JPH0249483A - Laser amplifier - Google Patents

Laser amplifier

Info

Publication number
JPH0249483A
JPH0249483A JP19895488A JP19895488A JPH0249483A JP H0249483 A JPH0249483 A JP H0249483A JP 19895488 A JP19895488 A JP 19895488A JP 19895488 A JP19895488 A JP 19895488A JP H0249483 A JPH0249483 A JP H0249483A
Authority
JP
Japan
Prior art keywords
laser
incident
mirror
laser medium
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19895488A
Other languages
Japanese (ja)
Inventor
Shigenori Fujiwara
藤原 重徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19895488A priority Critical patent/JPH0249483A/en
Publication of JPH0249483A publication Critical patent/JPH0249483A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To easily extract the highly dense energy of a laser medium by a method wherein a pair of convex lenses, which enable parallel light rays to converge, are provided before and behind a laser medium, and a reflecting mirror provided with a V-shaped reflective surface is provided to one of the outsides of the lenses. CONSTITUTION:A pair of convex lenses 6A and 6B transmissive to laser rays are provided to an incident side and the other side of laser rays respectively sandwiching a laser medium 3 so as to face each other. A reflecting mirror 7 provided on the other side are formed into a cornered cube whose two reflective planes function in such a manner that one of them serves as an incident plane and the other functions as a returning plane. Laser rays incident on the mirror 7 are all reflected in parallel with the incident light rays, and the converging points of laser rays incident on a primary axis of the convex lenses are coincident with each other independently of the incident position. Light rays incident on and reflected from the mirror 7 become positively parallel through correction even if the mirror 7 deviates positionally. By these processes, a highly dense energy of a laser medium can be easily extracted.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はレーザ増幅器に係り、とくに光路の構成に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a laser amplifier, and particularly to the configuration of an optical path.

(従来の技術) レーザ媒質のうち1例えば炭酸ガスは密度が低く励起の
強度も高くできないので、高出力を得るためには広い領
域にレーザ光を通して増幅している。
(Prior Art) One of the laser media, for example, carbon dioxide gas, has a low density and cannot increase the excitation intensity, so in order to obtain high output, laser light is passed over a wide area and amplified.

すなわち、従来のレーザ増幅器の一例を示す第3図にお
いて、紙面右上から励起領域3の一側を通って左上の反
射ミラー4Aに入射した入射光1は。
That is, in FIG. 3 showing an example of a conventional laser amplifier, the incident light 1 passes through one side of the excitation region 3 from the upper right of the page and enters the reflection mirror 4A at the upper left.

折り曲げられて右下の反射ミラー4Bに入射した後、再
び折り曲げられて(すなわち逆Z状に)励起領域3の他
側を通り左側に抜けて出射光2となる。
After being bent and incident on the reflection mirror 4B on the lower right, it is bent again (that is, in an inverted Z shape) and passes through the other side of the excitation region 3 and exits to the left to become the output light 2.

しかし、これは入射光1の励起領域の通過が1回のため
、例えばエキシマレーザのような高密度のレーザ媒質を
使うものでは媒質中の全エネルギを活用できない。
However, since the incident light 1 passes through the excitation region only once, for example, in a device using a high-density laser medium such as an excimer laser, the entire energy in the medium cannot be utilized.

そこで、第4図のように光路を構成した増幅器がある。Therefore, there is an amplifier with an optical path configured as shown in FIG.

すなわち第4図において、右上から左下方向に入射した
入射光1は、励起領域3を右上から右下に斜めに通過し
て、左下の反射ミラー4Aで上側やや左寄りの反射ミラ
ー4Bに入射する。そして、更に右に折り曲げられ、励
起領域3の中央を通って右側の反射ミラー4Cに入射し
た後、更に右下やや左寄りの反射ミラー4Dで曲げられ
て励起領域3を右下から左上に斜めに抜けて出射光2と
なる。
That is, in FIG. 4, incident light 1 incident from the upper right to the lower left passes through the excitation region 3 obliquely from the upper right to the lower right, and enters the reflecting mirror 4A at the lower left and the reflecting mirror 4B located slightly to the left above. Then, it is further bent to the right, passes through the center of the excitation region 3, and enters the reflection mirror 4C on the right side, and then is further bent by the reflection mirror 4D located at the lower right and slightly to the left, diagonally moving the excitation region 3 from the lower right to the upper left. It passes through and becomes emitted light 2.

