共重合体の水溶性塩(B)を(A)成分95
〜70重量%と(B)成分5〜30重量%の割合で併用す
ることを特徴とする低温時におけるセメント硬化
物の製造方法が提供される。 本発明においては、まずセメントに水、減水剤
成分及び所望の配合剤を加えて混練することによ
りセメント配合物が得られる。用いられるセメン
トは通常使用されているものであればよく、その
具体例として、例えば普通ポルトランドセメン
ト、早強ポルトランドセメント、高炉セメント、
フライアツシユセメント、ジエツトセメント、膨
張セメント、超早強セメントなどが例示される。 また減水剤成分は高性能減水剤(A)95〜70重量
%、好ましくは90〜75重量%と炭素数4〜6の鎖
状オレフイン−エチレン性不飽和ジカルボン酸無
水物共重合体の水溶性塩5〜30重量%、好ましく
は10〜25重量%(B)とから成るものであり、セメン
トに対し固型分で0.01〜5重量%、好ましくは
0.1〜2重量%の割合で添加される。 この際、(A)成分と(B)成分の使用比率が重要な要
件であり、(A)成分の比率が過度に大きくなると低
温時の減水性能が低下し、その添加量を増やすと
空気連行量が増加し、セメント硬化物の初期強度
が低下する。 用いられる(A)成分は高性能減水剤として一般に
使用されているものであればいずれでもよく、そ
の具体例として、例えばナフタレンスルホン酸塩
のホルマリン縮合物、メチルナフタレンスルホン
酸塩のホルマリン縮合物、アルキルアリールスル
ホン酸塩のホルマリン縮合物、メラミンスルホン
酸塩のホルマリン縮合物等が挙げられ、その代表
的な市販品としてマイテイ−150(花王石鹸社製)、
メルメントF−10(昭和電工社製)などが挙げら
れる。 一方、(B)成分は炭素数4〜6の鎖状オレフイン
とエチレン性不飽和ジカルボン酸無水物の共重合
体の水溶性塩である。ここで炭素数4〜6の鎖状
オレフインとしては、ブテン−1、ブテン−2、
イソブチレン、ペンテン−1、ペンテン−2、2
−メチル−ブテン−1、2−メチル−ブテン−
2、4−メチル−ペンテン−1、ヘキセン−1等
及びこれらの混合物などが例示され、またエチレ
ン性不飽和ジカルボン酸無水物としては、無水マ
レイン酸、無水イタコン酸、無水シトラコン酸等
が挙げられるが、特に無水マレイン酸が工業的に
有利である。 かかる共重合体塩は前記鎖状オレフインとエチ
レン性不飽和ジカルボン酸無水物の混合物をラジ
カル共重合して得た共重合体を水酸化ナトリウ
ム、水酸化カリウム、アンモニアの如き塩基の存
在下に加水分解することにより製造することがで
きる。ここでエチレン性不飽和ジカルボン酸無水
物:鎖状オレフインの仕込み比は適宜選択しうる
が、好ましくは30〜70:70〜30(モル比)、より好
ましくはほぼ等モルの混合物が使用される。 用いられる共重合体の分子量は実際に使用され
る配合条件等によつて適宜決定され得るが、通
常、蒸気圧浸透法による数平均分子量で300〜
50000、であり、好ましくは1000〜20000である。
また、本発明の効果を本質的に損わない範囲であ
れば、この共重合体の一部をエステル化、アミド
化またはイミド化して用いることもできる。 かかる(A)成分と(B)成分の添加方法はとくに制限
されるものではなく、両者を予め混合してから添
加する方法、両成分を個別に添加する方法のいず
れでもよい。 本発明においては、さらに必要に応じて骨材
(細骨材、粗骨材)、一般減水剤、AE剤、早強剤、
遅延剤などを加えてもよく、細骨材としては、川
砂、海砂、砕砂、スラグ砂などが例示され、粗骨
材としては川砂利、砕石、スラグ砕石、軽量骨材
などが例示される。 このようにして得られるセメント配合物(すな
わちコンクリート、モルタルまたはセメントペー
スト)は、次いで5℃以下の低温下に打設され
る。従来、ナフタレンスルホン酸塩ホルマリン縮
合物、メラミンスルホン酸塩ホルマリン縮合物な
どの高性能減水剤とオレフイン−無水マレイン酸
共重合体塩を併用することにより減水性能を改良
する方法は公知である(特公昭55−51863号、同
56−12268号)。しかし本発明においては、かかる
両成分を特定比率で併用し、かつ低塩下で打設す
ることにより減水性能の改良効果を一段と向上さ
せ、しかも初期強度及び長期強度の両面で優れた
性能を示すセメント硬化物を得ることができる。
とくにコンクリート配合の場合に優れた改良効果
を得ることができる。 以下に実施例を挙げて本発明を更に具体的に説
明する。なお、実施例及び比較例中の部及び%は
とくに断わりのない限り重量基準である。 参考例 1 1オートクレーブ中、窒素雰囲気下にて無水
マレイン酸98部、第1表に示すC5オレフイン混
合物110部、ベンゾイルパーオキサイド4部およ
びベンゼン400部の混合物を、70〜75℃にて8時
間加熱撹拌し、反応させた。重合反応終了後、析
出した共重合体を瀘別集収し乾燥した。C5−鎖
状オレフイン−無水マレイン酸共重合体89部が得
られた。かかる共重合体84部と10%水酸化ナトリ
ウム水溶液400部とを80〜90℃に加熱撹拌し、C5
−鎖状オレフイン−無水マレイン酸共重合体のナ
トリウム塩〔〕の水溶液を得た。 第1表 iso−ペンタン 15.57% n−ペンタン 15.44% 2−メチルブテン−1 42.06% ペンテン−1 26.88% イソプレン 0.05% 参考例 2 参考例1のオレフインに代え、第2表に示す
C5−鎖状オレフイン混合物75部を用いた以外は、
参考例1と同様の操作により110部の共重合体を
得た。かかる共重合体84部と10%水酸化ナトリウ
ム水溶液400部との混合物を80〜90℃で加熱撹拌
し、C5−鎖状オレフイン−無水マレイン酸共重
合体のナトリウム塩〔〕の水溶液を得た。 第2表 n−ペンタン 2.46% 2−メチルブテン−1 12.60% trans−ペンテン−2 35.05% cis−ペンテン−2 15.93% 2−メチルプテン−2 31.70% ペンテン−1 2.26% 参考例 3 参考例1のC5オレフイン混合物に代え、ブテ
ン−1 60部を用いた以外は、参考例1と同様の
操作により67部の共重合体を得た。かかる共重合
体38.5部と10%水酸化ナトリウム水溶液200部と
の混合物を80〜90℃で加熱撹拌しブテン−1−無
水マレイン酸共重合体のナトリウム塩〔〕の水
溶液を得た。 参考例 4 還流管付き1セパラブルフラスコに無水マレ
イン酸98部、メチルエチルケトン300部、ヘキセ
ン−1 84部およびアゾビスイソブチロニトリル
4部を入れ、窒素雰囲気下にて65〜70℃にて撹拌
しながら反応させた。10時間反応させたのち、系
を室温まで冷却し、冷メタノールを加えポリマー
を沈析させた。瀘別集収後、減圧乾燥し共重合体
108部を得た。該共重合体91部および10%水酸化
ナトリウム水溶液400部との混合物を80〜90℃で
撹拌し、ヘキセン−1−無水マレイン酸共重合体
のナトリウム塩〔〕の水溶液を得た。 参考例 5 参考例1で得られたC5オレフイン−無水マレ
イン酸共重合体100部をメチルエチルケトン200に
溶解し、更にメチルアルコール5部を加え、加熱
還流条件下にて8時間撹拌反応させた。反応後、
系からメチルエチルケトンを溜去し、ポリマーを
乾燥したのち、10%水酸化ナトリウム水溶液412
部を加え中和反応を行い、エステル化度12.8%
(共重合体中のカルボニル基のうち12.8%がエス
テル基を形成していることを意味する。)のC5
レフイン−マレイン酸共重合体部分メチルエステ
ル化物のナトリウム塩(水溶性塩〔〕)を得た。 実施例1〜13及び比較例1〜4 セメント、水、骨材、減水剤成分等を下記の配
合に従つて強制練りミキサーで5℃で60秒間混練
し、JIS A1101に従つてスランプを測定した。ま
た混練終了後90分経過した時点で別途サンプリン
グを行い、水温約5℃で水中養生し、3日後及び
28日後にそれぞれの硬化物の圧縮強度をJIS
A1108に従つて測定した。結果を第3表に示す。 配 合 セメント:秩父社製普通ポルトランドセメント
400Kg/m3 粗骨材:相模産最大寸法20mm 1140Kg/m3 細骨材:大井川産川砂 691Kg/m3 水: 160Kg/m3 減水剤成分:対セメント 所定量
The present invention relates to a method for producing a cured cement product at low temperatures, and more specifically, the present invention relates to a method for producing a cured cement product at low temperatures, and more specifically, a water-soluble salt of a copolymer of a high performance water reducer (A), a chain olefin, and an ethylenically unsaturated dicarboxylic acid anhydride as a water reducer component. This invention relates to a method for producing a hardened cement product that is cast at low temperatures using (B) in combination. Conventionally, hardened cement products produced at low temperatures below 5°C have a water-to-cement ratio (W/
