JPH0249948A - Air-fuel ratio control device for engine - Google Patents
Air-fuel ratio control device for engineInfo
- Publication number
- JPH0249948A JPH0249948A JP20002788A JP20002788A JPH0249948A JP H0249948 A JPH0249948 A JP H0249948A JP 20002788 A JP20002788 A JP 20002788A JP 20002788 A JP20002788 A JP 20002788A JP H0249948 A JPH0249948 A JP H0249948A
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- sensor
- exhaust passage
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 111
- 239000003054 catalyst Substances 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims description 5
- 230000003197 catalytic effect Effects 0.000 abstract description 8
- 238000002347 injection Methods 0.000 abstract description 2
- 239000007924 injection Substances 0.000 abstract description 2
- 238000011144 upstream manufacturing Methods 0.000 abstract description 2
- 238000013459 approach Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、2つの気筒グループに分割された多気筒エン
ジンの各気筒グループ毎に空燃比をフィードバック制御
するエンジンの空燃比制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine air-fuel ratio control device that performs feedback control of an air-fuel ratio for each cylinder group of a multi-cylinder engine divided into two cylinder groups.
(従来技術)
従来、■6型エンジンのような■型多気筒エンジンにお
いては、両バンクの排気通路の集合部から下流側の共通
排気通路に0□センサのような空燃比センサを設け、さ
らにこの空燃比センサの下流側に、排気ガスを浄化する
ための触媒コンバータを設けているが、上記空燃比セン
サが設けられている位置は、エンジンの排気ボートから
遠いために、排気ガスの温度が低下して空燃比センサに
応答遅れを生じる問題があり、また、バンク間で空燃比
にバラツキを生じる欠点があった。そこで例えば特開昭
60−190630号公報に開示されているように、2
つのバンクの各バンクに属する気筒グループ毎に設けら
れている排気通路にそれぞれ空燃比センサを配設して、
2つのバンクに対しそれぞれ独立的に空燃比のフィード
バック制御を行なうようにした空燃比制御システムが採
用されている。このような空燃比制御を行えば、高温の
排気ガスに空燃比センサをさらすことができ、しかも各
バンク毎に正確な空燃比制御が可能になるため、触媒コ
ンバータによる排気ガス浄化能力を高めることができる
。(Prior art) Conventionally, in a ■-type multi-cylinder engine such as a ■6-type engine, an air-fuel ratio sensor such as a 0□ sensor is provided in the common exhaust passage downstream from the gathering point of the exhaust passages of both banks, and A catalytic converter is installed downstream of this air-fuel ratio sensor to purify the exhaust gas, but since the air-fuel ratio sensor is located far from the engine exhaust boat, the temperature of the exhaust gas is low. There is a problem that the air-fuel ratio decreases, causing a response delay in the air-fuel ratio sensor, and there is also a drawback that the air-fuel ratio varies between banks. Therefore, for example, as disclosed in Japanese Patent Application Laid-Open No. 60-190630,
An air-fuel ratio sensor is installed in each exhaust passage provided for each cylinder group belonging to each bank.
An air-fuel ratio control system is employed that performs air-fuel ratio feedback control independently for each of the two banks. By performing this type of air-fuel ratio control, the air-fuel ratio sensor can be exposed to high-temperature exhaust gas, and accurate air-fuel ratio control can be performed for each bank, thereby increasing the exhaust gas purification ability of the catalytic converter. Can be done.
しかしながら、両バンクの排気通路にそれぞれ設けられ
ている空燃比センサの特性のバラツキ、劣化度合の差異
等によって、共通排気通路におけるトータルの空燃比に
ずれが生じ、触媒による排気ガス浄化性能が低下してエ
ミッション特性を悪化させるという問題を発生している
。However, due to variations in the characteristics and differences in the degree of deterioration of the air-fuel ratio sensors installed in the exhaust passages of both banks, a difference occurs in the total air-fuel ratio in the common exhaust passage, and the exhaust gas purification performance of the catalyst deteriorates. This has caused the problem of deterioration of emission characteristics.
