JPH02500482A - How to engraft endothelial cells on the surface - Google Patents
How to engraft endothelial cells on the surfaceInfo
- Publication number
- JPH02500482A JPH02500482A JP62506554A JP50655487A JPH02500482A JP H02500482 A JPH02500482 A JP H02500482A JP 62506554 A JP62506554 A JP 62506554A JP 50655487 A JP50655487 A JP 50655487A JP H02500482 A JPH02500482 A JP H02500482A
- Authority
- JP
- Japan
- Prior art keywords
- protein
- endothelial cells
- coated
- coating
- adhesion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/507—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
- C12N2533/54—Collagen; Gelatin
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Vascular Medicine (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 表面に内皮細胞を生着させる方法 本発明は、特にヒト由来のミクロ血管及びまたマクロ血管の内皮細#Aを異種表 面上で接着、伸展、移動、運動、増殖及び分化させることを可能にするもしくは それらを改良する、表面に内皮細胞を生着させる方法に関する。[Detailed description of the invention] How to engraft endothelial cells on the surface The present invention particularly provides a heterogeneous display of endothelial cells #A of human-derived microvessels and also macrovessels. or that allows adhesion, spreading, movement, movement, proliferation and differentiation on a surface. This invention relates to a method for engrafting endothelial cells on surfaces to improve these conditions.
通常は非トロンざデン特性を有する内皮細胞の単細胞層で血管が嫌われているこ とにニジスムーズな血液の流れ及び血液凝固の抑制が保証される。この細胞層が 損なわれたときに初めて血小板及び血液凝固系の活性化によシ管壁はトロンボダ ン性になる、つまり血液細胞の接着及び血塊の形成が惹起される。内皮細胞の移 動により損傷した管壁を補修することができる。その際に、内皮細胞の内皮下細 胞間質(SubendotherialeMatτix)への接着及び伸展がそ の移動、運動、増殖及び分化のための重要な前提である。細胞培養試験で、天然 細胞間質が内皮細胞の接着及び伸展のためのi&も良好な基礎であることが明ら かである( Madri、 J、A。A single cell layer of endothelial cells that normally have non-thrombotic properties, making blood vessels averse. Smooth blood flow and inhibition of blood coagulation are guaranteed. This cell layer Only when the blood vessels are damaged, platelets and the blood coagulation system are activated. This causes blood cell adhesion and clot formation. endothelial cell transfer It is possible to repair pipe walls damaged by movement. At that time, the subendothelial cells of endothelial cells Adhesion and extension to the intercellular space (Subendotheriale Matτix) It is an important prerequisite for the migration, movement, proliferation and differentiation of cells. In cell culture tests, natural Cellular interstitium is also found to be a good basis for endothelial cell adhesion and spreading. (Madri, J, A.
及びWilliams、 S、T、 ” J、 Ce11. Biol、 ” 、 97 。and Williams, S. T. “J. Ce11. Biol.” , 97.
153〜165(1983))。153-165 (1983)).
内皮下細胞間質の組成は複雑であり、かつとりわけコラーゲン、ラミニン、7オ ンヴイルプラント因子Wil Iebrand (Von Faktor )、フィブロネクチン、エラスチン、トロンざスボン ゾン及びその他の詳細が不明である成分より成る。それ故、細胞外間質の組成を 更に解明することは極めて興味深い。細胞外間質の組成は、内皮細胞が生体固有 ではない表面に、所謂生体材料に接着するのにも重要である。それというのも移 植した生体材料が生体内で内皮細胞では成長しないことが認められたからである 。従来、生体材料に接着させかつ伸展させるために内皮細胞を刺激する確かな方 法はなかった。また従来、生体内で内皮細胞を細胞間質に接着させて、新しい内 皮細胞層を生成させるために、生体材料がどのように被覆されていなければなら ないかという方法も知られていない。The composition of the subendothelial interstitium is complex and contains, among other things, collagen, laminin, and Will Plant Factor Wil Iebrand (Von Faktor), fibronectin, elastin, tronzabon It consists of chlorine and other ingredients whose details are unknown. Therefore, the composition of the extracellular stroma It would be extremely interesting to find out more. The composition of the extracellular stroma is unique to endothelial cells. It is also important for adhering to surfaces that are not so-called biomaterials. That's because it's moving. This is because it was observed that the implanted biomaterials did not grow as endothelial cells in vivo. . Traditionally, reliable methods of stimulating endothelial cells to adhere to and stretch biomaterials There was no law. Conventionally, endothelial cells were attached to the intercellular space in vivo, creating new endothelial cells. How should biomaterials be coated in order to generate a skin cell layer? There is no known method to find out.