しかし、これでは反射ミラーが増えるだけでなく1色素
レーザのように狭い領域から高エネルギーを取り出すも
のには使えない。
However, this not only increases the number of reflecting mirrors, but also cannot be used for devices that extract high energy from a narrow area, such as single-dye lasers.

そのため、更に第S図のような光路構成の増幅器が考え
られる。すなわち、第5図において、右上から入射した
レーザ光1は、凸レンズ5Aを経て集光されて励起領域
3に入り、中心部で広がって左下方の凸レンズ5Bに入
射後、平行光となって左下の反射ミラー4已に入射する
。すると、この入射光は上方に曲げられてやや左寄りの
反射ミラー4Fに入射し、右に曲げられて平行光となり
凸レンズ5Cで集光されて励起領域3の中心で焦点を結
び、広がって右方の凸レンズ5Dで平行光となって反射
ミラー4Gで下方やや左寄りの反射ミラー4Hに入射し
、反射されて凸レンズ5Eで集光され励起領域3の集光
点と凸レンズ5Fを経て平行な出射光2となる。
Therefore, an amplifier having an optical path configuration as shown in FIG. S may be considered. That is, in FIG. 5, the laser beam 1 incident from the upper right is condensed through the convex lens 5A, enters the excitation region 3, spreads at the center, enters the convex lens 5B at the lower left, becomes parallel light, and enters the lower left. The light is incident on the 4th reflecting mirror. Then, this incident light is bent upward and enters the reflection mirror 4F located slightly to the left, then bent to the right to become parallel light, condensed by the convex lens 5C, focused at the center of the excitation region 3, and spread out to the right. The convex lens 5D converts the light into parallel light, which enters the reflecting mirror 4H located downward and slightly to the left by the reflecting mirror 4G, is reflected and condensed by the convex lens 5E, passes through the condensing point of the excitation region 3 and the convex lens 5F, and becomes parallel outgoing light 2. becomes.

(発明が解決しようとする課題) しかし、この光路構成のレーザ増幅器では、確かに励起
領域の焦点のレーザ光の密度が上がり、色素レーザに使
われるような媒質のエネルギーを十分に取り出せるが、
レンズの数が増えて光学系が複雑になり、光軸のamも
むずかしくなる。
(Problem to be Solved by the Invention) However, in a laser amplifier with this optical path configuration, the density of the laser light at the focal point of the excitation region increases, and the energy of the medium used in a dye laser can be sufficiently extracted.
The number of lenses increases, the optical system becomes complicated, and the optical axis becomes difficult to adjust.

そこで本発明の目的は、簡単な光学系で高密度のレーザ
媒質のエネルギーを取り出すことのできるレーザ増幅器
を得ることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a laser amplifier that can extract energy from a high-density laser medium with a simple optical system.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段と作用) 本発明は、高密度のレーザ媒質の前後に一対の凸レンズ
を平坦面を内側にして設け、この一対の凸レンズの外側
の片側の軸心上に7字状の反射面のある反射ミラーを設
け、凸レンズの外側の他側から上記他側の凸レンズの一
表面片側にレーザ光を入射してレーザ媒質中で集光し、
この透過光を片側の凸レンズを経て上記反射ミラーで反
射させて、平行に折り返して上記レーザ媒質中に集光さ
せることで、簡単な光路構成で高密度のレーザ媒質のエ
ネルギーを取り出すレーザ増幅器である。
(Means and Effects for Solving the Problems) The present invention provides a pair of convex lenses in front and rear of a high-density laser medium with the flat surfaces facing inside, and a 7-shaped A reflecting mirror having a shaped reflecting surface is provided, and a laser beam is incident on one side of one surface of the convex lens on the other side from the other side outside the convex lens, and is focused in a laser medium,
This transmitted light is reflected by the reflecting mirror through a convex lens on one side, folded back in parallel, and focused into the laser medium, thereby extracting energy from a high-density laser medium with a simple optical path configuration. .

(実施例) 以下、本発明のレーザ増幅器の一実施例を図面で説明す
る。
(Example) Hereinafter, an example of the laser amplifier of the present invention will be described with reference to the drawings.

第1図において、紙面左側の片側から右方の凸レンズ6
Aの表面上部に入射した入射光1は、集光されてその右
方の励起媒体3の中心で集束し広がって、その右方の凸
レンズ6Bの背面上部に入射し。
In Fig. 1, the convex lens 6 from one side on the left side of the page to the right side
The incident light 1 that has entered the upper part of the surface of A is condensed at the center of the excitation medium 3 on the right side, spreads out, and enters the upper back surface of the convex lens 6B on the right side.

