JPH0249566Y2 - - Google Patents

Info

Publication number
JPH0249566Y2
JPH0249566Y2 JP1982166253U JP16625382U JPH0249566Y2 JP H0249566 Y2 JPH0249566 Y2 JP H0249566Y2 JP 1982166253 U JP1982166253 U JP 1982166253U JP 16625382 U JP16625382 U JP 16625382U JP H0249566 Y2 JPH0249566 Y2 JP H0249566Y2
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
oxygen concentration
exhaust gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982166253U
Other languages
Japanese (ja)
Other versions
JPS5971166U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16625382U priority Critical patent/JPS5971166U/en
Publication of JPS5971166U publication Critical patent/JPS5971166U/en
Application granted granted Critical
Publication of JPH0249566Y2 publication Critical patent/JPH0249566Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【考案の詳細な説明】 本考案は酸素濃度検出器に係り特に固体電解質
のポンプ作用を利用した酸素濃度検出器に関す
る。
[Detailed Description of the Invention] The present invention relates to an oxygen concentration detector, and particularly to an oxygen concentration detector that utilizes the pumping action of a solid electrolyte.

酸素ポンプ式の酸素濃度検出器は特開昭55−
166039号公報に開示されている。しかし固体電解
質を高温に保持する必要があり、基準酸素濃度を
大気とすると熱放散が大きく、ヒータ容量が大き
くなる。また排ガスにする方法もあるが、電極の
触媒作用により理論空燃比で起電力が小さくなる
欠点を有している。
The oxygen pump type oxygen concentration detector was published in Japanese Patent Application Laid-Open No. 1983-
It is disclosed in Publication No. 166039. However, it is necessary to maintain the solid electrolyte at a high temperature, and if the standard oxygen concentration is set to the atmosphere, heat dissipation will be large and the heater capacity will be large. There is also a method of using it as exhaust gas, but it has the disadvantage that the electromotive force is small at the stoichiometric air-fuel ratio due to the catalytic action of the electrode.

本考案の目的は上記の欠点をなくした安価な酸
素濃度検出器を提供することにある。
An object of the present invention is to provide an inexpensive oxygen concentration detector that eliminates the above-mentioned drawbacks.

本考案は基準酸素濃度側の電極の触媒作用を少
なくし、理論空燃比近くでも残在する酸素を利用
して、理論空燃比近くでも空燃比の測定を可能に
したことにある。
The present invention reduces the catalytic action of the electrode on the reference oxygen concentration side and makes use of the oxygen remaining even near the stoichiometric air-fuel ratio, making it possible to measure the air-fuel ratio even near the stoichiometric air-fuel ratio.

第1図に本考案の実施例を示す。図1において
排気管25に酸素濃度検出器13が取り付けられ
ている。通気孔入口44、出口45a,45bを
有するカバー43にオリフイス48を有する拡散
抵抗体41と多孔質の固体電解質40がチヤンバ
53を有してガラス(セラミツクスでも可)42
で圧着されている。この固体電解質40と拡散抵
抗体41は加熱抵抗体のリード線46と固体電解
質40の電極リード線47によりカバー53内に
吊り下げられている。リード線46a,47a,
47bは絶縁体52a,52b,52cで絶縁さ
れて外部に引き出されているが、リード線46b
は直接アースされている。電気回路17は固体電
解質40に電流を流し込む定電流回路と固体電解
質40の起電力を計測する回路よりなる。加熱回
路22は拡散抵抗体41を加熱する電源である。
この検出動作は排気管の中心近くにある通気孔入
口44より流した空気は拡散抵抗体41により加
熱され上昇して通気孔出口45a,45bより排
出する一部はオリフイス48よりチヤンバ53に
拡散流入し周囲の温度と同等になる。このチヤン
バ53内の酸素は固体電解質40に加えられた電
流に比例してポンプ作用により固体電解質40を
通過して排出される。このためチヤンバ53内の
酸素濃度が低下して起電力が固体電解質40に発
生する。
FIG. 1 shows an embodiment of the present invention. In FIG. 1, an oxygen concentration detector 13 is attached to an exhaust pipe 25. A diffused resistor 41 having an orifice 48 in a cover 43 having a vent inlet 44 and outlets 45a and 45b and a porous solid electrolyte 40 having a chamber 53 made of glass (ceramics may also be used) 42
It is crimped with. The solid electrolyte 40 and the diffusion resistor 41 are suspended within the cover 53 by a lead wire 46 of the heating resistor and an electrode lead wire 47 of the solid electrolyte 40 . Lead wires 46a, 47a,
47b is insulated with insulators 52a, 52b, and 52c and drawn out to the outside, but the lead wire 46b
is directly earthed. The electric circuit 17 includes a constant current circuit that flows current into the solid electrolyte 40 and a circuit that measures the electromotive force of the solid electrolyte 40. The heating circuit 22 is a power source that heats the diffused resistor 41 .
In this detection operation, air flowing from the vent entrance 44 near the center of the exhaust pipe is heated by the diffusion resistor 41 and rises, and is discharged from the vent exits 45a and 45b.A part of the air flows into the chamber 53 through the orifice 48 and diffuses into the chamber 53. The temperature becomes the same as the surrounding temperature. Oxygen in this chamber 53 is pumped out through the solid electrolyte 40 in proportion to the current applied to the solid electrolyte 40. Therefore, the oxygen concentration within the chamber 53 decreases and an electromotive force is generated in the solid electrolyte 40.