それ故、本発明は、内皮細胞の接着を相応する細胞間質により達成するための方 法及び材料を開示するという課題をベースとする。Therefore, the present invention provides a method for achieving endothelial cell adhesion with a corresponding cell stroma. Based on the task of disclosing laws and materials.
本発明によりこの課題は、表面をS−タンパク質で被覆し、その後で内皮細胞を 生着させることを特徴とする、表面に内皮細胞を生着させる方法により解決さn る。With the present invention, this problem is solved by coating the surface with S-protein and then attaching it to the endothelial cells. This problem was solved by a method of engrafting endothelial cells on the surface, which is characterized by engraftment. Ru.
ビトロネクチンと同一であるS−タンパク質[Jenne。S-protein, which is identical to vitronectin [Jenne.
D、及び5tanlev K、に、、 @EMBOJ、” 、 4 、515! 1〜3157 (1985) : Preissner、 K、T、、 Hei mburger。D, and 5tanlev K, to,, @EMBOJ,”, 4, 515! 1-3157 (1985): Preissner, K.T., Hei mburger.
N、、 An4ers、 E及びMueller−Berghaus、 G、 ” Biochem。N., An4ers, E. and Mueller-Berghaus, G. ” Biochem.
(1986))が線維芽細胞の接着及び伸展を促進することは知られていた。し かしながらS−タンパク質が内皮細胞に対してどのような作用を及ぼすのかは知 られていなかった。(1986)) was known to promote fibroblast adhesion and spreading. death However, it is not known what effect S-protein exerts on endothelial cells. It wasn't.
S−タンパク質が濃度及び時間に相応してヒト由来のミクロ血管及びマクロ血管 の内皮細胞の接着を刺激することが判明し驚異的であった。その際に、S−タン パク質は細胞の接着、伸展、移動及び運動並びに増殖及び分化を促進する。その 際、S−タンパク質の機能はフィブロネクチン、7オンヴイルプラント因子又は フイデリノrンのような他の接着性タンパク質に対する抗体の存在によって妨害 されないが、S−タンパク質に対する抗体によって完全に抑制される。記載され たS−タンパク質の性質は、S−タンパク質の細胞結合部位の配列に相当する、 特徴的な配列Gty −Atg−GAy −Asp −8er t−有する合成 ペグチドによっても濃度に相応して阻害され得る。Human-derived microvessels and macrovessels are affected by S-protein depending on concentration and time. was surprisingly found to stimulate endothelial cell adhesion. At that time, S-Tan Proteins promote cell adhesion, spreading, migration and movement, as well as proliferation and differentiation. the In this case, the function of S-protein is fibronectin, 7-viral plant factor or interfered with by the presence of antibodies against other adhesive proteins such as fiderinone but is completely suppressed by antibodies against the S-protein. listed The properties of the S-protein correspond to the sequence of the cell-binding site of the S-protein. Synthesis with the characteristic sequence Gty-Atg-GAy-Asp-8ert- It can also be inhibited by pegtides in a concentration-dependent manner.
本発明に好適な性質を有するS−タンパク質は、例えば従来公知の方法によシ血 しようからの精製により得られる。例えば、好適な方法は1バイオケミカル・ジ ャーナル(Biochem、J−) s、 231 +349〜355(198 5)に記載されている。S−タンパク質は分子量78000の一本鎖糖タンバク 質でありかつ血しよう中に濃度0.4119/II/で産出する。S-proteins having properties suitable for the present invention can be obtained by, for example, transfecting blood by conventionally known methods. Obtained by purification from sardines. For example, a preferred method is to Journal (Biochem, J-), 231 +349-355 (198 5). S-protein is a single-chain sugar protein with a molecular weight of 78,000. and is produced in blood plasma at a concentration of 0.4119/II/.