(発明の目的)
本発明は、上述のように2つの気筒グループごとに空燃
比制御を行なう場合の触媒に流入する排気ガスの空燃比
が理論空燃比となるようにして、触媒による排気ガス浄
化性能を向上させることができるエンジンの空燃比制御
装置を提供することを目的とする。(Object of the Invention) The present invention provides exhaust gas purification by the catalyst by making the air-fuel ratio of the exhaust gas flowing into the catalyst equal to the stoichiometric air-fuel ratio when air-fuel ratio control is performed for each two cylinder groups as described above. An object of the present invention is to provide an air-fuel ratio control device for an engine that can improve performance.
(発明の構成)
本発明は、空燃比センサがそれぞれ設けられている2つ
の排気通路を上記空燃比センサの下流側で集合させて共
通排気通路を形成し、この共通排気通路に、排気ガスを
浄化する触媒装置を設けるとともに、上記共通排気通路
の、上記2つの排気通路の集合部と上記触媒装置との間
の部位に、上記2つの排気通路から排出される排気ガス
の平均空燃比の前記目標空燃比に対するずれを検出する
ための第3空燃比センサを設け、この第3空燃比センサ
による上記ずれの検出にもとづいて、少なくとも一方の
気筒グループの空燃比を補正するようにしたことを特徴
とする。(Structure of the Invention) According to the present invention, two exhaust passages each provided with an air-fuel ratio sensor are brought together on the downstream side of the air-fuel ratio sensor to form a common exhaust passage, and exhaust gas is introduced into the common exhaust passage. A catalyst device for purification is provided, and the average air-fuel ratio of the exhaust gas discharged from the two exhaust passages is provided in a portion of the common exhaust passage between the gathering part of the two exhaust passages and the catalyst device. A third air-fuel ratio sensor is provided to detect a deviation from the target air-fuel ratio, and the air-fuel ratio of at least one cylinder group is corrected based on the detection of the deviation by the third air-fuel ratio sensor. shall be.
(発明の効果)
本発明によれば、触媒に流入する排気ガスの空燃比を理
論空燃比とほぼ等しくすることができ、これによって触
媒による排気ガス浄化性能を確保することができる。(Effects of the Invention) According to the present invention, the air-fuel ratio of the exhaust gas flowing into the catalyst can be made substantially equal to the stoichiometric air-fuel ratio, thereby ensuring the exhaust gas purification performance of the catalyst.
(実 施 例)
以下、図面を参照して本発明の実施例について説明する
。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図は本発明によるエンジンの制御装置の実施例を示
す全体概要図である。第1図において、エンジン本体1
の例えば6個の気筒は1字型に2列に配列されて左バン
ク2Lおよび右バンク2Rを構成しており、各バンク2
L、2Rに属するそれぞれ3個の気筒が第1気筒グルー
プおよび第2気筒グループを形成している。共通吸気通
路3の上流側にはエアフローメータ4が設けられ、この
エアフローメータ4の下流にスロットルバルブ5および
サージタンク6が設けられ、サージタンク6から分岐さ
れた独立吸気通路7.8が各バンク2L、2Rの気筒グ
ループにそれぞれ接続されている。各独立吸気通路7.
8には、各気筒毎に燃料供給系から燃料パイプ9を通じ
て加圧燃料を吸気ボートへ供給するためのフューエルイ
ンジェクタ10.11が設けられている。FIG. 1 is an overall schematic diagram showing an embodiment of an engine control device according to the present invention. In Figure 1, the engine body 1
For example, six cylinders are arranged in two rows in a character shape to form a left bank 2L and a right bank 2R, and each bank 2
Three cylinders belonging to L and 2R each form a first cylinder group and a second cylinder group. An air flow meter 4 is provided upstream of the common intake passage 3, a throttle valve 5 and a surge tank 6 are provided downstream of the air flow meter 4, and independent intake passages 7.8 branched from the surge tank 6 are connected to each bank. They are connected to the 2L and 2R cylinder groups, respectively. Each independent intake passage7.
8 is provided with fuel injectors 10 and 11 for supplying pressurized fuel from the fuel supply system to the intake boat through the fuel pipe 9 for each cylinder.
一方、各バンク2L、2Rには排気通路13.14がそ
れぞれ独立的に接続されており、これら排気通路13.
