JPH0250026A - Gas turbine combustor and its operation method - Google Patents

Gas turbine combustor and its operation method

Info

Publication number
JPH0250026A
JPH0250026A JP63195987A JP19598788A JPH0250026A JP H0250026 A JPH0250026 A JP H0250026A JP 63195987 A JP63195987 A JP 63195987A JP 19598788 A JP19598788 A JP 19598788A JP H0250026 A JPH0250026 A JP H0250026A
Authority
JP
Japan
Prior art keywords
combustion chamber
stage combustion
stage
fuel
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63195987A
Other languages
Japanese (ja)
Other versions
JPH0684817B2 (en
Inventor
Yoji Ishibashi
石橋 洋二
Hiroshi Inoue
洋 井上
Takashi Omori
隆司 大森
Takashi Hashimoto
孝 橋本
Fumio Kato
文雄 加藤
Shigeyuki Akatsu
赤津 茂行
Toru Arai
新井 亨
Michio Kuroda
黒田 倫夫
Katsukuni Kuno
久野 勝邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63195987A priority Critical patent/JPH0684817B2/en
Publication of JPH0250026A publication Critical patent/JPH0250026A/en
Priority to US07/582,395 priority patent/US5054280A/en
Priority to US07/728,729 priority patent/US5127229A/en
Publication of JPH0684817B2 publication Critical patent/JPH0684817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To enable a burner not to be too high temperature and make it produce low-concentration NOX at the time of start by providing an auxiliary burner for transferring a first stage combustor to a premixing chamber by flame holding and quenching in the first stage combustor by ignition. CONSTITUTION:Since there is an auxiliary burner 52, at the time of ignition thereof a diffusion burning flame is formed in a first stage combustor 1, a premixing flame is shaped and the auxiliary burner 52 is allowed to stop, so that the first stage combustor 1 is transferred to the premixing chamber. The mixing gas of the premixing chamber is flame-held in a second stage combustor together with a second stage flame and a first stage burning is premix-burned to be perfect premixing burning including the first stage flame and the second flame. Further, since at the time of transfer auxiliary burner combustion is supplied as first stage fuel, transfer for low NOX can smoothly be performed without the influence of rapid transfer, excessive load and the like for second stage premixing combustion at the time of premixing burning transfer. Further, since premixing combustion is wholly performed without any diffusion combustion part, lower NOX can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン燃焼器及びその運転法に係り、特
に予混合型のガスタービン燃焼器及びその運転方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas turbine combustor and a method of operating the same, and more particularly to a premixed gas turbine combustor and a method of operating the same.

〔従来の技術〕[Conventional technology]

従来一般に採用されているこの種燃焼器は、たとえば特
開昭56−25622号公報にも示されているように、
燃焼部を数段に設けるとともに、予混合燃焼方式となし
、希薄燃焼化でNOxの生成を抑制するようにしている
ものが多い。
This kind of combustor, which has been commonly used in the past, is, for example, as shown in Japanese Patent Application Laid-Open No. 56-25622,
In many cases, combustion sections are provided in several stages, and a premix combustion method is used to suppress the generation of NOx by lean combustion.

第11図はその代表的な燃焼器の要部を断面で示したも
ので、この燃焼器は、燃焼器の上流側に配置された第1
段バーナ(燃料と空気を別々に供給する拡散バーナ)a
と、その下流側に配置され、かつ燃焼器の内部に突出し
て設けられた第2段バーナ(同じく拡散バーナ)bとを
有し、そして各バーナの燃焼室はライン径の一部を縮少
した喉部によって上流側の第1段目の燃焼室1と下流側
の2段目の燃焼室2とに分けられている。
Figure 11 is a cross-sectional view of the main parts of a typical combustor.
Stage burner (diffusion burner that supplies fuel and air separately) a
and a second-stage burner (also a diffusion burner) b disposed on the downstream side thereof and protruding into the interior of the combustor, and the combustion chamber of each burner has a part of the line diameter reduced. The combustion chamber 1 is divided into a first-stage combustion chamber 1 on the upstream side and a second-stage combustion chamber 2 on the downstream side by a throat.

そしてこの燃焼器は次のように作動する。すなわち始動
に際し燃料は最初第1段目の燃焼室1のみに供給されて
第1段目のバーナaのみが点火される。次いで第2段バ
ーナへ燃料が供給され第2段バーナbも点火される。尚
この場合この状態においては第1段バーナも第2段バー
ナも拡散燃焼である。
And this combustor operates as follows. That is, upon starting, fuel is initially supplied only to the first stage combustion chamber 1, and only the first stage burner a is ignited. Next, fuel is supplied to the second stage burner and the second stage burner b is also ignited. In this case, in this state, both the first stage burner and the second stage burner perform diffusion combustion.

その後第1段バーナaの燃料供給を停止し、その分第2
段バーナbへの供給燃料量を増して、第1段バーナを消
炎させるとともに第2段バーナの燃焼量を増大させる。
After that, the fuel supply to the first stage burner a is stopped, and the second burner
The amount of fuel supplied to the stage burner b is increased to extinguish the flame of the first stage burner and increase the combustion amount of the second stage burner.

しかる後第1段バーナへ燃料を再投入することにより第
1段目バーナの燃焼室1を単なる燃料と空気の予混合室
として作用させ、第2段燃焼室2で予混合燃焼を行なわ
せる。すなわちこの状態で定常運転がなされるわけであ
る。
Thereafter, by reintroducing fuel to the first stage burner, the combustion chamber 1 of the first stage burner acts as a mere premixing chamber for fuel and air, and premix combustion is performed in the second stage combustion chamber 2. In other words, steady operation is performed in this state.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように構成された燃焼器においては、定常運転時は
予混合燃焼であるから低NOx化をはかることができ非
常に有効なのであるが、一方前述もしたように、始動時
、すなわち予混合燃焼への移行時には、はとんど全量に
近い燃料を第2段バーナへ投入することになるので、第
2段バーナが過負荷となって非常に高い温度となり、そ
の高温対策が必要であった。
In a combustor configured in this way, premix combustion is performed during steady operation, which is very effective in reducing NOx, but on the other hand, as mentioned earlier, premix combustion is During the transition, nearly the entire amount of fuel is injected into the second stage burner, so the second stage burner becomes overloaded and reaches a very high temperature, so countermeasures against high temperatures were required. .

またさらに予混合燃焼へ移行される以前は第1段バーナ
及び第2段バーナは拡散燃焼であることから、この時点
においては多量のNOxが発生する嫌いがあった。
In addition, since the first stage burner and the second stage burner perform diffusion combustion before shifting to premix combustion, a large amount of NOx tends to be generated at this point.

本発明はこれにかんがみなされたもので、その目的とす
るところはバーナが過負荷、すなわち高温になることが
なく、かつ始動時においても低NOx化が可能なこの種
ガスタービン燃焼器を提供するにある。
The present invention was conceived in consideration of this, and its purpose is to provide a gas turbine combustor of this type in which the burner is not overloaded, that is, does not become high temperature, and is capable of achieving low NOx even during startup. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、燃焼器の上流側に設けられた第一段
燃焼室の内部に、その点火により第一段燃焼室内の保炎
、及びその消炎により第一段燃焼室を予混合室へ移行さ
せる補助バーナを設け、所期の目的を達成するようにし
たものである。
In other words, the present invention provides a system in which the flame is held in the first stage combustion chamber by the ignition, and the first stage combustion chamber is transferred to the premixing chamber by the extinguishing of the flame. An auxiliary burner is installed to achieve the intended purpose.

〔作用〕[Effect]

すなわちこの構成であると、補助バーナがあることから
補助バーナの点火時においては第一段燃焼室には拡散燃
焼火炎が、第二段燃焼室には予混合火炎が形成され、補
助バーナを停止させることにより第一段燃焼室は予混合
室へ移行し、そしてこの予混合室の混合気は第二段燃焼
室内で2段目予混合火炎とともに保炎されて1段目燃料
も予混合燃焼し、1段目、2段目とも完全予混合燃焼と
なる。又この移行時補助バーナ用燃料は1段目燃料とし
て供給されているので、予混合燃焼移行時においては何
んら2段目予混合燃焼への急激な移行や過負荷等の影響
はなく、円滑な低NOx燃焼への移行が可能である。更
に拡散燃焼部分がなく、全て予混合燃焼となるので一層
の低NOxが達成できる。
In other words, with this configuration, since there is an auxiliary burner, when the auxiliary burner is ignited, a diffusion combustion flame is formed in the first stage combustion chamber, a premixed flame is formed in the second stage combustion chamber, and the auxiliary burner is stopped. By doing so, the first stage combustion chamber moves to the premixing chamber, and the mixture in this premixing chamber is held flame-stabilized together with the second stage premix flame in the second stage combustion chamber, and the first stage fuel also undergoes premix combustion. However, complete premix combustion occurs in both the first and second stages. In addition, since the fuel for the auxiliary burner during this transition is supplied as the first stage fuel, there is no sudden transition to the second stage premix combustion or any effects such as overload during the transition to premix combustion. A smooth transition to low NOx combustion is possible. Furthermore, since there is no diffusion combustion part and all combustion is premixed combustion, even lower NOx can be achieved.