S−タンパク質による表面の被覆は、S−タンパク質の水溶液、殊に一値が生理 的−億に近いように選択された好適な水性緩衝溶液中の溶液で恒温保持すること により行なうと有利である。特に、一般に細胞培養で使用される緩衝浴g、が好 適である。水性媒体中のS−タンパク質の!1度は0.6〜30μi/Ildで あると有利である。よシ高い濃度を適用することはできるが、利点はない。より 低い濃度で接着性の改良は認められるが不十分である。記載の範囲では接着性は 使用した細胞の約50%〜100チに高まシ、その際VC3μ9/ゴで既に約7 5%の接着性が達成される。The coating of the surface with S-protein can be carried out using an aqueous solution of S-protein, especially one containing physiological Incubate in solution in a suitable aqueous buffer solution selected to approximate the target temperature. It is advantageous to do this by In particular, buffer bath g, which is generally used in cell culture, is preferred. suitable. of S-protein in aqueous medium! 1 degree is 0.6~30μi/Ild It is advantageous to have one. Although higher concentrations can be applied, there is no benefit. Than Adhesion improvements are observed at low concentrations, but are insufficient. Adhesion is within the stated range. Approximately 50% to 100 cells of the cells used were raised, at which time VC3μ9/go was already about 7 An adhesion of 5% is achieved.
接着性は時間及び温度にも左右さnる。良好な結果は温度約25〜40℃で得ら れ、37℃付近の範囲が優れている。こnらの優れた条件下で約1〜2時間後に 内皮細胞の90%よシ多くのものが接着する。下記の表1及び2は、記載した優 れた条件下の接着性の時間及び!1度に対する依存性を示す。Adhesion is also time and temperature dependent. Good results are obtained at temperatures of about 25-40°C. The range around 37°C is excellent. After about 1-2 hours under these excellent conditions. As many as 90% of endothelial cells adhere. Tables 1 and 2 below show the listed advantages. Adhesion time and under conditions of Shows dependence on 1 degree.
表 1 S−タンパク質(20μ9/ゴ片被榎したポリスチレン表面に対するヒト白米の 内皮細胞の時間に相応する接着性 3.0 100.0 表 2 S−タンパク質でwL覆したポリスチレン表面に対するヒト由来の内皮細胞の濃 度に相応する接着性(2時間後) 20.0 95.0 内皮細胞を被覆すべき表面1 m2当り細胞約0.2〜1゜x104個の量で使 用すると有利である。Table 1 S-Protein (20μ9/human white rice against grain-covered polystyrene surface) Time-dependent adhesion of endothelial cells 3.0 100.0 Table 2 Concentration of human-derived endothelial cells on a polystyrene surface coated with S-protein. Adhesion corresponding to the degree (after 2 hours) 20.0 95.0 Use an amount of approximately 0.2-1° x 104 cells per 1 m2 of the surface to be coated with endothelial cells. It is advantageous to use
表面としては本発明には属目1」的にすべての化学的に不活性な表面、例えば特 に組織培養又は細胞培養、人工補整器又は移植片に使用することのできるような ものが好適である。好適な表面の例は例えばポリスチレン製のペトリ皿、ガラス 、例えば磁器又は移植片に使われるセラミック類のようなセラミック体、ポリ塩 化ビニル又はポリテトラフルオルエチレンのような合成樹脂、高級鋼のような金 属、従って特に人工補整器及び移植片用に使うことのできる材料である。本発明 により、内皮細胞を例えばポリスチレン製のような培養皿上でS−タンパク質に ょシ予め被覆した後で迅速に接着及び伸展させるために移動させることが可能で あるばかりでなく、人工補整器及び移植片として該当するすべての種類の特に合 成の支持用材料をS−タンパク質のキτリアとして使用しかっ内皮細胞と生着さ せることができる。As surfaces, the present invention includes all chemically inert surfaces in the genus 1', e.g. such as can be used in tissue or cell culture, prosthetic devices or grafts. Preferably. Examples of suitable surfaces are e.g. polystyrene Petri dishes, glass , ceramic bodies such as porcelain or ceramics used in implants, polysalts Synthetic resins such as vinyl chloride or polytetrafluoroethylene, gold such as high-grade steel It is therefore a material that can be used in particular for prosthetic devices and implants. present invention For example, endothelial cells are cultured with S-protein on a culture dish made of polystyrene. After pre-coating, it can be moved for quick adhesion and stretching. Not only that, but also all types of artificial prostheses and implants, especially synthetics. A supporting material of the same type was used as a carrier for the S-protein to engraft with endothelial cells. can be set.