It is necessary to increase the initial strength by lowering C). In particular, secondary concrete products that require high strength and highly fluidized concrete require an extremely small water-cement ratio. For this reason, various water reducing agents have been developed, and among them, high performance water reducing agents that provide high dispersibility without slowing setting or increasing the amount of air entrainment are currently in wide use. However, although known high performance water reducing agents such as naphthalene sulfonate formalin condensate type and melamine sulfonate formalin condensate type show excellent water reducing effect at room temperature, their water reducing effect is reduced at low temperature below 5℃. It has the major drawback of being significantly reduced. Therefore, a method has been proposed in which such a high-performance water reducing agent is used in combination with a small amount of gluconate (Japanese Patent Laid-Open No. 164052/1983), but even this method is not necessarily sufficient as a measure to prevent the water reduction effect from decreasing. I can't say that. Therefore, the inventors of the present invention have conducted intensive studies to overcome these drawbacks of the conventional technology, and have found that a high performance water reducing agent (A), a chain olefin, and an ethylenically unsaturated dicarbonate are used as water reducing agent components when pouring at low temperatures. When used in combination with the water-soluble salt of acid anhydride copolymer (B) in a specific ratio, it is possible to prevent the water-reducing effect from decreasing.
without reducing workability during pouring.
The inventors have also discovered that a cured concrete product with high initial strength and long-term strength can be obtained, and have completed the present invention. Thus, according to the present invention, when producing a hardened cement product by kneading cement, a water reducing agent component, water, and a desired compounding agent and then casting at a temperature of 5° C. or lower, a high performance water reducing agent (A) is added as a water reducing agent component. ) and carbon number 4
The water-soluble salt (B) of the copolymer of chain olefin and ethylenically unsaturated dicarboxylic acid anhydride of ~6 to (A) component 95
Provided is a method for producing a cured cement product at low temperatures, characterized in that component (B) is used in combination at a ratio of ~70% by weight and component (B) in a ratio of 5 to 30% by weight. In the present invention, a cement mixture is obtained by first adding water, a water reducing agent component, and a desired compounding agent to cement and kneading the mixture. The cement used may be any commonly used cement, such as ordinary Portland cement, early strength Portland cement, blast furnace cement,
Examples include fly ash cement, jet cement, expansive cement, and super early strength cement. In addition, the water reducing agent component is a high performance water reducing agent (A) in an amount of 95 to 70% by weight, preferably 90 to 75% by weight, and a water solubility of a chain olefin having 4 to 6 carbon atoms and an ethylenically unsaturated dicarboxylic acid anhydride copolymer. It consists of 5 to 30% by weight of salt (B), preferably 10 to 25% by weight, and 0.01 to 5% by weight of solids, preferably 0.01 to 5% by weight of cement.
