JPH0250060B2 - - Google Patents

Info

Publication number
JPH0250060B2
JPH0250060B2 JP55095760A JP9576080A JPH0250060B2 JP H0250060 B2 JPH0250060 B2 JP H0250060B2 JP 55095760 A JP55095760 A JP 55095760A JP 9576080 A JP9576080 A JP 9576080A JP H0250060 B2 JPH0250060 B2 JP H0250060B2
Authority
JP
Japan
Prior art keywords
gel
raw material
layer
multilayer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55095760A
Other languages
Japanese (ja)
Other versions
JPS5722131A (en
Inventor
Makoto Sato
Kenzo Susa
Iwao Matsuyama
Yasuo Suganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9576080A priority Critical patent/JPS5722131A/en
Publication of JPS5722131A publication Critical patent/JPS5722131A/en
Publication of JPH0250060B2 publication Critical patent/JPH0250060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz

Description

【発明の詳細な説明】 本発明は光学ガラス体の原料となり、それ自身
も種々の応用面を有する多層ゲル構造体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a multilayer gel structure which is a raw material for optical glass bodies and which itself has various applications.

最近、金属アルコキシド(例えばSi(OCH34
を加水分解して得られる多孔質ゲルを焼結し、無
孔のブロツク体(例えばシリカガラス体あるいは
Zr、Tiなどをドーピングしたシリカガラス体)
を作製する方法(以下ゾル・ゲル法と呼ぶ)が提
示されている。
Recently, metal alkoxides (e.g. Si( OCH3 ) 4 )
The porous gel obtained by hydrolyzing the
Silica glass body doped with Zr, Ti, etc.)
A method for producing the sol-gel method (hereinafter referred to as the sol-gel method) has been proposed.

第1図はゾルゲル法のプロセスの概要を示した
もので、例えばSi(OCH34を原料とし、CH3OH
およびH2Oを混合かくはんして原料液16を作
つた(11)のち、所望の容器20に移しゲル化
させる(このゲルを以下ウエツトゲル17と呼
ぶ)(12)。つぎに、残留物であるCH3OHおよ
びH2Oを徐々に飛散させシリカゲルを乾燥して
乾燥ゲル18として(13)、しかるのち約1000
℃以上で焼結ガラス化してガラス体19を得る
(14)。
Figure 1 shows an overview of the sol-gel process. For example, Si(OCH 3 ) 4 is used as a raw material, and CH 3 OH
and H 2 O are mixed and stirred to prepare a raw material liquid 16 (11), and then transferred to a desired container 20 and gelled (this gel is hereinafter referred to as wet gel 17) (12). Next, the residual CH 3 OH and H 2 O are gradually dispersed and the silica gel is dried to form dry gel 18 (13), and then about 1000
The glass body 19 is obtained by sintering and vitrifying at a temperature of 0.degree. C. or higher (14).

ソル・ゲル法はガラス溶融温度以下の低温で多
量のガラスを合成できるため、経済的な製法とし
ての利点を有する。
The sol-gel method has the advantage of being an economical manufacturing method because it can synthesize a large amount of glass at a low temperature below the glass melting temperature.

加えて、多孔質の乾燥シリカゲルは作成条件に
依存するが、比表面積が約800m3/g、細孔径が
20〜100Åであり、ゲル状態を微粒子の集合体と
した場合約100Åの微粒子の集まりに相当する。
したがつて細孔界面を利用した選択透過媒体や各
種反応触媒また光散乱を用いた指向性の光の擬球
面波への変換部品など種々の応用がある。
In addition, porous dry silica gel has a specific surface area of about 800 m 3 /g and a pore diameter of about 800 m 3 /g, although it depends on the preparation conditions.
It is 20 to 100 Å, and if the gel state is an aggregate of fine particles, it corresponds to a collection of fine particles of about 100 Å.
Therefore, there are various applications such as selective permeation media that utilize pore interfaces, various reaction catalysts, and parts that convert directional light into pseudospherical waves using light scattering.

本発明の目的はゾル・ゲル法による多層ゲル構
造体の製造方法の提供にあり、また光学部品の原
料となる構造の多層ゲル構造体の製造方法の提供
にある。
An object of the present invention is to provide a method for manufacturing a multilayer gel structure by a sol-gel method, and also to provide a method for manufacturing a multilayer gel structure having a structure that can be used as a raw material for optical components.

以下実施例で本発明の目的、手法を説明する。 The purpose and method of the present invention will be explained below with reference to Examples.