一般に、その際にS−タンパク質で被覆する前に内皮下細胞間質の成分で被覆す ると有利であり、その際には特に成分のフィブロ不りチン、;ラーデン、ラミン 、エラスチン及びトロンポスボンシン1種又は数糧を使用する。In general, prior to coating with S-protein, a component of the subendothelial cell stroma is coated. In this case, it is particularly advantageous to use the ingredients fibrotin, larden, and lamin. , elastin, and one or more of tromposbonsin are used.
表面をコラービン(■型)又はコラーゲン/フィブロネクチン混合吻で予備被接 すると特に有利であることが明らかになった。;ラーrン(■型)又はコラ−ビ ン/ライブ0ネクチンで予備被覆したペトリ皿(ポリスチレン)を付刀口的にS −タンパク質と共に予め恒温保持すると、S−タンパク質又はコラーゲン/フィ ブロネクチンからの複機と比べて、I@濁液からの細胞のより迅速な接着が行な わnる。コラーデン/フィデロ不りチンの組合せを使用する場合には、S−タン パク質を非′Kに低い濃度で使用することもできる(1〜2μ9/xi)。この 相乗的な組合せによる表面の被覆は接着、伸展、移動及び運動を著しく促進する ばかりでなく、内皮細胞の増煩及び分化も促進する。Preliminarily coat the surface with colavin (■ type) or collagen/fibronectin mixed proboscis. It turned out to be particularly advantageous. ;Rarn (■ type) or collaboration A Petri dish (polystyrene) pre-coated with Nectin/Live 0 nectin was attached with a S. - When pre-incubated with protein, S-protein or collagen/fiber Faster adhesion of cells from I@ suspension occurred compared to complex from bronectin. Wanru. When using the colladen/fiderofuritin combination, S-tan Proteins can also be used at low concentrations (1-2 μ9/xi). this Surface coverage with a synergistic combination significantly promotes adhesion, stretching, migration and movement It also promotes proliferation and differentiation of endothelial cells.
この組合せ被覆は、被覆すべき表面をS−タンパク質、;ラーrン及びフィブロ 坏りチンもしくはコラーゲン(■型)t−含有する水浴液で恒温保持して、一工 程で実施することもできる。This combination coating covers the surface to be coated with S-protein; The first step is to maintain the temperature in a water bath solution containing chlorine or collagen (type ■) t-. It can also be carried out in steps.
本発明により、細胞培養容器の表面、人工補整器の表面又は移植片表面等で内皮 細胞の生着を実施しかつその改良された接着、伸展、移動、運動、増殖及び分化 を達成することができる。これにより、改良された細胞培養が達成さするばかり でなく、移植片及び人工補整器で惹起される、血液細胞の接着に帰因する危険を 除くこともできる。According to the present invention, endothelial cells are formed on the surface of a cell culture container, the surface of an artificial prosthesis device, the surface of a graft, etc. Carrying out cell engraftment and its improved adhesion, spreading, migration, movement, proliferation and differentiation can be achieved. This allows improved cell culture to be achieved. rather than risk attributable to blood cell adhesion caused by grafts and prosthetic devices. It can also be removed.
次に実施例により本発明を詳説する。Next, the present invention will be explained in detail with reference to Examples.
例1 S−タンパク質をゾライスナー(Pτeissner )及びその他の方法(” Biochem、J、 ”、 231.951〜956(1985))により 血しようから単離しかつmsする。S−タンパク質の純度はポリアクリルアミド −デル電気泳動により確認する。Example 1 S-protein was prepared by Pτeissner and other methods (" Biochem, J.”, 231.951-956 (1985)) isolated from blood plasma and ms. S-Protein purity is polyacrylamide - Confirm by del electrophoresis.
S−タンパク質(20μ9/d)を、内皮細胞で被覆すべきポリスチレン製ベト 17皿の表面上で3790で2時間リン酸塩緩衝液中で恒温保持する。引続いて 、組織培養物から採取したか又は静脈から分離した細胞の内皮細胞を細胞lX1 05〜5xio5個/1の最終濃度で前被覆した表面上に施す(細胞約1.5X 10’個/ cm” )。67℃で細胞の接着及び伸展を顕微鏡下に追跡する。S-protein (20 μ9/d) was added to a polystyrene vessel to be coated with endothelial cells. Incubate in phosphate buffer for 2 hours at 3790 on the surface of a 17 dish. Subsequently , endothelial cells harvested from tissue culture or isolated from a vein were used as cells lX1 05-5xio at a final concentration of 5 cells/1 (approximately 1.5x cells). 10' cells/cm''). Cell adhesion and spreading are monitored under a microscope at 67°C.