図2aは本考案の固体電解質40の平面図であ
る。図2aにおいてリード線47bは基準酸素濃
度(排ガス)側で外周に厚めの電極54、中央部
はポーラス状の電極55がある。この電極54,
55は金(ニツケル等)の触媒作用の小さい金属
で作られている。図2bはその断面図である。図
2bにおいて固体電解質40のチヤンバ53側は
白金よりなるリード線47a、厚めの電極50、
ポーラス状の電極51よりなり、電極50とリー
ド線47aが電気抵抗が小さい状態に溶接され
る。
FIG. 2a is a plan view of the solid electrolyte 40 of the present invention. In FIG. 2a, the lead wire 47b has a thick electrode 54 on the outer periphery on the reference oxygen concentration (exhaust gas) side and a porous electrode 55 in the center. This electrode 54,
55 is made of a metal with low catalytic activity, such as gold (nickel, etc.). FIG. 2b is a cross-sectional view thereof. In FIG. 2b, the chamber 53 side of the solid electrolyte 40 includes a lead wire 47a made of platinum, a thick electrode 50,
It consists of a porous electrode 51, and the electrode 50 and lead wire 47a are welded to each other in a state of low electrical resistance.

第3a図は拡散抵抗体41の固体電解質40側
の平面図である。図3aにおいて抵抗体49が印
刷されている。リード線46a,46bは抵抗体
49に固定されている。図3bはその断面図で抵
抗体49は片面だけにある。
FIG. 3a is a plan view of the diffused resistor 41 on the solid electrolyte 40 side. In Figure 3a a resistor 49 is printed. Lead wires 46a and 46b are fixed to resistor 49. FIG. 3b is a cross-sectional view of the same, in which the resistor 49 is only on one side.

図4に本考案の特性図を、図5に従来装置の特
性図を示す。図4、図5ともλ=1以上になると
同様の特性を示す。I=7mAについて説明する
と図4,5ともにλ=1.2で起電力が低下する。
これは、固体電解質のポンプ作用によりチヤンバ
53内の酸素が排出される量がオリフイス48を
通つて排ガスより拡散により供給される量より多
い状態より、λが大きくなつて排ガス中の酸素濃
度が高くなり、オリフイス48より供給される酸
素量がポンプ作用により排出される量より多くな
るためチヤンバ53内の酸素増加するためであ
る。λ=1.4以上ではオリフイス48より供給さ
れる量が多くなり、起電力はほとんどなくなる。
FIG. 4 shows a characteristic diagram of the present invention, and FIG. 5 shows a characteristic diagram of a conventional device. Both FIGS. 4 and 5 show similar characteristics when λ=1 or more. For I=7mA, in both FIGS. 4 and 5, the electromotive force decreases when λ=1.2.
This is because λ becomes larger and the oxygen concentration in the exhaust gas becomes higher than when the amount of oxygen discharged from the chamber 53 due to the pumping action of the solid electrolyte is greater than the amount supplied by diffusion from the exhaust gas through the orifice 48. This is because the amount of oxygen supplied from the orifice 48 is greater than the amount discharged by the pump action, so the amount of oxygen in the chamber 53 increases. When λ=1.4 or more, the amount supplied from the orifice 48 increases, and almost no electromotive force is generated.

一方λ=1近くでも排ガス中には0.5〜1.0%程
度の酸素が残存しているが、図4の場合チヤンバ
53内に流入した排ガスは800℃の温度と白金の
触媒作用によりほとんど無くなる。しかし基準酸
素濃度側の電極を触媒作用の少ない金にしたため
酸素は残存するため起電力が保持される。一方図
5の場合は両電極とも白金であるため固体電解質
40近くの酸素はなくなり起電力がなくなる。こ
のように本考案によればλ=0.7近くまで起電力
は保持できる。
On the other hand, even when λ is close to 1, about 0.5 to 1.0% of oxygen remains in the exhaust gas, but in the case of FIG. 4, the exhaust gas that has flowed into the chamber 53 almost disappears due to the temperature of 800° C. and the catalytic action of platinum. However, since the electrode on the reference oxygen concentration side is made of gold, which has less catalytic activity, oxygen remains and the electromotive force is maintained. On the other hand, in the case of FIG. 5, since both electrodes are made of platinum, there is no oxygen near the solid electrolyte 40, and no electromotive force is generated. As described above, according to the present invention, the electromotive force can be maintained until λ=0.7.