実施例 1 Si(OH3415.2g、メタノール14.4g、蒸留水
7.2gを混合撹はんし、底辺が10mm×100mm高さが
50mmの箱状のガラス容器に高さ10mm程度充てん
し、室温でゲル化させ第4層を形成した。次に上
記原料液にGe(OH34を0.5gを添加した原料液を
準備し上記第4層の上に約10mm充てんし第3層を
ゲル化させた。同様にGe(OCH34を1g、3g
有する原料液を順次ゲル化させ、残留した水とメ
タノールを飛散させて第2図に示す4層から成る
乾燥ゲルを作成した。ここでゲルは乾燥すること
によつて収縮し、この収縮量は温度などのゲル化
ならびに乾燥条件によつて異なる。典型的な例と
しては、70℃で10日間乾燥したゲルは容器形状の
約半分に収縮する。本実施例もこの条件とした。
したがつて所望形状のゲルを得る場合には注意を
要する。
Example 1 15.2 g of Si(OH 3 ) 4 , 14.4 g of methanol, distilled water
Mix and stir 7.2g, and the base is 10mm x 100mm high.
The mixture was filled into a 50 mm box-shaped glass container with a height of about 10 mm, and gelatinized at room temperature to form a fourth layer. Next, a raw material solution prepared by adding 0.5 g of Ge(OH 3 ) 4 to the above raw material solution was prepared and filled about 10 mm onto the fourth layer to gel the third layer. Similarly, 1g and 3g of Ge(OCH 3 ) 4
The raw material solution was sequentially gelled, and the remaining water and methanol were scattered to form a dry gel consisting of four layers as shown in FIG. 2. Here, the gel shrinks as it dries, and the amount of shrinkage varies depending on gelation and drying conditions such as temperature. Typically, a gel dried at 70°C for 10 days will shrink to about half the container shape. This example was also set under these conditions.
Therefore, care must be taken when obtaining a gel of a desired shape.

得られた乾燥ゲルに機械的強度を附与すべく若
干の加熱処理を(O2、N2あるいは不活性ガス中
200〜800℃)を施こした後、第2図の左方から
He−Neレーザ21の光をGe含有量の多い高屈
折率層(第1層22)に照射し、直角方向(第4
層25面から出る)の散乱光をパワーメータ26
で検出した。検出出力は入力の約10-3となり低下
したが、 反射型のデイスプレイ表示素子(液晶数字表示
素子)の表示面の直角方向に第4層面がくるよう
に位置してこの散乱光を照射したところ素子の数
字が日視し易く、自然光に近い無指向性の光の得
られることがわかつた。各層22,23,24,
25の組成ならびに層数および層の厚さは、光源
と所望する光の状態ならびに光量との相関におい
て決定される。したがつて一義的に規定すること
はできないが、例えば指向性の強いレーザ光を用
いた場合には、光の減衰を考慮して3〜4層か
つ、光の照射層は散乱光量を得るため高屈折率の
組成が望ましい。また第2図を例にとれば第1層
22面の外表面にAlなどの反射膜をコーテイン
グすれば散乱光量を増加し得る。上記200〜800℃
での加熱処理はなくてもよいが、この処理をする
とさらに機械的強度および透光性が向上する。
In order to impart mechanical strength to the resulting dried gel, it is subjected to a slight heat treatment (in O 2 , N 2 or inert gas).
200~800℃) from the left side of Figure 2.
The light from the He-Ne laser 21 is irradiated to the high refractive index layer (first layer 22) with a high Ge content, and
The scattered light (emitted from the surface of the layer 25) is detected by the power meter 26.
Detected with. The detection output decreased to about 10 -3 of the input, but when this scattered light was irradiated with a reflective display element (liquid crystal numeric display element) positioned so that the fourth layer surface was perpendicular to the display surface. It was found that the numbers on the element were easy to see in the sun and that omnidirectional light close to natural light could be obtained. Each layer 22, 23, 24,
The composition of 25 and the number and thickness of the layers are determined in correlation with the light source, the desired light state, and the amount of light. Therefore, it cannot be defined unambiguously, but for example, when using a highly directional laser beam, there should be 3 to 4 layers in consideration of light attenuation, and the light irradiation layer should have 3 to 4 layers to obtain the amount of scattered light. A composition with a high refractive index is desirable. Taking FIG. 2 as an example, the amount of scattered light can be increased by coating the outer surface of the first layer 22 with a reflective film such as Al. Above 200~800℃
Although the heat treatment is not necessary, mechanical strength and translucency are further improved by this treatment.