14には、空燃比センサとしての0□センサ15.16
がそれぞれ配設され、排気通路13.14は、上記0□
センサ15.16の下流側で合流して共通排気通路17
を形成している。この共通排気通路17には、排気ガス
中の3つの有害成分HC,Co、NOXを同時に浄化す
る三元触媒コンバータ18が設けられ、さらに、共通排
気通路17の、排気通路13.14の集合部と触媒コン
バータ18との間の部位に、第3の空燃比センサとして
の0□センサ19が配設されている。On the other hand, exhaust passages 13.14 are independently connected to each bank 2L, 2R, and these exhaust passages 13.
14 is a 0□ sensor 15.16 as an air-fuel ratio sensor.
are arranged respectively, and the exhaust passages 13 and 14 are arranged in the above 0□
They merge downstream of the sensors 15 and 16 to form a common exhaust passage 17.
is formed. This common exhaust passage 17 is provided with a three-way catalytic converter 18 that simultaneously purifies the three harmful components HC, Co, and NOX in the exhaust gas. A 0□ sensor 19 as a third air-fuel ratio sensor is disposed between the catalytic converter 18 and the catalytic converter 18 .
以上の構成において、排気ガス中の酸素濃度に応じた電
気信号を発生する02センサ15.16は、第2図に示
すように、理論空燃比(λ=1)近傍で急激な出力値の
変化を示し、制御回路20はこれら0□センサ15.1
6の出力およびエアフローメータ4、エンジン回転数セ
ンサ、水温センサ、アイドルスイッチ付きスロットル開
度センサその他の各種センサからの出力にもとづいて、
フューエルインジェクタ10.11に対する燃料噴射制
御信号のパルス幅Tiを演算し、各バンク2L、2R毎
に空燃比のフィードバック制御を行なっている。In the above configuration, the 02 sensor 15.16 that generates an electrical signal according to the oxygen concentration in the exhaust gas has a sudden change in output value near the stoichiometric air-fuel ratio (λ=1), as shown in Figure 2. , and the control circuit 20 controls these 0□ sensors 15.1
Based on the output of 6 and the outputs from the air flow meter 4, engine speed sensor, water temperature sensor, throttle opening sensor with idle switch, and other various sensors,
The pulse width Ti of the fuel injection control signal for the fuel injector 10.11 is calculated, and air-fuel ratio feedback control is performed for each bank 2L, 2R.
この場合、制御回路20は、上記0□センサ15.16
の出力変化幅のほぼ中心に、リッチ方向およびリーン方
向の空燃比変化の判定基準となる判定レベルa (スラ
イスレベル)を設定し、o2センサ15.16の出力カ
ーブが、この判定レベルaをリーン側からリッチ側に横
切った時点をもってリーン検出時点とし、また上記出力
カーブが上記判定レベルaをリッチからリーン側に横切
った時点をもってリーン検出時点としている。さらにフ
ューエルインジェクタ10.11から0!センサ15.
16までの燃焼ガスの伝達遅れ、およびO□センサ15
.16自体の応答遅れ等を補償すべく、02センサ15
.16の出力が上記判定レベルaを横切ってリッチ−リ
ーン、またはリーン−リッチに反転してがら空燃比変更
制御開始時点までのデイレ−タイムTDLおよびT、を
設け、リーンデイレ−タイムTDLが経過した時点から
リッチデイレ−タイムTD、lが経過する時点までを空
燃比制御フラグF=1の期間として空燃比をリーン側に
制御している。なお、第2図の空燃比制御信号波形にお
いて、Pは比例値、■は制御信号波形の傾斜を決定する
積分率である。In this case, the control circuit 20 controls the 0□ sensor 15.16.
Judgment level a (slice level), which serves as a criterion for air-fuel ratio changes in the rich direction and lean direction, is set approximately at the center of the output change range, and the output curve of the O2 sensor 15.16 The time when the output curve crosses from the rich side to the rich side is defined as the lean detection time, and the time when the output curve crosses the determination level a from the rich side to the lean side is defined as the lean detection time. Furthermore, fuel injector 10.11 to 0! Sensor 15.