本考案によれば、理論空燃比近くでも起電力が
保持できるので空燃比の検出範囲が広くなる。
According to the present invention, the electromotive force can be maintained even near the stoichiometric air-fuel ratio, so the air-fuel ratio detection range is widened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例の構成図、第2図a
は本考案の固体電解質の平面図で、bは同じく断
面図、第3図aは同じく拡散抵抗体の平面図で、
bは同じく断面図、第4図は同じく特性図、第5
図は従来装置の特性図である。 13……酸素濃度検出器、25……排気管、4
0……固体電解質、41……拡散抵抗体。
Figure 1 is a configuration diagram of an embodiment of the present invention, Figure 2 a
3 is a plan view of the solid electrolyte of the present invention, b is a cross-sectional view, and FIG. 3a is a plan view of a diffused resistor.
b is the same cross-sectional view, Fig. 4 is the characteristic diagram, and Fig. 5 is the same sectional view.
The figure is a characteristic diagram of a conventional device. 13...Oxygen concentration detector, 25...Exhaust pipe, 4
0...Solid electrolyte, 41...Diffusion resistor.

Claims (1)

【実用新案登録請求の範囲】 (a) 固体電解質; (b) 前記固体電解質の一方側に設けられた触媒作
用を有する第1電極; (c) 前記第1電極を被い排気ガスと接触する拡散
抵抗体; (d) 前記固体電解質の他方側に設けられ排気ガス
に接触する触媒作用が小さい第2電極; (e) 前記第1電極及び前記第2電極に測定空燃比
に対応した可変電流を流し、この可変電流に対
応したステツプ的な出力電圧をセンサ出力とす
る電気回路とよりなる酸素濃度検出器。
[Claims for Utility Model Registration] (a) A solid electrolyte; (b) A first electrode having a catalytic action provided on one side of the solid electrolyte; (c) Covering the first electrode and coming into contact with exhaust gas. (d) a second electrode with a small catalytic action that is provided on the other side of the solid electrolyte and contacts the exhaust gas; (e) a variable current that corresponds to the measured air-fuel ratio to the first electrode and the second electrode; The oxygen concentration detector consists of an electric circuit that flows through a current and outputs a stepwise output voltage corresponding to this variable current as the sensor output.
JP16625382U 1982-11-04 1982-11-04 oxygen concentration detector Granted JPS5971166U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16625382U JPS5971166U (en) 1982-11-04 1982-11-04 oxygen concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16625382U JPS5971166U (en) 1982-11-04 1982-11-04 oxygen concentration detector

Publications (2)

Publication Number Publication Date
JPS5971166U JPS5971166U (en) 1984-05-15
JPH0249566Y2 true JPH0249566Y2 (en) 1990-12-27

Family

ID=30364012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16625382U Granted JPS5971166U (en) 1982-11-04 1982-11-04 oxygen concentration detector

Country Status (1)

Country Link
JP (1) JPS5971166U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166039A (en) * 1979-06-12 1980-12-24 Nissan Motor Co Ltd Air fuel ratio detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166039A (en) * 1979-06-12 1980-12-24 Nissan Motor Co Ltd Air fuel ratio detector

Also Published As

Publication number Publication date
JPS5971166U (en) 1984-05-15

Similar Documents

Publication Publication Date Title
JP2636883B2 (en) NOx concentration measuring device
JPH10510622A (en) Method for measuring the gas concentration in a gas mixture and an electrochemical sensor for determining the gas concentration
JPS6118854A (en) Oxygen concentration detecting element
US4900425A (en) Oxygen sensor
JPH11153571A (en) Oxygen sensor element
JPS62124551U (en)
JPH0249566Y2 (en)
JPS5965758A (en) Electrochemical device and cell
US4313810A (en) Oxygen concentration sensing apparatus
JPS5876757A (en) Oxygen concentration detector
JPH01201149A (en) Composite gas sensor
JPS60188840A (en) Oxygen concentration detector
JPS58179351A (en) Detecting method of concentration of oxygen
JPS61137055A (en) Oxygen sensor element
US4857164A (en) Oxygen analyzer
JPH03277959A (en) Gas-concentration sensor
JPS62126341A (en) Gas sensor
JPS6326568A (en) Gas concentration sensor
JPS60131452A (en) Air fuel ratio sensor
JPH0664005B2 (en) Compound gas sensor
JP2580624Y2 (en) Oxygen sensor
JPS63193058A (en) Oxygen sensor
JPH03276063A (en) Gas concentration sensor
JPS5844368Y2 (en) Oxygen concentration detection device
JPH02208550A (en) Gas sensor