It is added in a proportion of 0.1 to 2% by weight. At this time, the usage ratio of component (A) and component (B) is an important requirement; if the ratio of component (A) becomes too large, the water reduction performance at low temperatures will decrease, and if the amount added is increased, air entrainment will occur. The amount increases, and the initial strength of the hardened cement product decreases. The component (A) used may be any one commonly used as a high-performance water reducing agent, and specific examples thereof include formalin condensates of naphthalene sulfonates, formalin condensates of methylnaphthalene sulfonates, Formalin condensates of alkylaryl sulfonates, formalin condensates of melamine sulfonates, etc. are listed, and representative commercial products include Mighty-150 (manufactured by Kao Soap Co., Ltd.),
Examples include Melment F-10 (manufactured by Showa Denko). On the other hand, component (B) is a water-soluble salt of a copolymer of a chain olefin having 4 to 6 carbon atoms and an ethylenically unsaturated dicarboxylic acid anhydride. Here, as the chain olefin having 4 to 6 carbon atoms, butene-1, butene-2,
Isobutylene, pentene-1, pentene-2, 2
-Methyl-butene-1,2-methyl-butene-
Examples include 2,4-methyl-pentene-1, hexene-1, and mixtures thereof, and examples of ethylenically unsaturated dicarboxylic acid anhydrides include maleic anhydride, itaconic anhydride, citraconic anhydride, etc. However, maleic anhydride is particularly advantageous industrially. Such a copolymer salt is prepared by radically copolymerizing a mixture of the chain olefin and an ethylenically unsaturated dicarboxylic acid anhydride, and hydrating the copolymer in the presence of a base such as sodium hydroxide, potassium hydroxide, or ammonia. It can be produced by decomposition. Here, the charging ratio of ethylenically unsaturated dicarboxylic acid anhydride to chain olefin can be selected as appropriate, but preferably 30 to 70:70 to 30 (molar ratio), more preferably a mixture of approximately equimolar ratio is used. . The molecular weight of the copolymer used can be appropriately determined depending on the compounding conditions actually used, but it is usually 300 to 300 as determined by the number average molecular weight determined by vapor pressure osmosis.
50,000, preferably 1,000 to 20,000.
Further, a part of this copolymer may be esterified, amidated or imidized and used as long as the effects of the present invention are not essentially impaired. The method of adding component (A) and component (B) is not particularly limited, and may be either a method of mixing the two components in advance and then adding them, or a method of adding both components individually. In the present invention, if necessary, aggregates (fine aggregate, coarse aggregate), general water reducing agents, AE agents, early strengthening agents,
A retarder or the like may be added. Examples of fine aggregate include river sand, sea sand, crushed sand, slag sand, etc., and examples of coarse aggregate include river gravel, crushed stone, crushed slag, lightweight aggregate, etc. . The cement mixture thus obtained (ie concrete, mortar or cement paste) is then cast at a low temperature of below 5°C. Conventionally, a method of improving water reduction performance by using a high performance water reducing agent such as a naphthalene sulfonate formalin condensate or a melamine sulfonate formalin condensate together with an olefin-maleic anhydride copolymer salt has been known (especially Publication No. 55-51863, same
56-12268). However, in the present invention, by using both of these components in a specific ratio and casting under low salt conditions, the effect of improving water reduction performance is further improved, and moreover, it exhibits excellent performance in both initial strength and long-term strength. A hardened cement product can be obtained.