なお上述した自然光(ほぼ無指向性の光)への
変換物としては、すりガラスが簡便で多用され
る。しかし、すりガラスでは通常のランプからの
光でも光に指向性が残り自然光状態にするのは困
難であつた。ゲル状態の光散乱性を利用した本発
明によつて、暗所における数表示等表示素子を目
視し易すくし得るものである。第2図において、
23,24,25はそれぞれ第2層、第3層、第
4層である。
Note that frosted glass is simple and often used as a material for converting into the above-mentioned natural light (substantially non-directional light). However, with frosted glass, even the light from a normal lamp remains directional, making it difficult to create natural light. The present invention, which utilizes the light scattering properties of the gel state, makes it possible to easily see display elements such as number displays in dark places. In Figure 2,
23, 24, and 25 are the second layer, the third layer, and the fourth layer, respectively.

実施例 2 Si(OCH3415.2g、メタノール14.4g、蒸留水
7.2gに屈折率調整ドーパントとしてTi(OC3H74
を3g添加混合した原料液を10〓、長さ100mmの容
器に充てん、ゲル化後このウエツトゲルを第2の
容器である20〓、長さ100mmの中心部分に設置す
る。ドーパントとして軟化温度を低下させるBの
アルコキシド(B(OCH33)をSi(OCH34に対
して10〜20mol%を含有した第2の原料液を第2
の容器の第1のゲル周辺でゲル化させ、第2のウ
エツトゲルを形成する。さらに同様の方法でドー
パントを含まない原料液を第3の容器(30〓長さ
100mm)でゲル化させ3層構造を有する円柱状ゲ
ルを作成しゲル内および周辺に残留する離漿水を
蒸発乾燥(70℃で約10日)後機械的強度を附与す
べく若干の加熱処理した。処理条件はO2中200〜
800℃である。ゲルの端面中心部分の第1層にレ
ーザ光を照射したところ、擬自然光をゲルの円柱
周上に取出すことができた。この円周方向に発す
る擬自然光は前記板状多層ゲルと同様数字表示素
子と組合せることによつて暗所における目視を容
易にすることができる。
Example 2 15.2 g of Si(OCH 3 ) 4 , 14.4 g of methanol, distilled water
Ti( OC3H7 ) 4 as a refractive index adjusting dopant to 7.2g
Fill a container with a length of 100 mm with 10 ml of raw material solution containing 3 g of 3 g added and mixed, and after gelling, place this wet gel in the center of a second container with a length of 20 ml and 100 mm. A second raw material solution containing 10 to 20 mol % of B alkoxide (B(OCH 3 ) 3 ), which lowers the softening temperature as a dopant, based on Si(OCH 3 ) 4 is added to the second raw material solution.
gel around the first gel in the container to form a second wet gel. Furthermore, in the same manner, the raw material solution containing no dopant was transferred to a third container (30 mm long).
100mm) to create a cylindrical gel with a three-layer structure, and after evaporating and drying the synergic water remaining in and around the gel (about 10 days at 70℃), it was heated slightly to give it mechanical strength. Processed. Processing conditions are 200~200 in O2
It is 800℃. When the first layer at the center of the end face of the gel was irradiated with laser light, pseudo-natural light could be extracted onto the cylindrical circumference of the gel. This pseudo-natural light emitted in the circumferential direction can be combined with a numeric display element, similar to the plate-shaped multilayer gel, to facilitate visual recognition in a dark place.

同様の方法で作成した乾燥ゲルを約1150℃で加
熱焼結したところ、軟化温度の高いTiを含む中
心部第1層を除き、第2および第3層をほぼ無孔
化することができた。試料の端面第1層部分にレ
ーザ光を照射したところ未焼結のゲルと比べて散
乱光量は少ないが部分的に輝点を含む光ガイドに
することができ、装飾用として有効であることが
わかつた。上記試料を輪切りにし円柱体の径方向
の屈折率分布を調べたところ、各層間でドーパン
トの拡散によると思われる屈折率のなめらかな分
布変化が見られ、このことは、順次形成したゲル
の各層が融合し、密着性の良いものであることを
示していると考えられる。
When dry gel prepared in a similar manner was heated and sintered at approximately 1150°C, the second and third layers were made almost non-porous, except for the first layer in the center, which contains Ti, which has a high softening temperature. . When the first layer of the end face of the sample was irradiated with laser light, the amount of scattered light was lower than that of unsintered gel, but it was possible to create a light guide that partially contained bright spots, making it effective for decorative purposes. I understand. When the above sample was sliced into rings and the refractive index distribution in the radial direction of the cylindrical body was examined, a smooth distribution change in the refractive index was observed between each layer, which was thought to be due to dopant diffusion. It is thought that this indicates that the particles are fused and have good adhesion.