以下図示した実施例に基づいて本発明の詳細な説明する
。第1図はその燃焼器を断面で示すもので、この燃焼器
は、概略的には次のように形成されている、すなわち第
1段目の燃焼室1と、第2段目の燃焼室2と、これらの
燃焼室を形成している燃焼筒3,4と、夫々の燃焼室に
燃料を与える第1段、第2段燃料供給装@5,6と、又
夫々の燃焼室に空気を与える空気圧縮機7とより形成さ
れ、そしてその作動は、概略的(要点は後述する)には
、まず圧縮機7の吐出部から供給される高圧空気100
を燃焼器内部に導くとともに、燃料系統200,201
及び202より燃焼器内に燃料が供給され、この燃料を
燃焼させて高温燃焼ガス300を発生させる。そして、
この高温ガスが燃焼器の下流に設けられた燃焼器尾筒2
6を介してタービン29側へ噴射されタービン駆動する
のである。
The present invention will be described in detail below based on the illustrated embodiments. Figure 1 shows the combustor in cross section, and the combustor is roughly formed as follows: a combustion chamber 1 in the first stage and a combustion chamber 1 in the second stage. 2, combustion tubes 3 and 4 that form these combustion chambers, first and second stage fuel supply systems @5 and 6 that supply fuel to each combustion chamber, and air supply to each combustion chamber. Roughly speaking (the main points will be described later), its operation is as follows: First, high-pressure air 100 is supplied from the discharge part of the compressor 7.
is introduced into the combustor, and the fuel systems 200, 201
Fuel is supplied into the combustor from 202 and 202, and this fuel is combusted to generate high temperature combustion gas 300. and,
This high-temperature gas is transferred to the combustor transition pipe 2 installed downstream of the combustor.
6 and is injected to the turbine 29 side to drive the turbine.

次に各部についてもう少し詳しく説明すると、燃焼筒は
その長平方向にのびた円筒形をなしており、その上流側
には径を絞った1段目燃焼筒3があり、そしてこの1段
目燃焼筒の下流端部に、予混合器6aを介して2段燃焼
筒4が接続され形成されている。又この1段目燃焼筒3
の壁面には燃焼空気導入のための開口3aが複数筒殻け
られている。また、図示されていないがこの壁面には冷
却用の冷却空気孔も設けられている。1段目燃焼筒3の
上流端にはライナキャップ15が取り付けられてあり、
ライナキャップ15は1段目燃焼筒3の外周側の開口を
覆う如く燃焼器の下流方向に径を徐々に縮少しながら1
段目燃焼筒3の内部に延び、1段目燃焼室1の内部に入
る所で最少径となり、再び下流方向に滑めらかに径を拡
大し、終端部は1段目燃焼筒3の内壁に接する形状をな
している。前記ライナキャップ15の上流側には補助バ
ーナ用キャップ16が配置されている。このキャップは
流入空気量で定まる適当な間隔(ライナキャップとの)
を持ち、かつライナキャップと同じく燃焼器の下流方向
に径を徐々に縮少して延長し、前記ライナキャップ15
の最少径部のわずか下流まで延びている。このライナキ
ャップ15と補助バーナ用キャップ16によって1段目
燃焼室入口部での喉部を有する環状空間を形成し、この
環状空間より1段燃焼用空気の一部分105が供給され
る。
Next, to explain each part in more detail, the combustion tube has a cylindrical shape extending in the longitudinal direction, and on the upstream side there is a first stage combustion tube 3 with a narrowed diameter. A two-stage combustion cylinder 4 is connected to the downstream end via a premixer 6a. Also, this first stage combustion tube 3
A plurality of openings 3a for introducing combustion air are formed in the wall surface of the cylinder. Although not shown, cooling air holes for cooling are also provided in this wall surface. A liner cap 15 is attached to the upstream end of the first stage combustion tube 3.
The liner cap 15 gradually reduces its diameter in the downstream direction of the combustor so as to cover the opening on the outer peripheral side of the first stage combustion tube 3.
It extends into the inside of the first stage combustion tube 3, becomes the minimum diameter at the point where it enters the inside of the first stage combustion chamber 1, and then smoothly expands in diameter in the downstream direction, and the terminal end is the same as that of the first stage combustion tube 3. It has a shape that touches the inner wall. An auxiliary burner cap 16 is arranged upstream of the liner cap 15. This cap should be placed at an appropriate distance (with the liner cap) determined by the amount of incoming air.
The liner cap 15 has a diameter that gradually decreases and extends in the downstream direction of the combustor in the same way as the liner cap.
It extends slightly downstream of the smallest diameter part of the The liner cap 15 and the auxiliary burner cap 16 form an annular space having a throat at the entrance of the first-stage combustion chamber, and a portion 105 of first-stage combustion air is supplied from this annular space.

又、前記環状空間の喉部上流側には複数本の1段目燃料
ノズル20が取付けられており、さらに補助バーナ用キ
ャップ16の内部には保炎器22を端部に有する補助燃
料ノズル21とその下流側に点火栓25が装着されてい
る。補助バーナ用キャップ16と補助燃料ノズル21と
の間の間隙を通して補助燃料用燃焼空気106が補助バ
ーナへ供給される。1段目燃料ノズル20と補助燃料ノ
ズル21は、夫々1段目燃料ノズルボディ17内に仕切
り板で区画された1段目燃料ヘッダ18゜補助バーナ燃
料ヘッダ19に取付けられている。
Furthermore, a plurality of first-stage fuel nozzles 20 are attached to the upstream side of the throat of the annular space, and furthermore, an auxiliary fuel nozzle 21 having a flame stabilizer 22 at the end is installed inside the auxiliary burner cap 16. An ignition plug 25 is attached to the downstream side thereof. Combustion air 106 for auxiliary fuel is supplied to the auxiliary burner through the gap between the auxiliary burner cap 16 and the auxiliary fuel nozzle 21 . The first stage fuel nozzle 20 and the auxiliary fuel nozzle 21 are respectively attached to a first stage fuel header 18° and an auxiliary burner fuel header 19, which are partitioned by a partition plate in the first stage fuel nozzle body 17.

1段目燃焼筒3の下流端には、下流方向に向って径が縮
少しながら延る逆火防止板14が取り付けられている。
A flashback prevention plate 14 is attached to the downstream end of the first stage combustion tube 3 and extends while decreasing in diameter toward the downstream direction.

1段目燃焼筒3と2段目燃焼筒4の接合部に配置されて
いる予混合器6a、すなわち第2段バーナは、内周流路
壁8と外周流路壁37で形成された2段目燃焼空気流路
内に、複数の2段目燃料ノズル11を設けることによっ
て構成されている。
The premixer 6a, that is, the second stage burner, which is disposed at the junction of the first stage combustion tube 3 and the second stage combustion tube 4, is a second stage formed by an inner circumferential passage wall 8 and an outer circumferential passage wall 37. It is constructed by providing a plurality of second stage fuel nozzles 11 within the combustion air flow path.

第1段目燃焼筒3の下流側端部はバネシールを介して前
記内周流路壁8の内側に装着され、また2段燃焼室は同
じくバネシールを介して前記外周流路壁7の外周に装着
され、燃焼室の熱膨張を吸収する構成となっている。2
段目燃料ノズル11は、1段目燃焼室へ流入する空気が
通過可能な開口を有する2段目燃料供給フランジ9の内
部に設けられた2段目燃料ヘッダ10に取付けられてい
る。
The downstream end of the first stage combustion tube 3 is attached to the inner side of the inner circumferential passage wall 8 via a spring seal, and the second stage combustion chamber is attached to the outer periphery of the outer circumferential passage wall 7 via a spring seal. The structure is such that it absorbs the thermal expansion of the combustion chamber. 2
The stage fuel nozzle 11 is attached to a second stage fuel header 10 provided inside a second stage fuel supply flange 9 having an opening through which air flowing into the first stage combustion chamber can pass.

2段目燃焼筒4の内壁面には前述した予混合器6の流出
部下流に燃焼器下流方向に径が縮少して延び、その端部
において径が急拡大する保炎器4aが設けられている。
A flame stabilizer 4a is provided on the inner wall surface of the second stage combustion tube 4, and extends downstream of the outlet of the premixer 6 with a diameter that decreases in the downstream direction of the combustor, and whose diameter rapidly increases at the end thereof. ing.

またこの2段目燃焼筒4には図示されていないが壁冷却
空気孔、及び前記保炎器冷却空気孔があけられており、
更に、下流部に燃焼ガスを所定の温度に冷却するための
希釈空気101を供給する希釈空気孔5があげられてい
る。また、2段目燃焼筒4の下流端は、バネシールを介
して燃焼器尾筒26の内周側に挿入されるように形成さ
れている。
Although not shown in the drawings, the second stage combustion tube 4 is provided with wall cooling air holes and the flame holder cooling air holes.
Furthermore, a dilution air hole 5 for supplying dilution air 101 for cooling the combustion gas to a predetermined temperature is mentioned in the downstream part. Further, the downstream end of the second stage combustion tube 4 is formed to be inserted into the inner peripheral side of the combustor transition tube 26 via a spring seal.