Combustion gas transmission delay up to 16, and O□ sensor 15
.. In order to compensate for the response delay etc. of the 16 itself, the 02 sensor 15
.. Delay times TDL and T are provided from when the output of No. 16 crosses the above-mentioned judgment level a and reverses to rich-lean or lean-rich until the air-fuel ratio change control starts, and when the lean delay time TDL has elapsed. The period from when the rich delay time TD,l has elapsed is set as the period when the air-fuel ratio control flag F=1, and the air-fuel ratio is controlled to the lean side. In the air-fuel ratio control signal waveform shown in FIG. 2, P is a proportional value, and ■ is an integral factor that determines the slope of the control signal waveform.
また、制御回路は20は、第3の空燃比センサである0
□センサ19によって、共通排気通路17における排気
ガスの実際の空燃比Aの目標空燃比V、に対するずれ量
を検出し、このずれ量の検出にもとづいて、両バンク2
L、2Rにおける空燃比フィードバック制御におけるデ
イレ−タイムT、いT、またはフィードバック制御値の
補正を行ない、触媒装置18に流入する排気ガスの空燃
比が理論空燃比となるようにしている。Further, in the control circuit, 20 is a third air-fuel ratio sensor 0.
□The sensor 19 detects the deviation amount of the actual air-fuel ratio A of the exhaust gas in the common exhaust passage 17 from the target air-fuel ratio V, and based on the detection of this deviation amount, both banks 2
The delay times T and T in the air-fuel ratio feedback control in L and 2R or the feedback control value are corrected so that the air-fuel ratio of the exhaust gas flowing into the catalyst device 18 becomes the stoichiometric air-fuel ratio.
次に、上記制御回路20が実行する空燃比制御について
第3図のフローチャートを参照して説明する。Next, the air-fuel ratio control executed by the control circuit 20 will be explained with reference to the flowchart of FIG. 3.
まずステップS1において、スロットル開度センサから
出力されるスロットル開度信号およびエンジン回転数セ
ンサから出力されるエンジン回転数信号にもとづいて、
運転領域が低、中負荷域の空燃比フィードバック制御領
域にあるか否かを判定し、フィードバック領域にあれば
、ステップs2に進んで02センサ15.16を用いた
フィードバック制御のメインルーチンを実行する。そし
て次のステップS3で共通排気通路17における実際の
空燃比Aをあられす第3の02センサ19の出力を読込
む。次にステップS4でこの空燃比Aを目標空燃比■、
と比較し、A>V、であれば、空燃比はリッチ側にずれ
ているから、ステップS5へ進み、リッチディレータイ
ムTD、lから所定のデイレ−補正タイムMを減算した
値T□−Mを判定し、Tom M2Oのときはステッ
プS6でリッチディレータイムTfl+tをT□−Mに
変更する。また、Toや−Mhoであれば、ステップS
7でリーンデイレ−タイムTDL側を変更してTDL+
Mとする。First, in step S1, based on the throttle opening signal output from the throttle opening sensor and the engine rotation speed signal output from the engine rotation speed sensor,
It is determined whether the operating region is in the air-fuel ratio feedback control region of low and medium load regions, and if it is in the feedback region, the process proceeds to step s2 and executes the main routine of feedback control using the 02 sensor 15.16. . Then, in the next step S3, the output of the third 02 sensor 19, which indicates the actual air-fuel ratio A in the common exhaust passage 17, is read. Next, in step S4, this air-fuel ratio A is changed to the target air-fuel ratio ■.
If A>V, the air-fuel ratio has deviated to the rich side, so proceed to step S5, and calculate the value T□-M obtained by subtracting the predetermined delay correction time M from the rich delay time TD,l. is determined, and if Tom M2O, the rich delay time Tfl+t is changed to T□-M in step S6. Also, if To or -Mho, step S
Change the lean delay time TDL side at 7 to TDL+
Let it be M.
一方、ステップS4に、おいてA<V、と判定された場
合は、空燃比はリーン側にずれているからステップS8
へ進み、リーンデイレ−タイムT0゜から所定のデイレ
−補正タイムMを減算した値TDL Mの値を判定し
、TILL M2OのときはステップS9でリーンデ
イレ−タイムTDLをTDLMに変更する。また、TD
L M<Oであれば、ステップ310でリッチデイレ
−タイムTIIR側を変更してTel+Mとする。On the other hand, if it is determined in step S4 that A<V, the air-fuel ratio has deviated to the lean side, so step S8
The process proceeds to step S9 to determine the value TDLM obtained by subtracting a predetermined delay correction time M from the lean delay time T0°, and if TILL M2O, the lean delay time TDL is changed to TDLM in step S9. Also, T.D.