実施例 3 実施例1に記載のSi(OCH34を含む母原料液
(第3の原料液とする)および母原料液にSiに対
してGeを10mol%ならびに30mol%のBを含むそ
れぞれ第1、第2の原料液を準備し、第1の円柱
容器(5〓長さ100mm)および第3の円筒容器(外
径15〓、内径7〓長さ100mm)にそれぞれ第1および
第3の原料液を充てんし、容器をほぼ密閉し70℃
の恒温そう内でゲル化させた。さらに第1および
第3の容器で作成したウエツトゲルを、第2の円
柱容器(15〓長さ100mm)内に同心配置し、第1の
ウエツトゲルと第3のウエツトゲルの間隙に第2
の原料液を充てんした。再びほぼ密閉して70℃の
恒温そう内でゲル化し、徐々に密閉度を悪くして
乾燥ゲルを作成した。この乾燥ゲルを昇温加熱
し、約1300℃で焼結無孔ガラス体を作成し、さら
に約1900℃の電気炉を用いて、外径が約150μ〓の
ガラス細線とした。このガラス細線はいわゆる光
フアイバと呼ばれるもので、測定の結果一端から
入射した光が約100mの他端に伝送し、低損失の
光ガイドであることがわかつた。ここで第2層は
光ガイドの種類および各層の熱膨張差によつて生
ずる応力の調整度によつて組成、層厚が選ばれ
る。
Example 3 A mother liquid containing Si(OCH 3 ) 4 described in Example 1 (referred to as the third raw material liquid) and a mother liquid containing 10 mol% of Ge and 30 mol% of B based on Si, respectively. Prepare the first and second raw material liquids, and place them in a first cylindrical container (5〓 length 100 mm) and a third cylindrical container (outer diameter 15〓, inner diameter 7〓 length 100 mm). Fill the container with the raw material liquid, close the container almost tightly, and heat it to 70℃.
gelatinized in a constant temperature chamber. Furthermore, the wet gels prepared in the first and third containers were placed concentrically in a second cylindrical container (15 mm, length 100 mm), and a second wet gel was placed in the gap between the first wet gel and the third wet gel.
Filled with raw material liquid. The gel was almost sealed again and gelatinized in a constant temperature oven at 70°C, and the degree of sealing was gradually reduced to create a dry gel. This dried gel was heated to approximately 1300°C to create a sintered non-porous glass body, and then an electric furnace at approximately 1900°C was used to form a glass thin wire with an outer diameter of approximately 150μ. This thin glass wire is what is called an optical fiber, and measurements showed that light entering from one end was transmitted approximately 100 meters to the other end, making it a low-loss light guide. Here, the composition and layer thickness of the second layer are selected depending on the type of light guide and the degree of adjustment of stress caused by the difference in thermal expansion of each layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はゾル・ゲル法における各工程の概要を
説明した概略断面図、第2図は本発明の一実施例
で作成された多層ゲル構造体の光散乱による光質
変換原理の説明図である。 13……ドライゲルの得られた状態、14……
ガラス化された状態、16……原料液、17……
ウエツトゲル、18……ドライゲル、19……ガ
ラス体、21……レーザ、26……パワーメー
タ。
Figure 1 is a schematic cross-sectional view explaining the outline of each step in the sol-gel method, and Figure 2 is an explanatory diagram of the principle of light quality conversion by light scattering of a multilayer gel structure created in one embodiment of the present invention. be. 13... Obtained state of dry gel, 14...
Vitrified state, 16... Raw material liquid, 17...
Wet gel, 18...dry gel, 19...glass body, 21...laser, 26...power meter.