平行光となってその右端に設けられたコーナーキューブ
状のミラー7の上側斜面に入り、下方に直角に反射され
る。すると、この反射光は、ミラー7の下側斜面で直角
に左方に反射されて、上記凸レンズ6Bの下部を通り励
起媒体3の中心で集束し、再たび広がって左方の凸レン
ズ6Aの下部を通って左方へ抜は平行な出射光2となる
The parallel light enters the upper slope of the corner cube-shaped mirror 7 provided at its right end, and is reflected downward at right angles. Then, this reflected light is reflected to the left at a right angle on the lower slope of the mirror 7, passes through the lower part of the convex lens 6B, is converged at the center of the excitation medium 3, and spreads again to reach the lower part of the left convex lens 6A. The output light 2 is parallel and exits to the left.

このような構成のレーザ増幅器によれば、ミラー7に入
射したレーザ光は必ず入射光と平行に反射され、凸レン
ズ6の主軸に入射されたレーザ光は、入射位置にかかわ
らず集光点は一致する。又、このミラー7への入射光と
反射光は、ミラー7がずれても補正されて、必ず平行と
なり、光軸の安定したレーザ増幅器とすることができる
According to the laser amplifier having such a configuration, the laser beam incident on the mirror 7 is always reflected in parallel with the incident light, and the laser beam incident on the main axis of the convex lens 6 has a condensing point that coincides regardless of the incident position. do. Further, even if the mirror 7 is misaligned, the incident light and the reflected light on the mirror 7 are corrected and always become parallel, making it possible to provide a laser amplifier with a stable optical axis.

第2図は他の実施例で、励起媒体3に集光される光路を
2倍にした例を示す。
FIG. 2 shows another embodiment in which the optical path focused on the excitation medium 3 is doubled.

第2図では、第1図の凸レンズ6C,6Dは曲率、外径
とも更に大きい凸レンズ8とし、右側には2箇所の7字
状反射面のあるミラー9を配置し、(注;ミラー7を2
個並置してもよい。)、左側には第1図と同じミラー7
を用いている。
In FIG. 2, the convex lenses 6C and 6D in FIG. 2
They may be placed side by side. ), on the left side is the same mirror 7 as in Figure 1.
is used.

この場合は、励起領域の励起エネルギーが増えるので、
より多く高密度のエネルギーを取り出すことができる。
In this case, the excitation energy in the excitation region increases, so
It is possible to extract more energy at a higher density.

又、光軸調整は、レンズの配置と最初の入射光軸だけを
すればよい。
Further, the optical axis adjustment only needs to be done by arranging the lenses and adjusting the initial incident optical axis.

なお、上記実施例では、コーナーキューブ状のミラー7
.9を示したが、これはコーナーキューブプリズムでも
よく、又、凸レンズもプラノコンペックスレンズを用い
たが、メニスカスレンズでもよい。
Note that in the above embodiment, the corner cube-shaped mirror 7
.. 9, this may be a corner cube prism, and although a planocompex lens is used as the convex lens, a meniscus lens may also be used.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、高密度のレーザ媒質に高密度の
レーザ光を通してエネルギーを取り出すレーザ増幅器に
おいて、レーザ媒体の前後に平行光を集束する凸レンズ
を設け、その外側の少なくとも一側に直角の7字状の反
射面のある反射ミラーを用いたので、高密度のレーザ媒
質のエネルギーを簡単な構成で取り出すことのできるレ
ーザ増幅器を得ることができる。
As described above, according to the present invention, in a laser amplifier that extracts energy by passing high-density laser light through a high-density laser medium, a convex lens for converging parallel light is provided at the front and rear of the laser medium, and a right-angled Since a reflecting mirror with a 7-shaped reflecting surface is used, a laser amplifier that can extract energy from a high-density laser medium with a simple configuration can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のレーザ増幅器の一実施例を示す光路構
成図、第2図は本発明の他の実施例を示す光路構成図、
第3〜第5図は従来のレーザ増幅器の光路構成図である
。 1・・・入射光 2・・・出射光 3・・・レーザ媒体 6・・・凸レンズ 7・・・反射ミラー (8733)代理人弁理士 晃(ほか1名) 第 図 第 図
FIG. 1 is an optical path configuration diagram showing one embodiment of the laser amplifier of the present invention, FIG. 2 is an optical path configuration diagram showing another embodiment of the invention,
3 to 5 are optical path configuration diagrams of a conventional laser amplifier. 1...Incoming light 2...Outgoing light 3...Laser medium 6...Convex lens 7...Reflecting mirror (8733) Attorney Akira (and 1 other person) Fig.