その際に1〜2時間後に90%よシ多くの細胞が接着し、被覆物質としてアルブ ミンを使用する対照実験では5%より少ない細胞が接着する。接着率の計算は、 上澄み中に存在する細胞を数えがっトリジシン/ EDTAで分離後の接着細胞 を数えることにより行なう(表1 )。S−タンパク質による細胞の高まる接着 性(50〜100%)は同じ実験でS−タンパク質0.6〜60μg/ゴの濃度 範囲で観察される(表2)。At that time, 90% of the cells adhered after 1 to 2 hours, and Album was used as a coating material. In control experiments using min, less than 5% of the cells adhere. Calculation of adhesion rate is Adherent cells after counting the cells present in the supernatant and separating them with tridicine/EDTA This is done by counting (Table 1). Increased adhesion of cells by S-protein (50-100%) in the same experiment at a concentration of 0.6-60 μg of S-protein/go. (Table 2).
例2 被覆すべき表面を例1に記載されているようにS−タンパク質20μg/171 7で調製するが、細胞懸濁液を添加する直前に、S−タンパク質中の細胞結合部 位に相応するペンタペプチド(My −Arg −()ty −Asp −5e r(Pierschbacher & Ruoslahti 、 1984 ) k加えると、このペグチドは濃度に相応して、S−タンパク質により促進され る細胞の接着を妨害する。ペゾチドの濃度60μi/Idで、10%より少ない 細胞だけが接着する。同様に、S−タンパク質に特異的な抗体も細胞接着に対し て妨害作用を及ぼす。これに対して、フィブロ滞りチン、フオンヴイルプラント 因子又はフイゾリノデンのような他の接着性タンパク質に対する抗体はS−タン パク質の作用には影j#を与えない。Example 2 The surface to be coated was coated with 20 μg/171 S-protein as described in Example 1. 7, but immediately before adding the cell suspension, remove the cell binding site in the S-protein. Pentapeptide corresponding to the position (My-Arg-()ty-Asp-5e r (Pierschbacher & Ruoslahti, 1984) When k is added, this pegtide is promoted by S-protein in proportion to the concentration. interfere with cell adhesion. At a concentration of pezotide of 60μi/Id, less than 10% Only cells adhere. Similarly, antibodies specific for S-protein also inhibit cell adhesion. have a disturbing effect. In contrast, fibrostasis, huonville plant Antibodies against factor or other adhesive proteins such as fuizolinodene It does not affect the effects of protein.
例6 S−タンパク質(20〜/m)t−例1のようにペトリ皿(ポリスチレン)の底 にではなく、グラスチック人工補整器(例えばポリ塩化ビニル又はポリテトラフ ルオルエチレン製)又はガラス上に施す。例1に記載したように、これらの場合 にも1〜2時間後に内皮細胞の90%より多くのものが接着するのが明らかにな る。Example 6 S-Protein (20 ~/m) t-Bottom of Petri dish (polystyrene) as in Example 1 Plastic prosthesis (e.g. polyvinyl chloride or polytetraph) rather than fluoroethylene) or on glass. As described in Example 1, in these cases It is clear that more than 90% of endothelial cells adhere after 1 to 2 hours. Ru.