第2図は本燃焼器の燃料供給系統の主要構成の概要を示
すものである。燃料供給設備31より配管された主燃料
供給管32にはガスタービンの出力要求によって定まる
所定の燃料流量を供給するための主圧力調節弁33.主
流量調節弁34が設けられ、その下流から1段目燃料系
統35,2段目燃料系43が分岐され、それぞれの系統
に所定燃料を供給するための圧力調節弁36.44およ
び流量調節弁37.45が設けられている。またその下
流の1段目燃料マニホールド管38及び2段目燃料マニ
ホールド管46を介して1段目燃料200.2段目燃料
202は各燃焼室へ供給される。
Figure 2 shows an overview of the main configuration of the fuel supply system of this combustor. A main fuel supply pipe 32 connected from the fuel supply equipment 31 is provided with a main pressure regulating valve 33 for supplying a predetermined fuel flow rate determined by the output request of the gas turbine. A main flow control valve 34 is provided, and a first stage fuel system 35 and a second stage fuel system 43 are branched from the downstream thereof, and pressure control valves 36, 44 and flow rate control valves are provided for supplying predetermined fuel to each system. 37.45 is provided. Further, the first stage fuel 200 and the second stage fuel 202 are supplied to each combustion chamber via the first stage fuel manifold pipe 38 and the second stage fuel manifold pipe 46 downstream thereof.

一方、前記1段目燃料系統35については、流量調節弁
37と1段目燃料マニホールド管38の中間から補助バ
ーナ燃料管39が分岐され、圧力調節弁40.流調弁4
1.補助燃料マニホールド管42を経て、補助燃料20
1が各燃焼器の補助燃料ノズル21へ供給される。
On the other hand, regarding the first stage fuel system 35, an auxiliary burner fuel pipe 39 is branched from an intermediate point between the flow rate control valve 37 and the first stage fuel manifold pipe 38, and a pressure control valve 40. flow control valve 4
1. Auxiliary fuel 20 via auxiliary fuel manifold pipe 42
1 is supplied to the auxiliary fuel nozzle 21 of each combustor.

次にこのように形成されたガスタービン燃焼器の作動に
ついてこの第2図及び第3図を用い述べる。尚第3図は
本燃焼器の燃料投入方法をガスタービンの起動から負荷
運転に至る間の経過時間に対応して示すものである。
Next, the operation of the gas turbine combustor formed in this manner will be described using FIGS. 2 and 3. Note that FIG. 3 shows the fuel injection method for the combustor according to the elapsed time from starting the gas turbine to load operation.

まず、第3図の時間■において、ガスタービンは着火、
起動される。これは1段目燃料200と補助バーナ燃料
201を1段目燃焼室1へ供給し補助バーナ内に設けら
れた点火栓25により、まず補助バーナへ点火し、この
点火により1段目燃料200を燃焼させることによって
達成される。
First, at time ■ in Figure 3, the gas turbine ignites,
will be activated. This involves supplying the first stage fuel 200 and the auxiliary burner fuel 201 to the first stage combustion chamber 1, first igniting the auxiliary burner with the ignition plug 25 provided in the auxiliary burner, and by this ignition, the first stage fuel 200. This is accomplished by burning.

この時の火炎の形成状態が第4図に示されている。The state of flame formation at this time is shown in FIG.

すなわち補助バーナ火炎500は補助バーナ保炎器22
により保炎されて安定燃焼する。尚この補助バーナ保炎
器はこの図のように保炎器の流れ下流方向において、逆
流域を形成する保炎板形式のものであっても、また、通
常用いられる旋回器を用いたものであっても良い。1段
目燃料200は、1段目燃焼用空気の一部分105と混
合されるが、これはライナキャップ15と補助バーナ用
キャップ16とで形成される円滑な流路において行なわ
れ、1段目予混合気流400として1段目燃焼室1へ供
給される。この1段目予混合気は通常、理論空気量以下
の混合比、即ち燃料過濃な予混合気として1段目燃焼室
1へ供給され、かつ逆流等を誘起させない円滑な流路よ
り供給されるため、−般にはこの予混合気は単独では火
炎を安定燃焼させ得えない。しかるに、本構成のもので
は1段目予混合気流400の内部に補助バーナ火炎50
0を形成させ、これによる熱的作用により1段目予混合
気流400を着火、保炎させ、1段目燃焼室1において
1段目燃焼火炎501を形成させるものである。補助バ
ーナ火炎500及び1段目燃焼火炎501とも拡散燃焼
であり、安定燃焼範囲は広い。第3図に戻りこの様な状
態のもとに1段目燃料200と補助バーナ燃料201を
ほぼ同比率で流量を増していき、ある定められたガスタ
ービン負荷に望遠した■において、2段燃焼部への移行
が行われる。即ち、その移行は1段目燃料200 。
That is, the auxiliary burner flame 500 is the auxiliary burner flame holder 22.
The flame is held and the combustion is stable. Note that this auxiliary burner flame holder may be of the flame holder type that forms a reverse area in the downstream direction of the flow of the flame holder, as shown in this figure, or it may be one that uses a commonly used swirler. It's okay. The first stage fuel 200 is mixed with a portion 105 of the first stage combustion air, but this is done in a smooth flow path formed by the liner cap 15 and the auxiliary burner cap 16. It is supplied to the first stage combustion chamber 1 as a mixture flow 400. This first-stage premixture is normally supplied to the first-stage combustion chamber 1 as a premixture with a mixture ratio below the stoichiometric air amount, that is, a fuel-rich premixture, and is supplied through a smooth flow path that does not induce backflow. Therefore, in general, this premixture alone cannot cause stable flame combustion. However, in this configuration, the auxiliary burner flame 50 is placed inside the first stage premixed airflow 400.
0 is formed, and the resulting thermal action ignites and flame-holds the first-stage premixed airflow 400, forming a first-stage combustion flame 501 in the first-stage combustion chamber 1. Both the auxiliary burner flame 500 and the first stage combustion flame 501 are diffuse combustion, and have a wide stable combustion range. Returning to Figure 3, under these conditions, the flow rates of the first stage fuel 200 and the auxiliary burner fuel 201 were increased at approximately the same ratio, and at a certain fixed gas turbine load, the second stage combustion was started. The transition to the Department will take place. That is, the transition is 200 yen of the first stage fuel.

補助バーナ燃料201を両方はぼ同比率にである所定の
燃料流量値までステップ状に減少させ、−方、この燃料
減少分に相当する燃料を2段目燃料202としてステッ
プ状に供給することにより達成される。このとき、すな
わち2段燃焼切換後の火炎形成状況が第5図に示されて
いる。即ち、2段目燃料202は予混合室6aにおいて
2段目燃焼空気102と混合し、2段目予混合気流40
2として2段目燃焼室−?−′へ供給され、これが1段
目燃焼火炎501で発生した高温燃焼ガスにより熱的に
着火され、保炎器4aにて安定燃焼させられる。502
はその2段目燃焼火炎を示している。
By decreasing the auxiliary burner fuel 201 in steps at approximately the same ratio to a predetermined fuel flow rate value, and then supplying fuel corresponding to this fuel reduction as the second stage fuel 202 in steps. achieved. The flame formation situation at this time, that is, after switching to two-stage combustion, is shown in FIG. That is, the second stage fuel 202 is mixed with the second stage combustion air 102 in the premixing chamber 6a, and the second stage fuel 202 is mixed with the second stage combustion air 102.
2 as the second stage combustion chamber -? -' is thermally ignited by the high-temperature combustion gas generated by the first-stage combustion flame 501, and stably combusted in the flame stabilizer 4a. 502
indicates the second stage combustion flame.

尚この保炎器4aが設けられていることにより。Furthermore, due to the provision of this flame stabilizer 4a.

2段目燃焼火炎502より燃料濃度が薄くても安定燃焼
し、更に、その火炎は、1段目燃焼火炎501が消炎し
た時点においても、それ自身単独で安定燃焼させられる
。このことは実験にても確認されている。次に、■にお
ける2段燃焼への燃料切換え後、■とほぼ同一負荷条件
に保たれた■の時点において、安全燃焼化への移行がな
される。
Stable combustion occurs even if the fuel concentration is lower than that of the second-stage combustion flame 502, and furthermore, even when the first-stage combustion flame 501 is extinguished, the flame itself can be stably combusted by itself. This has also been confirmed through experiments. Next, after the fuel is switched to two-stage combustion at (3), a shift to safe combustion is made at point (2) when the load condition is maintained almost the same as (2).

具体的には、第3図に示す様に、補助燃料201の供給
を停止させ、この燃料分を第1段燃料200へ合流して
供給することで達成できる。即ち、補助バーナ火炎50
0(第5図参照)を消火することで、1段目燃焼火炎5
01の1段燃焼室1における保炎作用をなくすことで、
1段目燃焼火炎501を下流に流し、第6図に示すよう
に、2段目燃焼室2内に形成されている2段目燃焼火炎
501によって保炎させて燃焼させるものである。
Specifically, as shown in FIG. 3, this can be achieved by stopping the supply of the auxiliary fuel 201 and supplying this fuel to the first stage fuel 200. That is, the auxiliary burner flame 50
By extinguishing 0 (see Figure 5), the first stage combustion flame 5
By eliminating the flame holding effect in the first stage combustion chamber 1 of 01,
The first stage combustion flame 501 is caused to flow downstream, and as shown in FIG. 6, the second stage combustion flame 501 formed in the second stage combustion chamber 2 holds the flame and burns it.

この条件において、火炎は全て予混合燃焼火炎である。Under these conditions, all flames are premixed combustion flames.