Claims (1)

【特許請求の範囲】 高密度のレーザ媒質の励起領域の一側から他側へ貫通し
たレーザ光を前記他側の反射ミラーで折り返し、この反
射光を前記励起領域の前記一側へ貫通させて前記レーザ
媒質を励起し、前記レーザ光を増幅するレーザ増幅器お
いて、 前記レーザ媒質を挟んで前記レーザ光の入射側と他側に
、前記レーザ光を透過する一対の凸レンズを平坦面を相
対向させて設け、 前記他側の反射ミラーの反射面を、一面が入射面となり
他面が折り返し面となるコーナキューブ状としたこと、 を特徴とするレーザ増幅器。
[Claims] Laser light that has passed through from one side of an excitation region of a high-density laser medium to the other side is reflected by a reflecting mirror on the other side, and this reflected light is allowed to pass through to the one side of the excitation region. In a laser amplifier that excites the laser medium and amplifies the laser beam, a pair of convex lenses that transmit the laser beam are arranged with flat surfaces facing each other on an incident side of the laser beam and the other side with the laser medium in between. A laser amplifier characterized in that the reflecting mirror on the other side has a reflecting surface shaped like a corner cube, with one surface serving as an incident surface and the other surface serving as a folding surface.
JP19895488A 1988-08-11 1988-08-11 Laser amplifier Pending JPH0249483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19895488A JPH0249483A (en) 1988-08-11 1988-08-11 Laser amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19895488A JPH0249483A (en) 1988-08-11 1988-08-11 Laser amplifier

Publications (1)

Publication Number Publication Date
JPH0249483A true JPH0249483A (en) 1990-02-19

Family

ID=16399703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19895488A Pending JPH0249483A (en) 1988-08-11 1988-08-11 Laser amplifier

Country Status (1)

Country Link
JP (1) JPH0249483A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028631A1 (en) * 1998-11-10 2000-05-18 Tokyo Denshi Kabushiki Kaisha Apparatus for photoreaction
WO2003088435A1 (en) * 2002-04-18 2003-10-23 Mitsubishi Denki Kabushiki Kaisha Laser oscillator and optical amplifier
WO2009090935A1 (en) * 2008-01-18 2009-07-23 Kyoto University Optical amplifier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028631A1 (en) * 1998-11-10 2000-05-18 Tokyo Denshi Kabushiki Kaisha Apparatus for photoreaction
US6487003B1 (en) 1998-11-10 2002-11-26 Tokyo Denshi Kabushiki Kaisha Optical interaction device
WO2003088435A1 (en) * 2002-04-18 2003-10-23 Mitsubishi Denki Kabushiki Kaisha Laser oscillator and optical amplifier
JPWO2003088435A1 (en) * 2002-04-18 2005-08-25 三菱電機株式会社 Laser oscillator and optical amplifier
WO2009090935A1 (en) * 2008-01-18 2009-07-23 Kyoto University Optical amplifier
US8451531B2 (en) 2008-01-18 2013-05-28 Kyoto University Light amplifier

Similar Documents

Publication Publication Date Title
US4759616A (en) Method and apparatus for anamorphically shaping and deflecting electromagnetic beams
JPH0412039B2 (en)
JP3089017B2 (en) High power laser device with combination of focusing mirrors
US6377599B1 (en) Focusability enhancing optic for a laser diode
CA2171590A1 (en) Method and device for focusing laser beam
US5349603A (en) Solid-state laser resonator
JPH0249483A (en) Laser amplifier
EP0121069A2 (en) Reflecting system for improving the uniformity of a light beam
US4947402A (en) Two-mirror shaping of a non-circular optical pumping beam and lasers using same
US4575191A (en) Compact beam splitter for acousto-optic correlator
JPH03261191A (en) Laser amplifying system
JP2003511739A (en) Optical imaging system
JPH0588100A (en) Scanner
TWI683489B (en) Unstable imaging resonator
JPS5843420A (en) External optical device for laser
JP2760116B2 (en) Solid-state laser device
JPH01146748A (en) Laser beam recording apparatus
JP2550693B2 (en) Solid-state laser device
GB1531744A (en) Optical scanning system
JPH0216783A (en) Laser amplifier
JPS58132716A (en) Optical beam diameter converting device
US6021105A (en) Knife edge method for use in an optical pickup system
JPS6148351A (en) Laser apparatus
JPH0241607Y2 (en)
JPH0256740A (en) Beam shaping device and optical head device