国際調査報告 一一一−^−”””kPcT/EP 87100652international search report 111-^-”””kPcT/EP 87100652
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19863637260 DE3637260A1 (en) | 1986-11-03 | 1986-11-03 | METHOD FOR POPULATING SURFACES WITH ENDOTHEL CELLS |
DE3637260.9 | 1986-11-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02500482A true JPH02500482A (en) | 1990-02-22 |
Family
ID=6312971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62506554A Pending JPH02500482A (en) | 1986-11-03 | 1987-11-02 | How to engraft endothelial cells on the surface |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0331672A1 (en) |
JP (1) | JPH02500482A (en) |
DE (1) | DE3637260A1 (en) |
WO (1) | WO1988003560A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2945680B2 (en) * | 1988-09-09 | 1999-09-06 | 旭硝子株式会社 | Peptide derivatives and their uses |
CH676195A5 (en) * | 1988-10-07 | 1990-12-28 | Sulzer Ag | |
US4996154A (en) * | 1989-05-04 | 1991-02-26 | Millipore Corporation | Method for growing cellular tissue |
KR920702975A (en) * | 1989-09-15 | 1992-12-17 | 원본미기재 | Epithelial Method of Synthetic Lenses |
DE3941873A1 (en) * | 1989-12-19 | 1991-06-20 | Jakob Dr Bodziony | Hollow fibres coated which cells with inhibit coagulation - for long-term use as implants in arteries and veins to carry sensors |
DE4012079C2 (en) * | 1990-04-14 | 1997-11-06 | Jakob Dr Bodziony | Implantable exchange and diffusion chamber |
DE4028088A1 (en) * | 1990-09-05 | 1992-04-16 | Berg Ernes Elme Dipl Ing | Resorbable implant for antibody concn. - used in immunological diagnostics, testing and antibody prodn. |
FR2722974B1 (en) * | 1994-07-29 | 1997-04-25 | Marie Therese Zabot | METHOD FOR MODIFYING THE INTERNAL SURFACE OF SYNTHETIC PROSTHESES USED IN VASCULAR SURGERY |
DE10023505A1 (en) * | 2000-05-13 | 2001-11-22 | Fraunhofer Ges Forschung | Reactor module for use in artificial organs contains ceramic hollow fibers on which cells are immobilized |
-
1986
- 1986-11-03 DE DE19863637260 patent/DE3637260A1/en not_active Withdrawn
-
1987
- 1987-11-02 JP JP62506554A patent/JPH02500482A/en active Pending
- 1987-11-02 EP EP87907106A patent/EP0331672A1/en not_active Withdrawn
- 1987-11-02 WO PCT/EP1987/000652 patent/WO1988003560A1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
EP0331672A1 (en) | 1989-09-13 |
DE3637260A1 (en) | 1988-05-11 |
WO1988003560A1 (en) | 1988-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Multilayered coating of titanium implants promotes coupled osteogenesis and angiogenesis in vitro and in vivo | |
Griffin et al. | Chemical group-dependent plasma polymerisation preferentially directs adipose stem cell differentiation towards osteogenic or chondrogenic lineages | |
Takebe et al. | Titanium surface topography alters cell shape and modulates bone morphogenetic protein 2 expression in the J774A. 1 macrophage cell line | |
Pawlowski et al. | Endothelial cell seeding of polymeric vascular grafts | |
De Visscher et al. | Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-1α | |
CA2290481C (en) | Peptide-coated implants and processes for their preparation | |
JP6470286B2 (en) | Application of laminin to corneal endothelial cell culture | |
CN101163496B (en) | Tropoelastin for promoting endothelial cell adhesion or migration | |
Kaplan et al. | Low‐thrombogenic fibrin‐heparin coating promotes in vitro endothelialization | |
CA3109300C (en) | Generating arterial endothelial cell-seeded vascular grafts | |
Broggini et al. | Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐and heparin (KRSR)‐binding peptides | |
Lei et al. | Research on alginate-polyacrylamide enhanced amnion hydrogel, a potential vascular substitute material | |
JPH02500482A (en) | How to engraft endothelial cells on the surface | |
Natesan et al. | PEGylated platelet-free blood plasma-based hydrogels for full-thickness wound regeneration | |
Fassina et al. | Electromagnetic enhancement of a culture of human SAOS‐2 osteoblasts seeded onto titanium fiber‐mesh scaffolds | |
AU726819B2 (en) | Cellular attachment to laminin 5-coated trans-epithelial appliances | |
Coakley et al. | Comparing the endothelialisation of extracellular matrix bioscaffolds with coated synthetic vascular graft materials | |
Lykov et al. | Effect of polyethylene terephthalate on functional properties of endothelial and mesenchymal cells | |
Boccafoschi et al. | Biological evaluation of materials for cardiovascular application: The role of the short‐term inflammatory response in endothelial regeneration | |
JP2003500023A (en) | Laminin 8 and its use | |
Yu et al. | Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline‐Treated Titanium Surface | |
CA2288913C (en) | Membrane system for controlled tissue regeneration in cases of diseases of the peridontium | |
Breithaupt‐Faloppa et al. | Endothelial cell reaction on a biological material | |
WO2013026998A1 (en) | Endothelial polymers | |
Smith et al. | Adhesion of microvascular endothelial cells to metallic implant surfaces |