In particular, excellent improvement effects can be obtained in the case of concrete mixtures. The present invention will be explained in more detail with reference to Examples below. Note that parts and percentages in Examples and Comparative Examples are based on weight unless otherwise specified. Reference Example 1 1 A mixture of 98 parts of maleic anhydride, 110 parts of the C5 olefin mixture shown in Table 1, 4 parts of benzoyl peroxide, and 400 parts of benzene was heated in an autoclave under a nitrogen atmosphere at 70 to 75°C for 8 hours. The mixture was heated and stirred to react. After the polymerization reaction was completed, the precipitated copolymer was collected by filtration and dried. 89 parts of a C5-chain olefin-maleic anhydride copolymer was obtained. 84 parts of this copolymer and 400 parts of a 10% aqueous sodium hydroxide solution were heated and stirred at 80 to 90°C, and C5
An aqueous solution of sodium salt of -chain olefin-maleic anhydride copolymer was obtained. Table 1 iso-pentane 15.57% n-pentane 15.44% 2-methylbutene-1 42.06% pentene-1 26.88% isoprene 0.05% Reference example 2 Replacement of olefin in reference example 1 as shown in Table 2
Except that 75 parts of C5-linear olefin mixture was used.
By the same operation as in Reference Example 1, 110 parts of a copolymer was obtained. A mixture of 84 parts of this copolymer and 400 parts of a 10% aqueous sodium hydroxide solution was heated and stirred at 80 to 90°C to obtain an aqueous solution of sodium salt of C5-chain olefin-maleic anhydride copolymer. . Table 2 n-pentane 2.46% 2-methylbutene-1 12.60% trans-pentene-2 35.05% cis-pentene-2 15.93% 2-methylbutene-2 31.70% Pentene-1 2.26% Reference example 3 C5 olefin of reference example 1 67 parts of a copolymer was obtained in the same manner as in Reference Example 1, except that 60 parts of butene-1 was used instead of the mixture. A mixture of 38.5 parts of this copolymer and 200 parts of a 10% aqueous sodium hydroxide solution was heated and stirred at 80 to 90°C to obtain an aqueous solution of the sodium salt of butene-1-maleic anhydride copolymer. Reference Example 4 Put 98 parts of maleic anhydride, 300 parts of methyl ethyl ketone, 84 parts of hexene-1, and 4 parts of azobisisobutyronitrile into a separable flask equipped with a reflux tube, and stir at 65 to 70°C under a nitrogen atmosphere. I reacted while doing so. After reacting for 10 hours, the system was cooled to room temperature, and cold methanol was added to precipitate the polymer. After collecting by filtration, dry under reduced pressure to form a copolymer.
Obtained 108 copies. A mixture of 91 parts of the copolymer and 400 parts of a 10% aqueous sodium hydroxide solution was stirred at 80 to 90°C to obtain an aqueous solution of the sodium salt of hexene-1-maleic anhydride copolymer. Reference Example 5 100 parts of the C 5 olefin-maleic anhydride copolymer obtained in Reference Example 1 was dissolved in 200 parts of methyl ethyl ketone, 5 parts of methyl alcohol was further added, and the mixture was stirred and reacted under reflux conditions for 8 hours. After the reaction,
After distilling off the methyl ethyl ketone from the system and drying the polymer, 10% aqueous sodium hydroxide solution 412
The degree of esterification was 12.8% by adding 100% of
(This means that 12.8% of the carbonyl groups in the copolymer form ester groups.) Sodium salt (water-soluble salt []) of partial methyl ester of C5 olefin-maleic acid copolymer I got it. Examples 1 to 13 and Comparative Examples 1 to 4 Cement, water, aggregate, water reducing agent components, etc. were kneaded in a forced mixing mixer for 60 seconds at 5°C according to the following formulation, and the slump was measured according to JIS A1101. . Separate sampling was performed 90 minutes after the completion of kneading, and the samples were cured in water at a temperature of approximately 5°C, and after 3 days and
After 28 days, the compressive strength of each cured product was determined by JIS.
Measured according to A1108. The results are shown in Table 3. Blended cement: Ordinary Portland cement manufactured by Chichibu Corporation
400Kg/m 3Coarse aggregate: Maximum dimension 20mm from Sagami 1140Kg/m 3Fine aggregate: River sand from Oigawa River 691Kg/m 3Water : 160Kg/m 3Water reducer component: Specified amount for cement