Claims (1)

【特許請求の範囲】 1 加水分解反応によりシリカゲルを生成する原
料液を用い、該原料液は透明石英ガラス状態での
屈折率調整用添加元素の化合物を含有するかまた
は含有しないものであり、かつ上記原料液の2種
以上を成形用の型を用いて順次ゲル化させる工程
と、ゲル化残留物を除去する工程を含むことを特
徴とする多層ゲル構造体の製造方法。 2 上記多層ゲル構造体が円筒もしくは円柱の3
層以上の同心多層構造をなすことを特徴とする特
許請求の範囲第1項記載の多層ゲル構造体の製造
方法。 3 上記同心多層構造において最内層もしくは中
心部分の屈折率を他の層より高く構成してなるこ
とを特徴とする特許請求の範囲第2項記載の多層
ゲル構造体の製造方法。
[Scope of Claims] 1. A raw material solution that produces silica gel through a hydrolysis reaction is used, and the raw material solution contains or does not contain a compound of an additive element for adjusting the refractive index in a transparent quartz glass state, and A method for producing a multilayer gel structure, comprising the steps of sequentially gelling two or more of the raw material liquids using a mold, and removing gelling residue. 2 The multilayer gel structure is cylindrical or cylindrical 3
The method for producing a multilayer gel structure according to claim 1, wherein the multilayer gel structure has a concentric multilayer structure of more than one layer. 3. The method for producing a multilayer gel structure according to claim 2, wherein the refractive index of the innermost layer or central portion of the concentric multilayer structure is higher than that of the other layers.
JP9576080A 1980-07-15 1980-07-15 Production of multilayer gel structure Granted JPS5722131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9576080A JPS5722131A (en) 1980-07-15 1980-07-15 Production of multilayer gel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9576080A JPS5722131A (en) 1980-07-15 1980-07-15 Production of multilayer gel structure

Publications (2)

Publication Number Publication Date
JPS5722131A JPS5722131A (en) 1982-02-05
JPH0250060B2 true JPH0250060B2 (en) 1990-11-01

Family

ID=14146435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9576080A Granted JPS5722131A (en) 1980-07-15 1980-07-15 Production of multilayer gel structure

Country Status (1)

Country Link
JP (1) JPS5722131A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297236A (en) * 1986-06-17 1987-12-24 Asahi Glass Co Ltd Production of quartz glass fiber
GB0025940D0 (en) * 2000-10-24 2000-12-13 Secr Defence Solvogels & a method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119512A (en) * 1978-04-06 1979-09-17 Mrinmay Samanta Synthetic process for glassy body
JPS54151628A (en) * 1978-05-22 1979-11-29 Hitachi Ltd Production of optical fiber
JPS56155038A (en) * 1980-04-30 1981-12-01 Hitachi Cable Ltd Preparation of base material for optical fiber
JPS577835A (en) * 1980-06-19 1982-01-16 Hitachi Cable Ltd Manufacture of base material for optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119512A (en) * 1978-04-06 1979-09-17 Mrinmay Samanta Synthetic process for glassy body
JPS54151628A (en) * 1978-05-22 1979-11-29 Hitachi Ltd Production of optical fiber
JPS56155038A (en) * 1980-04-30 1981-12-01 Hitachi Cable Ltd Preparation of base material for optical fiber
JPS577835A (en) * 1980-06-19 1982-01-16 Hitachi Cable Ltd Manufacture of base material for optical fiber

Also Published As

Publication number Publication date
JPS5722131A (en) 1982-02-05

Similar Documents

Publication Publication Date Title
CN1100727C (en) Manufacture of vitreous silica product
KR100497272B1 (en) Sol-gel process for the preparation of vitreous films of silicon oxide or based on silicon oxide, films thereby obtained and sol composition for preparing the films
Hench et al. Gel-silica optics
JPS6090852A (en) Treatment of glass for optical fiber
Scherer Structural evolution of sol-gel glasses
RU2175647C2 (en) Lens for step-by-step multiplication unit made from quartz glass
JPH0250060B2 (en)
Yamane et al. Preparation of gradient-index glass rods by the sol-gel process
GB2346141A (en) Composition for producing silica glass by sol-gel method
US11834362B2 (en) Method for producing multilayered silica glass body
JPS61256937A (en) Production of optical fiber base material
Dauger et al. SAXS study of NASIGEL and NASIGLAS (sodium superionic gels and glasses)
JPH02199033A (en) Production of optical glass
JPS6296339A (en) Production of optical fiber preform
JPS6081034A (en) Manufacture of base material for optical fiber
JPS61178428A (en) Production of optical glass
JPH0345202Y2 (en)
JPH01270524A (en) Production of quartz-based glass form with refractive index distribution
Ying Structural evolution of sol-gel derived ceramics during sintering
KR830002195B1 (en) Manufacturing method of raw material for optical fiber
JPS61198107A (en) Formation of quartz optical waveguide
JPH02172835A (en) Production of base material for optical fiber
Sano et al. AD-P006 409
JPS60215539A (en) Manufacture of optical fiber preform
JPS5899134A (en) Production of optical fiber