即ち、1段燃焼室1内の補助バーナ火炎は消炎されてお
り、また、1段目燃料200は1段目燃焼空気105及
び104と1段目燃焼室1を流れ2段目燃焼室2に至る
間に均一に混合されるので、1段目火炎500.2段目
火炎502とも予混合燃焼が達成される。第3図■にお
ける完全予混合燃焼への移行が完了した条件にて、各1
段目、2段目燃料比率を定められた値を保ちながら燃料
流量を増していき、ガスタービンは定格■まで運転され
る。この時1段目燃焼火炎501′は1段目燃焼筒内の
混合気流速を十分速くすることで1段目燃焼室1への逆
火は防止できる。さらに積極的に逆火を防止するために
逆火防止板14が1段目燃焼筒3の下流端部に取付けら
れ、流速を一層速くしている。このように1段目混合気
流速を十分速くできるのは、1段目燃焼室で燃焼させる
時に補助バーナ火炎によって保炎させるため、通常の旋
回器等による保炎よりも保炎効果が大きい。このために
流速を速くでき、逆火しにくい条件を設定できる。
That is, the auxiliary burner flame in the first-stage combustion chamber 1 is extinguished, and the first-stage fuel 200 flows through the first-stage combustion chamber 1 and the first-stage combustion air 105 and 104 into the second-stage combustion chamber 2. Since they are uniformly mixed during the process, premix combustion is achieved with both the first stage flame 500 and the second stage flame 502. Under the conditions that the transition to fully premixed combustion in Figure 3 ■ is completed, each
The fuel flow rate is increased while maintaining the fuel ratio of the stage and second stage at a predetermined value, and the gas turbine is operated up to the rated capacity ■. At this time, the first stage combustion flame 501' can prevent backfire into the first stage combustion chamber 1 by making the air-fuel mixture flow velocity in the first stage combustion cylinder sufficiently high. In order to further proactively prevent flashback, a flashback prevention plate 14 is attached to the downstream end of the first stage combustion tube 3 to further increase the flow velocity. The reason why the flow rate of the first-stage mixture can be made sufficiently high is that the flame is held by the auxiliary burner flame during combustion in the first-stage combustion chamber, which has a greater flame holding effect than flame holding by a normal swirler or the like. For this reason, the flow velocity can be increased and conditions can be set to prevent backfire.

一層ガスタービンの負荷を小さくする時や停止の時は、
前述の逆操作を行うこととなる。即ち、定格条件から、
まず1段目、2段目燃料とも所定の比で燃料を絞ってい
き、■の条件に達した時に1段目燃料200の1部を補
助バーナ側へ流しながら点火栓25によって補助バーナ
に点火することで、1段目燃料200は1段目燃焼室1
の頭部に保炎されて燃焼し、下流側2段目燃焼室2にて
燃焼していた1段目燃料の燃焼火炎501′は消滅し、
切換はスムーズに達成される。ガスタービンの停止に至
る動作は従来の2段燃焼方式と全く同様であり、2段目
燃料202を1段目燃料200と補助バーナ燃料201
へ移すことにより1段燃焼火炎のみとし、更にこの燃料
を絞っていくことによりガスタービンは停止させられる
When reducing the load on the gas turbine or stopping it,
The operation described above will be reversed. That is, from the rated conditions,
First, the fuel in both the first stage and the second stage is reduced to a predetermined ratio, and when the condition (2) is reached, the auxiliary burner is ignited by the spark plug 25 while flowing a part of the first stage fuel 200 to the auxiliary burner side. By doing so, the first stage fuel 200 is transferred to the first stage combustion chamber 1.
The combustion flame 501' of the first-stage fuel that was burning in the second-stage combustion chamber 2 on the downstream side disappears,
Switching is accomplished smoothly. The operation leading to the stop of the gas turbine is exactly the same as the conventional two-stage combustion method, in which the second stage fuel 202 is used as the first stage fuel 200 and the auxiliary burner fuel 201.
By shifting to the first stage, only the first-stage combustion flame is produced, and by further restricting this fuel, the gas turbine is stopped.

以上述べてきたように、本実施例によれば燃焼器の上流
側にある拡散火炎を、補助バーナを設けることにより、
その保炎作用にて安定させ、また、燃焼器の下流側に保
炎器を有する2段目予混合燃焼室を設け、1段着火、安
定化された前記予混合火炎は、それ自身で安定燃焼可゛
能とし、かかる構成により、補助バーナの点火、消火に
より、上流側に拡散燃焼、下流側に予混合燃焼の燃焼モ
ードと燃焼器下流側の2段目燃焼室に1段目燃料、2段
目燃料とも完全予混合燃焼へ燃焼モードが実現されるこ
とになる。
As described above, according to this embodiment, by providing an auxiliary burner, the diffusion flame on the upstream side of the combustor can be
The flame stabilizing effect stabilizes the flame, and a second-stage premix combustion chamber with a flame stabilizer is provided on the downstream side of the combustor. With this configuration, by igniting and extinguishing the auxiliary burner, the combustion mode is diffusion combustion on the upstream side and premix combustion on the downstream side, and the first stage fuel is in the second stage combustion chamber on the downstream side of the combustor. A completely premixed combustion mode is realized for both the second stage fuel.

次に、本発明の燃焼モード切換えと低NOx燃焼化のた
めの燃焼条件について説明する。まず、1段目燃焼に関
し、1段目予混合流量(V)と1段目燃料(第2図の2
00.Fzと記す)と1段目燃焼空気のうちの予混合空
気(第2図の106、Allと記す)との関係について
第8図に基づき説明する。この図は、上記の関係の適正
範囲を図示したものである。予混合火炎の安定範囲は一
般に燃空比と混合気流速との関係において、低速条件の
逆火と高速条件の吹消えの中間領域にて安定燃焼する。
Next, combustion conditions for combustion mode switching and low NOx combustion according to the present invention will be explained. First, regarding the first stage combustion, first stage premix flow rate (V) and first stage fuel (2 in Fig. 2)
00. The relationship between the premixed air (denoted as Fz) and the premixed air (denoted as 106 and All in FIG. 2) of the first stage combustion air will be explained based on FIG. 8. This figure illustrates the appropriate range of the above relationship. In general, the stable range of a premixed flame is in the relationship between the fuel-air ratio and the air-fuel mixture flow rate, and stable combustion occurs in an intermediate region between flashback under low-speed conditions and blow-out under high-speed conditions.

燃空比(燃料と空気の割合)がほぼ理論混合比の時、逆
火する流速が一番速いが、燃空比を理論混合比より燃料
濃度が濃い条件とすることにより逆火流速は小さくなる
とともに吹消え流速も速くなり、火炎の安定範囲は拡大
する。また、吹消え流速は補助火炎がある方がより高速
で安定する。このような予混合火炎の特性を利用し、本
発明においては第1段目燃焼火炎の予混合気は、作動燃
空比が理論空気量以上であって、その作動範囲第7図の
の〜■において、混合気流速は補助炎無しの吹消え流速
以上と補助炎有りの吹消え流速以下(第7図の斜線部分
)の領域に設定される。
When the fuel-air ratio (ratio of fuel and air) is approximately the stoichiometric mixture ratio, the flashback flow speed is fastest, but by setting the fuel-air ratio to a condition where the fuel concentration is higher than the stoichiometric mixture ratio, the flashback flow speed becomes smaller. As the flame increases, the blowout flow speed also increases, and the stable range of the flame expands. In addition, the blowout flow speed is faster and more stable when there is an auxiliary flame. Utilizing such characteristics of the premixed flame, in the present invention, the premixture of the first stage combustion flame has an operating fuel-air ratio equal to or higher than the stoichiometric air amount, and has an operating range of ~~ in Figure 7. In (2), the air-fuel mixture flow rate is set in a region that is equal to or higher than the blow-out flow rate without the auxiliary flame and lower than the blow-out flow rate with the auxiliary flame (the shaded area in FIG. 7).

なお、予混合気の燃空比を■よりも更に大きくすると火
炎は予混合炎の特性を失い、拡散燃焼炎となり、逆に現
象はなくなるが、吹消え現象は連線的に存在するので、
必ずしもこれまで説明してきたように1段目燃焼に空気
を予混合しなくともよい。予混合する目的は、燃焼条件
によって安全範囲が拡散炎以上に明確に限定できること
と、低NOx化のためである。補助バーナの燃空比は通
常旅散火炎が最も安定する理論混合比近傍に設定する。
Note that if the fuel-air ratio of the premixed mixture is made even larger than ■, the flame loses the characteristics of a premixed flame and becomes a diffusion combustion flame, and conversely, the phenomenon disappears, but the blowout phenomenon still exists, so
It is not necessarily necessary to premix air in the first stage combustion as explained above. The purpose of premixing is to allow the safe range to be more clearly defined than in the case of a diffusion flame depending on the combustion conditions, and to reduce NOx. The fuel-air ratio of the auxiliary burner is usually set near the stoichiometric mixture ratio at which the traveling flame is most stable.