【表】 この結果から、(A)成分と(B)成分を併用すること
により減水性能が向上し、かつ初期強度、長期強
度がいずれも改良されることがわかる。また(A)成
分とともに凝結遅延剤の代表的な例であるグルコ
ン酸を併用する公知技術に比較しても優れた効果
を示すことがわかる。
[Table] From this result, it can be seen that the combined use of components (A) and (B) improves water reduction performance and improves both initial strength and long-term strength. Furthermore, it can be seen that the present invention exhibits superior effects when compared to the known technique in which gluconic acid, which is a typical example of a setting retardant, is used in combination with component (A).

Claims (1)

【特許請求の範囲】[Claims] 1 セメント、減水剤成分、水及び所望の配合剤
を混練したのち5℃以下の温度で打設しセメント
硬化物を製造するに際し、減水剤成分として高性
能減水剤(A)と炭素数4〜6の鎖状オレフインとエ
チレン性不飽和ジカルボン酸無水物の共重合体の
水溶性塩(B)を(A)成分95〜70重量%と(B)成分5〜30
重量%の割合で併用することを特徴とする低温時
におけるセメント硬化物の製造方法。
1. When producing a cement cured product by kneading cement, water reducing agent components, water and desired compounding agents and pouring at a temperature of 5°C or less, high performance water reducing agent (A) and a carbon number of 4 to 4 are used as water reducing agent components. The water-soluble salt (B) of the copolymer of chain olefin and ethylenically unsaturated dicarboxylic acid anhydride in No. 6 was mixed with 95 to 70% by weight of component (A) and 5 to 30% by weight of component (B).
A method for producing a cured cement product at a low temperature, characterized by using the combined products in a proportion of % by weight.
JP16015183A 1983-08-31 1983-08-31 Manufacture of cement set body Granted JPS6051649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16015183A JPS6051649A (en) 1983-08-31 1983-08-31 Manufacture of cement set body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16015183A JPS6051649A (en) 1983-08-31 1983-08-31 Manufacture of cement set body