If LM<O, the rich delay time TIIR side is changed to Tel+M in step 310.
以上の処理はステップSllでエンジン停止と判定され
るまで反復実行されるが、ステップS1の判定結果がr
NOjのときは、ステップ312でオープン制御を行な
う。The above processing is repeatedly executed until it is determined in step Sll that the engine has stopped, but if the determination result in step S1 is
If NOj, open control is performed in step 312.
以上説明した第3図のフローチャートに示す処理は、リ
ッチデイレ−タイムTDRまたはリーンデイレ−タイム
TDLを変更することにより、触媒に流入する排気ガス
の空燃比のずれを補正するようにしたものであり、次に
その変更された両ディレ−タイムTDII、 Totと
に基づいたフィードバック制御メインルーチンであるス
テ・7プS2の処理について第4図のフローチャートを
参照して説明する。The process shown in the flowchart of FIG. 3 explained above corrects the deviation in the air-fuel ratio of the exhaust gas flowing into the catalyst by changing the rich delay time TDR or the lean delay time TDL. Next, the processing of Step 7 S2, which is the feedback control main routine based on the changed delay times TDII and Tot, will be explained with reference to the flowchart of FIG.
まずステップS21でo2センサ19からの実際の空燃
比Aを読込み、ステップ322でこの実際の空燃比Aを
目標空燃比■、と比較し、A>V。First, in step S21, the actual air-fuel ratio A from the O2 sensor 19 is read, and in step 322, this actual air-fuel ratio A is compared with the target air-fuel ratio (■), and A>V.
で空燃比がリッチの場合には、ステップ323でさらに
前回の空燃比A′を目標空燃比V、と比較し、A’>V
、で前回もリッチな場合には、ステップS24で空燃比
フラグFが1か否かを判定し、F=1の場合は次のステ
ップS25でフィードバック制御値りから積分値ΔIを
減算して空燃比をリーン側に制御する。また、A′≦V
Fで前回はリーンの場合には、ステップ326でリーン
デイレ−タイムTDLのタイマをセットし、次のステッ
プS27でリーンデイレ−タイムTDLがタイムアンプ
したか否かを判定し、この判定が「NO」の間は、ステ
ップ328でリーンデイレ−タイムを減算するとともに
ステップS29でフィードバック制御値りに積分値Δ■
を加算して空燃比をリッチ側に制御する。リーンデイレ
−タイムTDLがタイムアツプしたときは、ステップS
30へ進んで空燃比フラグFを1にしてリッチ判定を行
ない、ステップ331でフィードバック制御値りから比
例値Pを減算する。その後は、ステップS32で今回の
空燃比Aを前回の空燃比A′として終了する。If the air-fuel ratio is rich in step 323, the previous air-fuel ratio A' is further compared with the target air-fuel ratio V, and A'>V.
, if the previous time was also rich, it is determined in step S24 whether the air-fuel ratio flag F is 1 or not, and if F=1, the integral value ΔI is subtracted from the feedback control value in the next step S25, and the air-fuel ratio flag is determined to be empty. Control the fuel ratio to the lean side. Also, A′≦V
If F was lean last time, a lean delay time TDL timer is set in step 326, and in the next step S27 it is determined whether or not the lean delay time TDL has time-amplified. During this period, the lean delay time is subtracted in step 328, and the integral value Δ■ is added to the feedback control value in step S29.
is added to control the air-fuel ratio to the rich side. When the lean delay time TDL is up, step S
In step 30, the air-fuel ratio flag F is set to 1 to perform rich determination, and in step 331, the proportional value P is subtracted from the feedback control value. Thereafter, in step S32, the current air-fuel ratio A is set as the previous air-fuel ratio A' and the process ends.