1段目燃焼室1における総合燃空比(補助バーナを含む
)は1段目燃焼筒3の壁面にあけられた空気孔13から
供給され1段目燃焼空気104により、理論混合比より
小さい燃空比に設定される。具体的に当量比(燃空比/
理論燃空比)が0.7以下に設定される。次に、2段目
燃焼は、低NOx燃焼を達成するために1段目燃焼と同
じく燃料濃度が希薄の条件に設定される。具体的は当量
比が0.7 以下に設定される。
The overall fuel-air ratio (including the auxiliary burner) in the first-stage combustion chamber 1 is determined by the first-stage combustion air 104 supplied from the air hole 13 formed in the wall of the first-stage combustion tube 3, which is lower than the stoichiometric mixture ratio. Air ratio is set. Specifically, the equivalence ratio (fuel-air ratio/
The theoretical fuel/air ratio) is set to 0.7 or less. Next, in order to achieve low NOx combustion, the second stage combustion is set to the same condition as the first stage combustion, where the fuel concentration is lean. Specifically, the equivalent ratio is set to 0.7 or less.

第8図に本発明によるNOx特性を示す。運転方法は第
7図に示した運転方法である。第8図において、■〜■
間は1段目燃焼のみで運転され、拡散燃焼域であるから
燃料投入量の増加とともにNOxは比較的大きな割合で
増大する。■の所定の低出力条件において2段燃焼へ移
行し、2段目燃焼が予混合燃焼となるのでNOxは低下
する。
FIG. 8 shows the NOx characteristics according to the present invention. The operating method is as shown in FIG. In Figure 8, ■~■
During the period, the combustion engine is operated only in the first stage combustion, and since this is a diffusion combustion region, NOx increases at a relatively large rate as the amount of fuel input increases. Under the predetermined low output condition (2), a transition is made to two-stage combustion, and the second-stage combustion becomes premixed combustion, so that NOx decreases.

引き続いて■において完全燃焼へ移行し、1段目燃焼の
予混合燃焼化により、NOxは更に低下し、■の定格出
力において、NOxは一点、鎖線で示した従来の拡散−
予混合2段燃焼力式のものよりも約50%程度低いレベ
ルとなる。
Subsequently, the transition to complete combustion occurs at ■, and the first-stage combustion becomes premixed combustion, which further reduces NOx.
The level is about 50% lower than that of the premixed two-stage combustion power type.

第9図は本発明の応用例を示す図であり、ここでは2段
燃焼空気102が予混合器6aに流入する入口部に可動
リング47と、前記可動リング47を燃焼器外筒23を
通して外部から操作して駆動する可動リング制御袋@4
8を装着しているものである。本構造の2段目燃焼空気
の流量制御を行うことにより、燃料流量が少ない軽荷運
転時は、この可動リング47を空気流入口が閉方向に移
動させて空気量を減じ、2段目予混合火炎の燃空比を適
性な範囲に制御でき、より軽負荷において低NOx燃焼
である完全予混合燃焼(第3図の■の状態)が達成可能
となる。
FIG. 9 is a diagram showing an application example of the present invention, in which a movable ring 47 is provided at the inlet portion where the second-stage combustion air 102 flows into the premixer 6a, and the movable ring 47 is passed through the combustor outer cylinder 23 to the outside. Movable ring control bag operated and driven from @4
8 is attached. By controlling the flow rate of the second stage combustion air in this structure, during light load operation with a low fuel flow rate, the movable ring 47 is moved in the direction in which the air inlet is closed to reduce the amount of air and the second stage combustion air is controlled. The fuel-air ratio of the mixed flame can be controlled within an appropriate range, and complete premix combustion (state ■ in FIG. 3) with low NOx combustion can be achieved at a lighter load.

第10図はさらに本発明のの他の応用例を示すものであ
る。この場合には、2段目燃焼室2が燃焼器全体の中心
部に、1段燃焼室がその上流側の外周に配置されている
。即ち、燃焼筒4の上流端部の外周側にライナキャップ
15、その内周側に補助バーナキャップ16が設けられ
、前記補助バーナキャップ16を延長して2段目予混合
器スリーブ50が下流に延び、その内部に2段燃料供給
管49に2段目燃料ノズル11と下流端部に旋回器51
が装着されている。また、前記ライナキャップ15と補
助バーナキャップ16で形成される環状空気流路内に複
数本の第1段燃料ノズル20が取り付けられ、かつ、補
助バーナキャップ16と前記2段目予混合器スリーブ5
0との継き部に複数筒の補助バーナ52が取り付けられ
ている。
FIG. 10 further shows another example of application of the present invention. In this case, the second stage combustion chamber 2 is arranged at the center of the entire combustor, and the first stage combustion chamber is arranged at the outer periphery on the upstream side. That is, a liner cap 15 is provided on the outer peripheral side of the upstream end of the combustion tube 4, and an auxiliary burner cap 16 is provided on the inner peripheral side of the liner cap 15, and the second stage premixer sleeve 50 is provided downstream by extending the auxiliary burner cap 16. A second stage fuel nozzle 11 is installed in the second stage fuel supply pipe 49 and a swirler 51 is installed at the downstream end thereof.
is installed. Further, a plurality of first stage fuel nozzles 20 are installed in the annular air passage formed by the liner cap 15 and the auxiliary burner cap 16, and the auxiliary burner cap 16 and the second stage premixer sleeve 5
A plurality of auxiliary burners 52 are attached to the joint part with 0.

かかる構造において、補助バーナ52の点火により、1
段目燃焼火炎は1段目燃焼室1に形成され。
In such a structure, by igniting the auxiliary burner 52, 1
A stage combustion flame is formed in the first stage combustion chamber 1.

2段目予混合火炎は旋回器51によって保炎され、火炎
は2段目燃焼室2に形成される。一方、前記の状態にて
、補助バーナ火炎を消火すると、1段燃焼火炎は1段目
燃焼室内での保炎作用を失い、下流に流れていき、2段
目燃焼室2において2段目燃焼火炎により保炎され、予
混合燃焼する。本構造によれば前述したものと同作用効
果をなし、さらに燃焼器はコンパクトな設計が可能とな
る。
The second-stage premixed flame is stabilized by the swirler 51, and the flame is formed in the second-stage combustion chamber 2. On the other hand, when the auxiliary burner flame is extinguished in the above condition, the first-stage combustion flame loses its flame-holding effect in the first-stage combustion chamber, flows downstream, and is then used for second-stage combustion in the second-stage combustion chamber 2. The flame is stabilized and premixed combustion occurs. According to this structure, the same functions and effects as those described above can be achieved, and the combustor can be designed more compactly.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、2段燃焼型のガスタービン燃焼器にお
いて、第一段燃焼室から第二段燃焼室への切換、すなわ
ち燃料切換操作が各燃焼段へ過大負荷ないしは過小負荷
なしで、第1段、第2段目とも予混合燃焼へ移行できる
ので、第2段燃焼室の過負荷や燃焼の不安定を引き起す
ことがなく。
According to the present invention, in a two-stage combustion type gas turbine combustor, switching from the first-stage combustion chamber to the second-stage combustion chamber, that is, the fuel switching operation can be performed without overloading or underloading each combustion stage. Since both the first and second stages can shift to premixed combustion, there is no overloading of the second stage combustion chamber or instability of combustion.

特に燃焼器ハードへの熱負荷を軽減できる効果がある。In particular, it has the effect of reducing the heat load on the combustor hardware.

更に、予混合燃焼移行後は拡散燃焼部が全くない完全予
混合燃焼が実現できるので、従来の拡散燃焼と予混合燃
焼を組合せた方式の低NOx燃焼器に比べ、NOxは約
1/2以下にできる効果がある。
Furthermore, after transitioning to premixed combustion, it is possible to achieve complete premixed combustion with no diffusion combustion section at all, so NOx is approximately 1/2 or less compared to a conventional low NOx combustor that combines diffusion combustion and premixed combustion. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガスタービン燃焼器の一実施例を示す
縦断側面図、第2図は第1図の燃料系統を示す線図、第
3図は燃料供給量と時間との関係を示す図、第4図から
第6図は燃焼火炎の形態を示す図、第7図は第1段目燃
焼の作動条件を示す図、第8図は本発明のNOx特性を
示す図、第9図は本発明の他の実施例を示した燃焼器の
断面図。 第10図はさらに他の応用例を示した燃焼器の断面図、
第11図は従来のガスタービン燃焼器を示す縦断側面図
である。 1・・・燃焼器、2・・・1段目燃焼室、2′・・・2
段目燃焼室、3・・・2段目燃焼筒、6・・・予混合器
、12・・・1段目燃焼筒、11・・・2段目燃料ノズ
ル、20・・・1段目燃料ノズル、21・・・補助バー
ナ用燃料ノズめ 皓’Iの 鳩 時間 第40 第 1θ 凹 第
FIG. 1 is a longitudinal side view showing an embodiment of the gas turbine combustor of the present invention, FIG. 2 is a diagram showing the fuel system of FIG. 1, and FIG. 3 is a diagram showing the relationship between fuel supply amount and time. Figures 4 to 6 are diagrams showing the morphology of combustion flames, Figure 7 is a diagram showing the operating conditions of the first stage combustion, Figure 8 is a diagram showing the NOx characteristics of the present invention, and Figure 9 FIG. 2 is a sectional view of a combustor showing another embodiment of the present invention. FIG. 10 is a cross-sectional view of a combustor showing another application example,
FIG. 11 is a longitudinal sectional side view showing a conventional gas turbine combustor. 1...Combustor, 2...1st stage combustion chamber, 2'...2
Stage combustion chamber, 3... Second stage combustion tube, 6... Premixer, 12... First stage combustion tube, 11... Second stage fuel nozzle, 20... First stage Fuel nozzle, 21...Fuel nozzle for auxiliary burner 40th 1st θ concave time of I