Publications (2)

Publication Number Publication Date
JPS6051649A JPS6051649A (en) 1985-03-23
JPH0250068B2 true JPH0250068B2 (en) 1990-11-01

Family

ID=15708974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16015183A Granted JPS6051649A (en) 1983-08-31 1983-08-31 Manufacture of cement set body

Country Status (1)

Country Link
JP (1) JPS6051649A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612268A (en) * 1979-07-05 1981-02-06 Murata Mach Ltd Method for supplying wound thread into magazine of winder
JPS56164052A (en) * 1980-05-21 1981-12-16 Kao Corp Manufacture of cement hardened body at cold time
JPS5895634A (en) * 1981-11-28 1983-06-07 電気化学工業株式会社 Cement dispersant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612268A (en) * 1979-07-05 1981-02-06 Murata Mach Ltd Method for supplying wound thread into magazine of winder
JPS56164052A (en) * 1980-05-21 1981-12-16 Kao Corp Manufacture of cement hardened body at cold time
JPS5895634A (en) * 1981-11-28 1983-06-07 電気化学工業株式会社 Cement dispersant

Also Published As

Publication number Publication date
JPS6051649A (en) 1985-03-23

Similar Documents

Publication Publication Date Title
US4906298A (en) Hydraulic cement composition
JPS582190B2 (en) Manufacturing method of AE concrete or AE mortar
JP2000203910A (en) Polycarboxylic acid type water-reducing agent and concrete composition using the same
JPH0250068B2 (en)
JPH05213653A (en) Hydraulic composition having high flowability and strength
JPH0258224B2 (en)
JPH0216264B2 (en)
JPS5914415B2 (en) Water reducing agent composition for hydraulic cement
JPH025699B2 (en)
JP4709359B2 (en) Hydraulic composition
JPS61205653A (en) Admixing agent for cement
JPH0641384B2 (en) Admixture for cement
JPH027902B2 (en)
JPS6351989B2 (en)
JPH0216260B2 (en)
JPH0222020B2 (en)
JPH0153218B2 (en)
JPH0515651B2 (en)
JPH0327505B2 (en)
JPH0515652B2 (en)
JPH06279085A (en) Cement admixture
JPS6325252A (en) Admixing agent for cement
JPS61178455A (en) Admixing agent for cement
JPH0662327B2 (en) Admixture for cement
JPH01103938A (en) Slump loss reducing type admixture and composition thereof