一方、上記ステップS22でA≦vFと判定されて空燃
比がリーンの場合には、ステップS33で前回の空燃比
A′を目標空燃比■、と比較し、A’<V、で前回もリ
ーンな場合には、ステップS34で空燃比フラグFが0
か否かを判定し、F=0の場合はステップ335でフィ
ードバンク制御値りに積分値Δ■を加算して空燃比をリ
ッチ側に制御する。また、A′≧■、で前回はリッチの
場合には、ステップ336でリッチデイレ−タイムTD
lのタイマをセットし、次のステップS37でリッチデ
イレ−タイムTo11がタイムアツプしたか否かを判定
し、この判定がrNOJの間は、ステップ338でリッ
チデイレ−タイマを減算するとともに、ステップS39
でフィードバンク制御値りから積分値ΔIを減算して空
燃比をリーン側に制御する。リッチデイレ−タイムTi
、、がタイムアンプしたときは、ステップ340へ進ん
で空燃比フラグFを0にしてリーン判定を行ない、ステ
ップS41でフィードバック制御値りに比例値Pを加算
して、前記と同様にステップ332で今回の空燃比Aを
前回の空燃比A′として終了する。On the other hand, if it is determined in step S22 that A≦vF and the air-fuel ratio is lean, then in step S33 the previous air-fuel ratio A' is compared with the target air-fuel ratio ■, and if A'<V, the previous air-fuel ratio is also lean. In this case, the air-fuel ratio flag F is set to 0 in step S34.
If F=0, the integral value Δ■ is added to the feed bank control value in step 335 to control the air-fuel ratio to the rich side. In addition, if A'≧■ and the previous time was rich, the rich delay time TD is determined in step 336.
1 timer is set, and in the next step S37 it is determined whether or not the rich delay time To11 has timed up. If this determination is rNOJ, the rich delay timer is subtracted in step 338, and the rich delay timer is subtracted in step S39.
The integral value ΔI is subtracted from the feed bank control value to control the air-fuel ratio to the lean side. Rich Daytime Ti
, , is time amplified, the process proceeds to step 340, where the air-fuel ratio flag F is set to 0 and a lean determination is made, the proportional value P is added to the feedback control value in step S41, and the proportional value P is added to the feedback control value in step S41. The process ends with the current air-fuel ratio A being set as the previous air-fuel ratio A'.
なお、上述の実施例では、デイレ−タイムToいTl1
llの補正またはフィードバック制御値りの補正を双方
のバンク2L、2Rについて行なっているが、少なくと
も一方のバンクのみ補正を行なってもよい。In addition, in the above-mentioned embodiment, the delay time To Tl1
Although the correction of ll or the correction of the feedback control value is performed for both banks 2L and 2R, the correction may be performed for at least one bank only.
第1図は本発明の実施例の全体概要図、第2図は空燃比
センサの出力と空燃比フィードバンク制御信号との関係
を示す線図、第3図および第4図は本発明における空燃
比フィードバンク制御のフローチャートである。
−・エンジン本体
し、2R・−左右バンク
共通吸気通路 7.8−独立吸気通路0.11−フ
ューエルインジェクタ
3.14−排気通路
5.16.19−−−Ofセンサ
7・・−共通排気通路 18・・・触媒コンバータ0
−制御回路FIG. 1 is an overall schematic diagram of an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the output of the air-fuel ratio sensor and the air-fuel ratio feedbank control signal, and FIGS. It is a flowchart of fuel ratio feed bank control. - Engine body, 2R - Left and right bank common intake passage 7.8 - Independent intake passage 0.11 - Fuel injector 3.14 - Exhaust passage 5.16.19 - Of sensor 7... - Common exhaust passage 18...Catalytic converter 0
−Control circuit
Claims (1)
の気筒グループの排気通路に第1空燃比センサを配設し
、他方の気筒グループの排気通路に第2空燃比センサを
配設して、これら第1および第2空燃比センサの出力に
もとづいて、対応する気筒グループの空燃比をそれぞれ
目標空燃比に近づけるべくフィードバック制御するよう
にしたエンジンの空燃比制御装置において、 上記第1および第2空燃比センサがそれぞれ設けられて
いる2つの排気通路を上記空燃比センサの下流側で集合
させて共通排気通路を形成し、この共通排気通路に、排
気ガスを浄化する触媒装置を設けるとともに、上記共通
排気通路の、上記2つの排気通路の集合部と上記触媒装
置との間の部位に、上記2つの排気通路から排出される
排気ガスの平均空燃比の前記目標空燃比に対するずれを
検出するための第3空燃比センサを設け、この第3空燃
比センサによる上記ずれの検出にもとづいて、少なくと
も一方の気筒グループの空燃比を補正するようにしたこ
とを特徴とするエンジンの空燃比制御装置。[Claims] In a multi-cylinder engine divided into two cylinder groups, a first air-fuel ratio sensor is disposed in the exhaust passage of one cylinder group, and a second air-fuel ratio sensor is disposed in the exhaust passage of the other cylinder group. In the air-fuel ratio control device for an engine, the air-fuel ratio control device for an engine is configured to perform feedback control to bring the air-fuel ratio of a corresponding cylinder group closer to a target air-fuel ratio based on the outputs of the first and second air-fuel ratio sensors. Two exhaust passages each provided with a first and second air-fuel ratio sensor are assembled on the downstream side of the air-fuel ratio sensor to form a common