Claims (1)

【特許請求の範囲】 1、燃焼器の上流側に配置され、かつ空気及び燃料供給
装置を有する第一段燃焼室と、該第一段燃焼室の下流側
に配置され、かつ空気及び燃料供給装置を有する第二段
燃焼室と、該第二段燃焼室の下流側に配置され、燃焼室
にて発生した高温燃焼ガスをタービン側へ導く燃焼器尾
筒とを備え、前記第一段燃焼室が、タービンの運転時に
は第二段燃焼室の予混合室として作動するように形成さ
れたガスタービン燃焼器において、前記第一段燃焼室内
に、その点火により第一段燃焼室内の燃焼及び保炎を行
い、かつその消火により第一段燃焼室の炎を第二段燃焼
室へ移して該第一段燃焼室を予混合室にさせる補助バー
ナを設けたことを特徴とするガスタービン燃焼器。 2、燃焼器の上流側に配置され、かつ空気及び燃料が供
給される第一段燃焼室と、該第一段燃焼室の下流側に配
置され、かつ空気及び燃料の予混合気が供給される第二
段燃焼室と、該第二段燃焼室の下流側に配置され、燃焼
室にて生じた高温燃焼ガスをタービンへ導く燃焼尾筒と
を備え、タービン運転時には、前記第一段燃焼室が第二
段燃焼室の予混合室として作動するように形成されたガ
スタービン燃焼器において、前記第一段燃焼室内に、補
助燃料を供給して燃焼する補助バーナを設け、補助バー
ナの点火による保炎作用により第一段燃焼室内に第一段
燃焼室の火炎を保持させ、補助バーナの消火により、第
一段燃焼室へ供給された燃料を、第二段燃焼室内で燃焼
させるようにしたことを特徴とするガスタービン燃焼器
。 3、燃焼器の上流側に配置され、かつ燃料供給ノズル群
を有する第一段燃焼室と、該第一段燃焼室の下流側に配
置され、かつ予混合燃料供給装置を有する第二段燃焼室
とを備え、タービン運転時には前記第二段燃焼室にて発
生した高温燃焼ガスにてタービンを駆動し、かつ前記第
一段燃焼室がこの第一段燃焼室の予混合室として作動す
るように形成されたガスタービン燃焼器において、前記
第一段燃焼室内で、かつ第一段燃焼室の燃料供給ノズル
群の中央部に、その点火により第一段燃焼室の保炎を行
い、又その消火により第一段燃焼室を第二段燃焼室の予
混合室へ移行させる補助バーナを設けたことを特徴とす
るガスタービン燃焼器。 4、前記補助バーナのノズル先端は、前記第一段燃焼室
の燃料供給ノズルより燃焼器の下流側に位置し、かつ点
火装置を備えていることを特徴とする請求項3記載のガ
スタービン燃焼器。 5、前記補助バーナへ供給される燃料の供給系は、前記
第一段燃焼室へ供給される燃料供給系の一部より分岐さ
れて設けられ、かつその分岐位置が第一段燃焼室へ供給
される燃料供給系の流量調整弁の下流側であることを特
徴とする請求項3記載のガスタービン燃焼器。 6、前記補助バーナは、バーナ先端に保炎器を備えてい
ることを特徴とする請求項4記載のガスタービン燃焼器
。 7、前記補助バーナは拡散燃焼のバーナであることを特
徴とする請求項4記載のガスタービン燃焼器。 8、燃焼器の上流側に配置され、かつ空気及び燃料供給
装置を有する第一段燃焼室と、該第一段燃焼室の下流側
に配置され、かつ空気及び燃料供給装置を有する第二段
燃焼室と、該第二段燃焼室の下流側に配置され、燃焼室
にて発生した高温燃焼ガスをタービン側へ導く燃焼器尾
筒とを備え、燃焼器の始動に際して、第一段及び第二段
燃焼室内の燃焼後、第一段燃焼室を消火させ、しかる後
この第一段燃焼室を第二段燃焼室の予混合室として作動
させるようになしたガスタービン燃焼器の運転方法にお
いて、前記第一段燃焼室内に燃焼器着火時点火される補
助バーナを設けておき、第一段燃焼室を第二段燃焼室の
予混合室へ移行するに際し、前記補助バーナを消火させ
てその移行を行うようにしたことを特徴とするガスター
ビン燃焼器の運転方法。 9、燃焼器の上流側に配置され、かつ空気及び燃料供給
装置を有する第一段燃焼室と、該第一段燃焼室の下流側
に配置され、かつ空気及び燃料供給装置を有する第二段
燃焼室と、該第二段燃焼室の下流側に配置され、燃焼室
にて発生した高温燃焼ガスをタービン側へ導く燃焼器尾
筒とを備え、燃焼器の始動に際して、第一段及び第二段
燃焼室内の燃焼後、第一段燃焼室を消火させ、しかる後
この第一段燃焼室を第二段燃焼室の予混合室として作動
させるようにしたガスタービン燃焼器の運転方法におい
て、前記第一段燃焼室内に燃焼器着火時点火される補助
バーナを設けておき、第一段燃焼室を第二段燃焼室の予
混合室へ移行するに際し、前記補助バーナへ前記第一段
目の燃焼火炎を保炎させ、次いでこの補助バーナを消火
させることにより、第一段目の燃焼火炎を後流側の第二
段燃焼室に移し、前記第一段燃焼室を、第二段燃焼室の
予混合室とならしめることを特徴とするガスタービン燃
焼器の運転方法。 10、前記第一段燃焼室に供給される燃料と空気の比は
理論混合比よりも燃料希薄であることを特徴とする請求
項8若しくは請求項9記載のガスタービン燃焼器の運転
方法。 11、前記第一段燃焼室に希薄燃料を供給するに際し、
燃料及び空気供給部より理論混合比よりも燃料過濃な状
態で供給し、燃焼室の途中から追加の燃焼空気を供給し
て第一段燃焼室における燃料と空気の比を理論混合比よ
り燃料希薄の状態にしたことを特徴とする請求項10記
載のガスタービン燃焼器の運転方法。 12、前記第一段燃焼室に供給される燃料と空気の比が
当量比0.7〜0.5であることを特徴とする請求項1
1記載のガスタービン燃焼器の運転方法。 13、前記第二段燃焼室に供給される燃料と空気の比が
当量比0.6〜0.7で、かつ前記補助バーナに供給さ
れる燃料と空気の比が0.8〜1.25であることを特
徴とする請求項12記載のガスタービン燃焼器の運転方
法。
[Claims] 1. A first stage combustion chamber located upstream of the combustor and having an air and fuel supply device, and a first stage combustion chamber located downstream of the first stage combustion chamber and having an air and fuel supply device. a second-stage combustion chamber having a device; and a combustor transition piece that is disposed downstream of the second-stage combustion chamber and guides high-temperature combustion gas generated in the combustion chamber to the turbine side; In a gas turbine combustor, a chamber is configured to act as a premixing chamber for a second stage combustion chamber during operation of the turbine. A gas turbine combustor characterized in that it is provided with an auxiliary burner that generates a flame and extinguishes the flame to transfer the flame in the first stage combustion chamber to the second stage combustion chamber, thereby turning the first stage combustion chamber into a premixing chamber. . 2. A first-stage combustion chamber disposed upstream of the combustor and supplied with air and fuel, and a first-stage combustion chamber disposed downstream of the first-stage combustion chamber and supplied with a premixture of air and fuel. a second-stage combustion chamber, and a combustion transition piece that is disposed downstream of the second-stage combustion chamber and guides high-temperature combustion gas generated in the combustion chamber to the turbine, and during turbine operation, the first-stage combustion In a gas turbine combustor in which a chamber is formed to operate as a premixing chamber of a second stage combustion chamber, an auxiliary burner for supplying and combusting auxiliary fuel is provided in the first stage combustion chamber, and ignition of the auxiliary burner is provided. The flame of the first stage combustion chamber is held within the first stage combustion chamber by the flame holding effect, and the fuel supplied to the first stage combustion chamber is combusted in the second stage combustion chamber by extinguishing the auxiliary burner. A gas turbine combustor characterized by: 3. A first stage combustion chamber located upstream of the combustor and having a fuel supply nozzle group, and a second stage combustion chamber located downstream of the first stage combustion chamber and having a premixed fuel supply device. and a turbine is driven by high-temperature combustion gas generated in the second-stage combustion chamber during turbine operation, and the first-stage combustion chamber operates as a premixing chamber for the first-stage combustion chamber. In a gas turbine combustor formed in A gas turbine combustor characterized by being provided with an auxiliary burner that moves the first stage combustion chamber to the premixing chamber of the second stage combustion chamber by extinguishing the fire. 4. The gas turbine combustion according to claim 3, wherein the nozzle tip of the auxiliary burner is located downstream of the combustor from the fuel supply nozzle of the first stage combustion chamber, and is equipped with an ignition device. vessel. 5. The fuel supply system supplied to the auxiliary burner is branched from a part of the fuel supply system supplied to the first stage combustion chamber, and the branch position supplies the fuel to the first stage combustion chamber. 4. The gas turbine combustor according to claim 3, wherein the gas turbine combustor is downstream of a flow rate regulating valve in a fuel supply system. 6. The gas turbine combustor according to claim 4, wherein the auxiliary burner includes a flame stabilizer at the tip of the burner. 7. The gas turbine combustor according to claim 4, wherein the auxiliary burner is a diffusion combustion burner. 8. A first stage combustion chamber located upstream of the combustor and having an air and fuel supply device, and a second stage combustion chamber located downstream of the first stage combustion chamber and having an air and fuel supply device. It includes a combustion chamber and a combustor transition piece that is arranged downstream of the second stage combustion chamber and guides high temperature combustion gas generated in the combustion chamber to the turbine side. In a method of operating a gas turbine combustor, the first stage combustion chamber is extinguished after combustion in the second stage combustion chamber, and then the first stage combustion chamber is operated as a premixing chamber for the second stage combustion chamber. , an auxiliary burner that is ignited upon ignition of the combustor is provided in the first-stage combustion chamber, and when the first-stage combustion chamber is transferred to the premixing chamber of the second-stage combustion chamber, the auxiliary burner is extinguished. A method of operating a gas turbine combustor, characterized in that the transition occurs. 9. A first stage combustion chamber located upstream of the combustor and having an air and fuel supply device, and a second stage combustion chamber located downstream of the first stage combustion chamber and having an air and fuel supply device. It includes a combustion chamber and a combustor transition piece that is arranged downstream of the second stage combustion chamber and guides high temperature combustion gas generated in the combustion chamber to the turbine side. In a method of operating a gas turbine combustor, the first stage combustion chamber is extinguished after combustion in the second stage combustion chamber, and then the first stage combustion chamber is operated as a premixing chamber for the second stage combustion chamber, An auxiliary burner that is ignited when the combustor ignites is provided in the first stage combustion chamber, and when the first stage combustion chamber is transferred to the premixing chamber of the second stage combustion chamber, the first stage combustion chamber is ignited to the first stage combustion chamber. By stabilizing the combustion flame of A method for operating a gas turbine combustor, characterized in that the chamber is made into a premixing chamber. 10. The method of operating a gas turbine combustor according to claim 8 or 9, wherein the ratio of fuel and air supplied to the first stage combustion chamber is leaner than the stoichiometric mixture ratio. 11. When supplying lean fuel to the first stage combustion chamber,
The fuel and air supply section supplies fuel richer than the stoichiometric mixture ratio, and additional combustion air is supplied from the middle of the combustion chamber to adjust the fuel-air ratio in the first stage combustion chamber to a level higher than the stoichiometric mixture ratio. The method of operating a gas turbine combustor according to claim 10, wherein the gas turbine combustor is in a lean state. 12. Claim 1, wherein the ratio of fuel and air supplied to the first stage combustion chamber is an equivalence ratio of 0.7 to 0.5.
1. The method of operating a gas turbine combustor according to 1. 13. The ratio of fuel to air supplied to the second stage combustion chamber is an equivalence ratio of 0.6 to 0.7, and the ratio of fuel to air supplied to the auxiliary burner is 0.8 to 1.25. The method of operating a gas turbine combustor according to claim 12, characterized in that:
JP63195987A 1988-08-08 1988-08-08 Gas turbine combustor and operating method thereof Expired - Fee Related JPH0684817B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63195987A JPH0684817B2 (en) 1988-08-08 1988-08-08 Gas turbine combustor and operating method thereof
US07/582,395 US5054280A (en) 1988-08-08 1990-09-12 Gas turbine combustor and method of running the same
US07/728,729 US5127229A (en) 1988-08-08 1991-07-11 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63195987A JPH0684817B2 (en) 1988-08-08 1988-08-08 Gas turbine combustor and operating method thereof

Publications (2)

Publication Number Publication Date
JPH0250026A true JPH0250026A (en) 1990-02-20
JPH0684817B2 JPH0684817B2 (en) 1994-10-26

Family

ID=16350331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63195987A Expired - Fee Related JPH0684817B2 (en) 1988-08-08 1988-08-08 Gas turbine combustor and operating method thereof

Country Status (2)

Country Link
US (2) US5054280A (en)
JP (1) JPH0684817B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275820A (en) * 1988-09-08 1990-03-15 Toshiba Corp Gas-turbine burner
JPH05280710A (en) * 1992-01-16 1993-10-26 Hitachi Ltd Gas turbine combustion apparatus
JP2000074374A (en) * 1998-09-01 2000-03-14 Honda Motor Co Ltd Combustor for gas turbine engine
JP2016114329A (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Operational method for gas burning burner and gas burning burner
CN108167080A (en) * 2017-11-20 2018-06-15 北京动力机械研究所 A kind of fanjet startup combustor structure

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193346A (en) * 1986-11-25 1993-03-16 General Electric Company Premixed secondary fuel nozzle with integral swirler
US5199265A (en) * 1991-04-03 1993-04-06 General Electric Company Two stage (premixed/diffusion) gas only secondary fuel nozzle
US5261222A (en) * 1991-08-12 1993-11-16 General Electric Company Fuel delivery method for dual annular combuster
CA2072275A1 (en) * 1991-08-12 1993-02-13 Phillip D. Napoli Fuel delivery system for dual annular combustor
US5257502A (en) * 1991-08-12 1993-11-02 General Electric Company Fuel delivery system for dual annular combustor
EP0540167A1 (en) * 1991-09-27 1993-05-05 General Electric Company A fuel staged premixed dry low NOx combustor
JP2758301B2 (en) * 1991-11-29 1998-05-28 株式会社東芝 Gas turbine combustor
JP3037804B2 (en) * 1991-12-02 2000-05-08 株式会社日立製作所 Control method and control device for gas turbine combustor
US5253478A (en) * 1991-12-30 1993-10-19 General Electric Company Flame holding diverging centerbody cup construction for a dry low NOx combustor
JPH05203148A (en) * 1992-01-13 1993-08-10 Hitachi Ltd Gas turbine combustion apparatus and its control method
US5259184A (en) * 1992-03-30 1993-11-09 General Electric Company Dry low NOx single stage dual mode combustor construction for a gas turbine
CA2089302C (en) * 1992-03-30 2004-07-06 Joseph Frank Savelli Double annular combustor
US5309718A (en) * 1992-09-14 1994-05-10 Hughes Aircraft Company Liquid fuel turbocharged power plant and method
US5237812A (en) * 1992-10-07 1993-08-24 Westinghouse Electric Corp. Auto-ignition system for premixed gas turbine combustors
EP0626543A1 (en) * 1993-05-24 1994-11-30 Westinghouse Electric Corporation Low emission, fixed geometry gas turbine combustor
FR2706588B1 (en) * 1993-06-16 1995-07-21 Snecma Fuel injection system for combustion chamber.
JP3335713B2 (en) * 1993-06-28 2002-10-21 株式会社東芝 Gas turbine combustor
US5402634A (en) * 1993-10-22 1995-04-04 United Technologies Corporation Fuel supply system for a staged combustor
US5406798A (en) * 1993-10-22 1995-04-18 United Technologies Corporation Pilot fuel cooled flow divider valve for a staged combustor
US5465570A (en) * 1993-12-22 1995-11-14 United Technologies Corporation Fuel control system for a staged combustor
JP2950720B2 (en) 1994-02-24 1999-09-20 株式会社東芝 Gas turbine combustion device and combustion control method therefor
DE4416650A1 (en) * 1994-05-11 1995-11-16 Abb Management Ag Combustion process for atmospheric combustion plants
DE4444125A1 (en) * 1994-12-12 1996-06-13 Abb Research Ltd Process for clean combustion of pre=mixed gaseous or liquid fuels
DE4446842B4 (en) 1994-12-27 2006-08-10 Alstom Method and device for feeding a gaseous fuel into a premix burner
JP2858104B2 (en) * 1996-02-05 1999-02-17 三菱重工業株式会社 Gas turbine combustor
US5927076A (en) * 1996-10-22 1999-07-27 Westinghouse Electric Corporation Multiple venturi ultra-low nox combustor
JP3619626B2 (en) * 1996-11-29 2005-02-09 株式会社東芝 Operation method of gas turbine combustor
US5850732A (en) * 1997-05-13 1998-12-22 Capstone Turbine Corporation Low emissions combustion system for a gas turbine engine
US6453658B1 (en) 2000-02-24 2002-09-24 Capstone Turbine Corporation Multi-stage multi-plane combustion system for a gas turbine engine
DE10049203A1 (en) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Process for introducing fuel into a premix burner
JP3975232B2 (en) * 2002-10-22 2007-09-12 川崎重工業株式会社 Control method and control system for gas turbine engine
US7007486B2 (en) * 2003-03-26 2006-03-07 The Boeing Company Apparatus and method for selecting a flow mixture
US7117676B2 (en) * 2003-03-26 2006-10-10 United Technologies Corporation Apparatus for mixing fluids
ITMI20032327A1 (en) * 2003-11-28 2005-05-29 Techint Spa GAS BURNER WITH LOW POLLUTING EMISSIONS.
US7127899B2 (en) * 2004-02-26 2006-10-31 United Technologies Corporation Non-swirl dry low NOx (DLN) combustor
US7185494B2 (en) * 2004-04-12 2007-03-06 General Electric Company Reduced center burner in multi-burner combustor and method for operating the combustor
US7246995B2 (en) * 2004-12-10 2007-07-24 Siemens Power Generation, Inc. Seal usable between a transition and a turbine vane assembly in a turbine engine
US7631499B2 (en) * 2006-08-03 2009-12-15 Siemens Energy, Inc. Axially staged combustion system for a gas turbine engine
JP2009156542A (en) * 2007-12-27 2009-07-16 Mitsubishi Heavy Ind Ltd Burner for gas turbine
EP2107311A1 (en) * 2008-04-01 2009-10-07 Siemens Aktiengesellschaft Size scaling of a burner
EP2107313A1 (en) * 2008-04-01 2009-10-07 Siemens Aktiengesellschaft Fuel staging in a burner
US8176739B2 (en) * 2008-07-17 2012-05-15 General Electric Company Coanda injection system for axially staged low emission combustors
US8220269B2 (en) * 2008-09-30 2012-07-17 Alstom Technology Ltd. Combustor for a gas turbine engine with effusion cooled baffle
US8220271B2 (en) * 2008-09-30 2012-07-17 Alstom Technology Ltd. Fuel lance for a gas turbine engine including outer helical grooves
US8037690B2 (en) * 2008-12-17 2011-10-18 Pratt & Whitney Canada Corp. Fuel manifold for gas turbine engine
US20100192582A1 (en) * 2009-02-04 2010-08-05 Robert Bland Combustor nozzle
RU2534189C2 (en) * 2010-02-16 2014-11-27 Дженерал Электрик Компани Gas turbine combustion chamber (versions) and method of its operation
US8991187B2 (en) 2010-10-11 2015-03-31 General Electric Company Combustor with a lean pre-nozzle fuel injection system
US8601820B2 (en) 2011-06-06 2013-12-10 General Electric Company Integrated late lean injection on a combustion liner and late lean injection sleeve assembly
WO2013002669A1 (en) 2011-06-30 2013-01-03 General Electric Company Combustor and method of supplying fuel to the combustor
WO2013002666A1 (en) 2011-06-30 2013-01-03 General Electric Company Combustor and method of supplying fuel to the combustor