exhaust passage, and a catalyst device for purifying exhaust gas is installed in the common exhaust passage. is provided in a portion of the common exhaust passage between the gathering part of the two exhaust passages and the catalyst device, the average air-fuel ratio of the exhaust gas discharged from the two exhaust passages is set to the target air-fuel ratio. An engine characterized in that a third air-fuel ratio sensor is provided for detecting the deviation, and the air-fuel ratio of at least one cylinder group is corrected based on the detection of the deviation by the third air-fuel ratio sensor. Air-fuel ratio control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20002788A JPH0249948A (en) | 1988-08-12 | 1988-08-12 | Air-fuel ratio control device for engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20002788A JPH0249948A (en) | 1988-08-12 | 1988-08-12 | Air-fuel ratio control device for engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0249948A true JPH0249948A (en) | 1990-02-20 |
Family
ID=16417598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20002788A Pending JPH0249948A (en) | 1988-08-12 | 1988-08-12 | Air-fuel ratio control device for engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0249948A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0618639U (en) * | 1992-08-17 | 1994-03-11 | 日本電子機器株式会社 | Air-fuel ratio controller for internal combustion engine |
EP0643212A1 (en) * | 1993-09-13 | 1995-03-15 | Honda Giken Kogyo Kabushiki Kaisha | Air-fuel ratio feedback control system for internal combustion engine |
-
1988
- 1988-08-12 JP JP20002788A patent/JPH0249948A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0618639U (en) * | 1992-08-17 | 1994-03-11 | 日本電子機器株式会社 | Air-fuel ratio controller for internal combustion engine |
EP0643212A1 (en) * | 1993-09-13 | 1995-03-15 | Honda Giken Kogyo Kabushiki Kaisha | Air-fuel ratio feedback control system for internal combustion engine |
US5531208A (en) * | 1993-09-13 | 1996-07-02 | Honda Giken Kogyo Kabushiki Kaisha | Air-fuel ratio feedback control system for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5303548A (en) | Device for determining deterioration of a catalytic converter for an engine | |
JP4314636B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0417747A (en) | Air-fuel ratio control system of internal combustion engine | |
JPH086624B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH07197837A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0914022A (en) | Air-fuel ratio control device for internal combustion engine | |
JP2518247B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2676987B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0249948A (en) | Air-fuel ratio control device for engine | |
JPH06294342A (en) | Air-fuel ratio feedback controller of internal combustion engine | |
JPH11107828A (en) | Air-fuel ratio controller for internal combustion engine | |
JP2518254B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3988425B2 (en) | Exhaust gas purification control device for internal combustion engine | |
JPH06200809A (en) | Air-fuel ratio control device of internal combustion engine | |
JP2518243B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0374540A (en) | Air-fuel ratio controller for internal combustion engine | |
JP2518252B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH08144816A (en) | Air-fuel ratio controller for internal combustion engine | |
JP3593388B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2560303B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2599941B2 (en) | Engine fuel control device | |
JPH0385347A (en) | Fuel supply controller of internal combustion engine using heterogeneous fuel | |
JP4362835B2 (en) | Exhaust gas purification control device for internal combustion engine | |
JPS6260957A (en) | Air-fuel ratio controller for internal combustion engine | |
JPH089390Y2 (en) | Air-fuel ratio feedback control system for internal combustion engine |