US8407892B2 (en) * 2011-08-05 2013-04-02 General Electric Company Methods relating to integrating late lean injection into combustion turbine engines
US9010120B2 (en) 2011-08-05 2015-04-21 General Electric Company Assemblies and apparatus related to integrating late lean injection into combustion turbine engines
CN103717971B (en) * 2011-08-11 2015-09-02 通用电气公司 For the system of burner oil in gas-turbine unit
CH707282B1 (en) 2011-09-22 2015-12-15 Gen Electric Burner and method for supplying fuel to a burner.
US9140455B2 (en) 2012-01-04 2015-09-22 General Electric Company Flowsleeve of a turbomachine component
US9170024B2 (en) 2012-01-06 2015-10-27 General Electric Company System and method for supplying a working fluid to a combustor
US9243507B2 (en) * 2012-01-09 2016-01-26 General Electric Company Late lean injection system transition piece
US9188337B2 (en) 2012-01-13 2015-11-17 General Electric Company System and method for supplying a working fluid to a combustor via a non-uniform distribution manifold
US9097424B2 (en) 2012-03-12 2015-08-04 General Electric Company System for supplying a fuel and working fluid mixture to a combustor
US9151500B2 (en) 2012-03-15 2015-10-06 General Electric Company System for supplying a fuel and a working fluid through a liner to a combustion chamber
US9284888B2 (en) 2012-04-25 2016-03-15 General Electric Company System for supplying fuel to late-lean fuel injectors of a combustor
US9052115B2 (en) 2012-04-25 2015-06-09 General Electric Company System and method for supplying a working fluid to a combustor
US8677753B2 (en) 2012-05-08 2014-03-25 General Electric Company System for supplying a working fluid to a combustor
US8479518B1 (en) 2012-07-11 2013-07-09 General Electric Company System for supplying a working fluid to a combustor
US9310078B2 (en) 2012-10-31 2016-04-12 General Electric Company Fuel injection assemblies in combustion turbine engines
US9958161B2 (en) 2013-03-12 2018-05-01 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
US9541292B2 (en) 2013-03-12 2017-01-10 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
US9366187B2 (en) * 2013-03-12 2016-06-14 Pratt & Whitney Canada Corp. Slinger combustor
US9127843B2 (en) 2013-03-12 2015-09-08 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
US9228747B2 (en) 2013-03-12 2016-01-05 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
WO2014201135A1 (en) 2013-06-11 2014-12-18 United Technologies Corporation Combustor with axial staging for a gas turbine engine
EP3084307B1 (en) 2013-12-19 2018-10-24 United Technologies Corporation Dilution passage arrangement for gas turbine engine combustor
US9803555B2 (en) * 2014-04-23 2017-10-31 General Electric Company Fuel delivery system with moveably attached fuel tube
MX2018010310A (en) * 2016-02-26 2019-05-02 8 Rivers Capital Llc Systems and methods for controlling a power plant.
US11236908B2 (en) * 2018-10-24 2022-02-01 General Electric Company Fuel staging for rotating detonation combustor
US11371709B2 (en) 2020-06-30 2022-06-28 General Electric Company Combustor air flow path

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL82403C (en) * 1939-12-09
FR2221621B1 (en) * 1973-03-13 1976-09-10 Snecma
CH577627A5 (en) * 1974-04-03 1976-07-15 Bbc Sulzer Turbomaschinen
US3937008A (en) * 1974-12-18 1976-02-10 United Technologies Corporation Low emission combustion chamber
US4249373A (en) * 1978-01-28 1981-02-10 Rolls-Royce Ltd. Gas turbine engine
US4344280A (en) * 1980-01-24 1982-08-17 Hitachi, Ltd. Combustor of gas turbine
JPS6057131A (en) * 1983-09-08 1985-04-02 Hitachi Ltd Fuel feeding process for gas turbine combustor
EP0169431B1 (en) * 1984-07-10 1990-04-11 Hitachi, Ltd. Gas turbine combustor
JPS61195214A (en) * 1985-02-22 1986-08-29 Hitachi Ltd Air flow part adjusting device for gas turbine combustor
DE3663189D1 (en) * 1985-03-04 1989-06-08 Siemens Ag Burner disposition for combustion installations, especially for combustion chambers of gas turbine installations, and method for its operation
US4735052A (en) * 1985-09-30 1988-04-05 Kabushiki Kaisha Toshiba Gas turbine apparatus
JPH0670376B2 (en) * 1986-09-01 1994-09-07 株式会社日立製作所 Catalytic combustion device
JPS63194111A (en) * 1987-02-06 1988-08-11 Hitachi Ltd Combustion method for gas fuel and equipment thereof
US4910957A (en) * 1988-07-13 1990-03-27 Prutech Ii Staged lean premix low nox hot wall gas turbine combustor with improved turndown capability
US4949538A (en) * 1988-11-28 1990-08-21 General Electric Company Combustor gas feed with coordinated proportioning

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275820A (en) * 1988-09-08 1990-03-15 Toshiba Corp Gas-turbine burner
JPH05280710A (en) * 1992-01-16 1993-10-26 Hitachi Ltd Gas turbine combustion apparatus
JP2000074374A (en) * 1998-09-01 2000-03-14 Honda Motor Co Ltd Combustor for gas turbine engine
JP2016114329A (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Operational method for gas burning burner and gas burning burner
CN108167080A (en) * 2017-11-20 2018-06-15 北京动力机械研究所 A kind of fanjet startup combustor structure
CN108167080B (en) * 2017-11-20 2019-05-10 北京动力机械研究所 A kind of fanjet startup combustor structure

Also Published As

Publication number Publication date
US5127229A (en) 1992-07-07
JPH0684817B2 (en) 1994-10-26
US5054280A (en) 1991-10-08

Similar Documents

Publication Publication Date Title
JPH0250026A (en) Gas turbine combustor and its operation method
US5323614A (en) Combustor for gas turbine
JP3335713B2 (en) Gas turbine combustor
JP3958767B2 (en) Gas turbine combustor and ignition method thereof
US5121597A (en) Gas turbine combustor and methodd of operating the same
JP2644745B2 (en) Gas turbine combustor
US5201181A (en) Combustor and method of operating same
JPS6057131A (en) Fuel feeding process for gas turbine combustor
JPS63247536A (en) Gas turbine combustor
JP3809465B2 (en) Premixed combustor for gas turbine and fuel supply control device and method thereof
JP2006144759A (en) Premixing combustor for gas turbine and its fuel supply control method
JP3179871B2 (en) Gas turbine combustor and method of operating the same
JPH07318059A (en) Gas turbine burner
JP2017187277A (en) Method for combusting fuel, and combustion appliance
JPH03207917A (en) Gas turbine combustion device
JPH06213456A (en) Combustion device for gas turbine and its fuel control device
JP3472424B2 (en) Gas turbine and method of operating gas turbine
JPH07248117A (en) Combustion method for gas turbine premixing combustor
JP2001004138A (en) LOW NOx COMBUSTOR FOR GAS TURBINE
JP3482718B2 (en) Gas turbine combustor
JPS6166019A (en) Gas turbine combustor
JP2003130352A (en) LOW NOx COMBUSTOR FOR GAS TURBINE
JPH1130423A (en) Low nox combustor for gas turbine
JPH04260721A (en) Premixing type gas turbine combustor
JPH08128636A (en) Gas combustion apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees