JPH0249480Y2 - - Google Patents

Info

Publication number
JPH0249480Y2
JPH0249480Y2 JP1986076746U JP7674686U JPH0249480Y2 JP H0249480 Y2 JPH0249480 Y2 JP H0249480Y2 JP 1986076746 U JP1986076746 U JP 1986076746U JP 7674686 U JP7674686 U JP 7674686U JP H0249480 Y2 JPH0249480 Y2 JP H0249480Y2
Authority
JP
Japan
Prior art keywords
water
water supply
valve
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986076746U
Other languages
Japanese (ja)
Other versions
JPS62192043U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986076746U priority Critical patent/JPH0249480Y2/ja
Priority to KR1019870004528A priority patent/KR950002485B1/en
Publication of JPS62192043U publication Critical patent/JPS62192043U/ja
Application granted granted Critical
Publication of JPH0249480Y2 publication Critical patent/JPH0249480Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Control Of Combustion (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、熱交換器を加熱するガスバーナへの
ガス供給量を、熱交換器への通水量の増減に応じ
て比例的に増減させるようにしたガス湯沸器に関
する。
[Detailed description of the invention] [Field of industrial application] The invention is designed to proportionally increase or decrease the amount of gas supplied to the gas burner that heats the heat exchanger in accordance with the increase or decrease in the amount of water flowing through the heat exchanger. Regarding gas water heaters.

〔従来技術〕[Prior art]

この種のガス湯沸器は、熱交換器への通水量の
増減に応じてガス供給量が比例的に増減するの
で、通水量が変化しても出湯温度はほぼ一定に保
たれる。そして出湯温度の調節は、例えば特開昭
61−72923号公報に示す如く、ガス弁を作動させ
るダイヤフラム装置と関連して設けた温度調節弁
により熱交換器への通水量とガス供給量の比率を
変えて行つている。
In this type of gas water heater, the amount of gas supplied increases or decreases in proportion to the amount of water flowing through the heat exchanger, so even if the amount of water flowing changes, the hot water temperature remains almost constant. And the adjustment of the hot water temperature can be done by, for example,
As shown in Japanese Patent No. 61-72923, the ratio between the amount of water flowing to the heat exchanger and the amount of gas supplied is changed using a temperature control valve provided in conjunction with a diaphragm device that operates the gas valve.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

かかる従来技術においては、ガス供給量の比率
を減少させて出湯温度を低下させると熱交換器の
温度が低下するので燃焼ガス中の水分が熱交換器
の表面に結露し、ドレンとなつて滴り落ちる。こ
のようなドレンは燃焼ガス中の硫黄酸化物や窒素
酸化物を溶解して強酸性となつているので熱交換
器やガス湯沸器の内部を腐蝕して耐久性を低下さ
せるという問題がある。また、給水が熱交換器を
通過するには或る時間を要するので、温度調節弁
により通水量とガス供給量の比率を変えても直ち
には出湯温度は変化しないので時間遅れが生じる
という問題がある。
In such conventional technology, when the ratio of the gas supply amount is decreased to lower the hot water temperature, the temperature of the heat exchanger decreases, so that moisture in the combustion gas condenses on the surface of the heat exchanger and drips as condensate. drop down. This kind of drain dissolves the sulfur oxides and nitrogen oxides in the combustion gas and becomes strongly acidic, so there is a problem that it corrodes the inside of heat exchangers and gas water heaters, reducing their durability. . Additionally, since it takes a certain amount of time for the water supply to pass through the heat exchanger, there is a problem that even if the ratio of water flow to gas supply is changed using the temperature control valve, the hot water temperature does not change immediately, resulting in a time delay. be.

此等の問題を解決する手段として通水量とガス
供給量の比率を一定として熱交換器により加熱さ
れる給水を常に高温度の熱湯とし、これを混合弁
により冷水と混合して所望の設定温度の出湯を得
るようにすることが考えられる。しかしながら、
このような技術においては熱交換器により加熱さ
れる給水の温度上昇幅が一定であるので、給水温
度が変化すれば熱交換器から送り出される熱湯の
温度も変化し、また、熱交換器への通水量がガス
バーナの最大能力に対応する最大流量以上となれ
ば加熱不足が生じて熱交換器からの熱湯の温度が
低下し、何れの場合もガス湯沸器からの出湯温度
を正確に制御できなくなるという問題がある。ま
た、前記最大流量は給水温度が高い場合は大とな
り、給水温度が低い場合は小となるので、前者の
場合に合せて最大流量を設定すれば給水温度が低
くなつた場合に最大流量で使用すれば熱交換器か
らの熱湯の温度が低下し、逆に後者の場合に合せ
て最大流量を設定すれば給水温度が高くなつた場
合には通水量を最大流量としてもガスバーナは最
大能力に達せず、折角の最大能力を発揮できない
という問題がある。本考案は此等の問題を解決し
ようとするものである。
As a means to solve these problems, the ratio of water flow and gas supply is kept constant, and the water heated by the heat exchanger is always hot water at a high temperature, and this is mixed with cold water by a mixing valve to reach the desired set temperature. One possible solution is to obtain hot water from the area. however,
In such technology, the range of temperature rise in the feed water heated by the heat exchanger is constant, so if the feed water temperature changes, the temperature of the hot water sent out from the heat exchanger also changes, and the temperature of the hot water sent out from the heat exchanger also changes. If the flow rate of water exceeds the maximum flow rate corresponding to the maximum capacity of the gas burner, insufficient heating will occur and the temperature of the hot water from the heat exchanger will drop, and in either case, the temperature of hot water from the gas water heater cannot be accurately controlled. The problem is that it disappears. In addition, the maximum flow rate will be large when the water supply temperature is high and small when the water supply temperature is low, so if you set the maximum flow rate for the former case, the maximum flow rate will be used when the water supply temperature becomes low. If you do this, the temperature of the hot water from the heat exchanger will drop, and if you set the maximum flow rate for the latter case, the gas burner will not be able to reach its maximum capacity even if the water flow rate is set to the maximum flow rate if the water supply temperature rises. First, there is the problem of not being able to demonstrate the maximum potential. The present invention attempts to solve these problems.

〔問題点を解決するための手段〕[Means for solving problems]

このために、本考案によるガス湯沸器は、添付
図面に示す如く、ガスバーナ24により加熱され
る熱交換器16に連通する給水通路10に設けら
れ該熱交換器16への通水量に応じて変位するダ
イヤフラム41を有するダイヤフラム装置40
と、前記ダイヤフラム41に連動され前記通水量
に応じてガスバーナ24へのガス供給量を増減さ
せるガス弁25を備えてなるガス湯沸器におい
て、前記給水通路10には前記通水量に対する前
記ダイヤフラム41の変位量を給水温度の上昇に
応じて減少させて該給水温度の如何に拘わらず前
記熱交換器16により常にほぼ一定の高温度の熱
湯が得られるようにする給水温度補償弁48と前
記熱交換器16への通水量が前記ガスバーナ24
の最大能力に対応する最大流量以上となることを
制限する定流量弁60を設け、この定流量弁は前
記給水通路10に沿つてその内面に形成された嵌
合孔10aに軸方向摺動可能に嵌合され中央に開
口62bが設けられた内向フランジ部62aを有
する摺動筒62と、この摺動筒と同心的に軸方向
移動可能に設けられて一部が前記開口62b内に
挿入されて該開口との間に可変絞り部61を形成
するテーパ部材65と、前記給水通路10内に位
置する熱応動部材66を備え、前記摺動筒62と
テーパ部材65の何れか一方はスプリング63に
より前記給水通路10の上流側に付勢されて位置
決めされると共に下流側に移動すれば前記可変絞
り部61の通路面積を減少させるよう構成し、前
記摺動筒62とテーパ部材65の他方は前記熱応
動部材66に接続され該熱応動部材の温度上昇に
伴い軸方向に移動して前記可変絞り部61の通路
面積を増大させるよう構成したことを特徴とする
ものである。
For this purpose, the gas water heater according to the present invention is provided in a water supply passage 10 communicating with a heat exchanger 16 heated by a gas burner 24, as shown in the attached drawings, and is arranged in a water supply passage 10 that communicates with a heat exchanger 16 heated by a gas burner 24. Diaphragm device 40 with a displacing diaphragm 41
In the gas water heater, the water supply passage 10 is provided with a gas valve 25 that is linked to the diaphragm 41 and increases or decreases the amount of gas supplied to the gas burner 24 according to the water flow rate. A water supply temperature compensation valve 48 that reduces the amount of displacement of the water as the temperature of the water supply increases so that hot water at a substantially constant high temperature is always obtained by the heat exchanger 16 regardless of the temperature of the water supply; The amount of water flowing to the exchanger 16 is the same as that of the gas burner 24.
A constant flow valve 60 is provided to limit the flow rate from exceeding the maximum flow rate corresponding to the maximum capacity of the water supply passage 10, and this constant flow valve is slidable in the axial direction into a fitting hole 10a formed on the inner surface of the water supply passage 10. a sliding tube 62 having an inward flange portion 62a that is fitted into the sliding tube and has an opening 62b in the center; a tapered member 65 forming a variable throttle portion 61 between the opening and the opening, and a thermally responsive member 66 located within the water supply passage 10; The structure is such that when the water supply passage 10 is biased and positioned upstream and moved downstream, the passage area of the variable throttle section 61 is reduced. It is characterized in that it is connected to the thermally responsive member 66 and is configured to move in the axial direction as the temperature of the thermally responsive member increases, thereby increasing the passage area of the variable throttle portion 61.

〔作用〕[Effect]

熱交換器16への通水量が少ない状態において
は、定流量弁60の摺動筒62とテーパ部材65
の何れか一方はスプリング63により付勢されて
位置決めされ、可変絞り部61の通路面積は給水
温度に対応した値となつている。通水量が所定の
最大流量に達すれば、前記摺動筒62とテーパ部
材65の何れか一方は前記最大流量の通水により
その前後に生じる圧力差によりスプリング63に
抗して下流側に移動して可変絞り部61の通路面
積を減少させ、通水量が前記最大流量以上となる
のを防止して熱交換器16からの熱湯の温度が所
定の高温度より低下するのを防止する。
When the amount of water passing through the heat exchanger 16 is small, the sliding tube 62 of the constant flow valve 60 and the tapered member 65
Either one of them is biased and positioned by a spring 63, and the passage area of the variable throttle section 61 has a value corresponding to the water supply temperature. When the water flow reaches a predetermined maximum flow rate, either the sliding tube 62 or the tapered member 65 moves downstream against the spring 63 due to the pressure difference generated before and after the water flow at the maximum flow rate. This reduces the passage area of the variable restrictor 61, prevents the flow rate from exceeding the maximum flow rate, and prevents the temperature of the hot water from the heat exchanger 16 from dropping below a predetermined high temperature.

給水温度が低い状態においては、給水温度補償
弁48は通水量に対するダイヤフラム41の変位
量を増大させることによりガス供給量を増大させ
て熱交換器16により給水を一定の高温度まで加
熱する一方、定流量弁60は熱応動部材66の作
用により摺動筒62とテーパ部材65の間の可変
絞り部61の通路面積を小として通水量の最大流
量を小さい値に設定する。この状態においては、
通水量が増大して前記小さい値に設定さた最大流
量に達すれば、定流量弁60の前記作用によりそ
れ以上の通水量の増大が防止され、これと同時に
ガスバーナ24は最大能力に達する。給水温度が
上昇すれば給水温度補償弁48は通水量に対する
ガス供給量を減少させ、給水温度の上昇分だけ熱
交換器16の加熱量を減少させて給水を前記と同
じ一定の高温度まで加熱する一方、定流量弁60
は熱応動部材66の作用により可変絞り部61の
通路面積を増大させ、通水量の最大流量を大きい
値に設定する。この状態において通水量が増大し
て前記大きい値に設定された最大流量に達すれ
ば、前記同様それ以上の通水量の増大が防止さ
れ、これと同時にガスバーナ24は最大能力に達
する。
In a state where the feed water temperature is low, the feed water temperature compensation valve 48 increases the amount of gas supply by increasing the amount of displacement of the diaphragm 41 with respect to the amount of water flow, and the heat exchanger 16 heats the feed water to a certain high temperature. The constant flow valve 60 reduces the passage area of the variable restrictor 61 between the sliding tube 62 and the tapered member 65 by the action of the thermally responsive member 66, and sets the maximum flow rate of water flow to a small value. In this state,
When the water flow rate increases and reaches the maximum flow rate set to the small value, the constant flow valve 60 prevents a further increase in the water flow rate, and at the same time, the gas burner 24 reaches its maximum capacity. When the feed water temperature rises, the feed water temperature compensation valve 48 reduces the gas supply amount relative to the water flow rate, reduces the heating amount of the heat exchanger 16 by the increase in the feed water temperature, and heats the feed water to the same constant high temperature as described above. On the other hand, the constant flow valve 60
The passage area of the variable throttle section 61 is increased by the action of the thermally responsive member 66, and the maximum flow rate of water flow is set to a large value. In this state, if the amount of water flowing increases and reaches the maximum flow rate set to the large value, a further increase in the amount of water flowing is prevented as described above, and at the same time, the gas burner 24 reaches its maximum capacity.

〔考案の効果〕[Effect of idea]

上述の如く、本考案によれば、給水温度が変化
しても、熱交換器への通水量の全範囲において熱
交換器から常に一定の高温度の熱湯を得ることが
できるのでガス湯沸器からの出湯温度を常に正確
に制御することができる。また、給水温度の如何
に拘わらず、熱交換器への通水量が設定された最
大流量に達すると同時にガスバーナは最大能力に
達するので、常にガスバーナの最大能力を発揮す
ることができる。
As described above, according to the present invention, even if the water supply temperature changes, hot water at a constant high temperature can always be obtained from the heat exchanger over the entire range of water flow to the heat exchanger. The temperature of hot water discharged from the tank can be accurately controlled at all times. Moreover, regardless of the temperature of the water supply, the gas burner reaches its maximum capacity at the same time as the amount of water flowing to the heat exchanger reaches the set maximum flow rate, so the gas burner can always demonstrate its maximum capacity.

〔実施例〕〔Example〕

以下に、添付図面に示す実施例により、本考案
の説明をする。
The present invention will be explained below with reference to embodiments shown in the accompanying drawings.

図面に示す如く、ガスバーナ24により加熱さ
れる熱交換器16への給水通路10の途中にはダ
イヤフラム装置40が設けられ、このダイヤフラ
ム装置40はガスバーナ24へのガス供給路20
に設けたガス弁25の開度を熱交換器16への通
水量に応じて連続的に変化させるようになつてい
る。
As shown in the drawing, a diaphragm device 40 is provided in the middle of the water supply path 10 to the heat exchanger 16 heated by the gas burner 24, and this diaphragm device 40 connects the gas supply path 20 to the gas burner 24.
The opening degree of the gas valve 25 provided in the heat exchanger 16 is continuously changed according to the amount of water flowing to the heat exchanger 16.

ガス通路20はガス通路ハウジング32内に形
成された管路21、ガス導入管22及びノズル管
23の各部分よりなり、ガス通路ハウジング32
内にはガス弁25が設けられている。ガス弁25
は管路21の内壁に形成された弁座26とスプリ
ング28により付勢される弁体27を有し、弁体
27は通常は開閉部27bが弁座26に当接され
てガス弁25を閉じているが、スプリング28に
抗して図面において左方に移動すれば先ず開閉部
27bが弁座26から離れてガス弁25を最低開
度とし、次いで更に左方に移動するにつれて比例
部27aと弁座26の間の開口面積が増大してガ
ス弁25の開度を増大し、ガスバーナ24へのガ
ス供給量を増大させるよう構成されている。
The gas passage 20 consists of a pipe line 21, a gas introduction pipe 22, and a nozzle pipe 23, which are formed in the gas passage housing 32.
A gas valve 25 is provided inside. gas valve 25
has a valve seat 26 formed on the inner wall of the pipe line 21 and a valve body 27 that is biased by a spring 28. Normally, the opening/closing portion 27b of the valve body 27 is in contact with the valve seat 26 to open the gas valve 25. However, if the opening/closing part 27b moves to the left in the drawing against the spring 28, the opening/closing part 27b will first move away from the valve seat 26 and the gas valve 25 will be at its minimum opening, and then as it moves further to the left, the proportional part 27a will move further to the left. The opening area between the valve seat 26 and the valve seat 26 is increased, thereby increasing the opening degree of the gas valve 25 and increasing the amount of gas supplied to the gas burner 24.

給水通路10は、ダイヤフラム装置40を境と
して上流側の前半部11並びに下流側の後半部1
2及びバイパス13よりなり、各部分11,1
2,13は何れもダイヤフラム装置の1次室42
に開口されている。前半部11は互いに固定され
た給水路ハウジング30及び給水管33により形
成され、後半部12及びバイパス13は給水路ハ
ウジング30及び接続管14により形成されてい
る。
The water supply passage 10 has a front half 11 on the upstream side and a rear half 1 on the downstream side with the diaphragm device 40 as the boundary.
2 and a bypass 13, each part 11, 1
2 and 13 are both primary chambers 42 of the diaphragm device.
It is opened to The front half 11 is formed by a water supply channel housing 30 and a water supply pipe 33 that are fixed to each other, and the rear half 12 and the bypass 13 are formed by a water supply channel housing 30 and a connecting pipe 14.

給水路ハウジング30とこれに固定されたカバ
ー31の間に形成された空間は両部材30,31
に挾持されたダイヤフラム41により1次室42
及び2次室43に分離され、此等ダイヤフラム4
1及び両室42,43がダイヤフラム装置40の
主要部分を構成している。2次室43は連通路4
7を介して給水通路10の後半部12に設けたベ
ンチユリ46の負圧発生部に連通される一方、前
述の如く1次室42には給水通路10の各部分1
1,12,13の一端が開口され、ダイヤフラム
41の中央に固定した先細形状の突出部材44は
バイパス13の開口部に設けた環状部材44a内
に挿入されて両部材44,44aの間に絞り部4
5を形成し、また給水通路10の後半部12には
内蔵する熱応動部材により作動する給水温度補償
弁48が設けられている。熱交換器16への通水
量は給水温度補償弁48と絞り部45の抵抗に応
じた比率にて給水通路10の後半部12とバイパ
ス13とに分配され、後半部12に分配された流
量によりベンチユリ46に生ずる負圧は2次室4
3に伝達されてダイヤフラム41に図面において
左方に向かう作動力を生ぜしめ、この作動力はロ
ツド49および弁棒29によりガス弁25の弁体
27に伝えられる。前記通水量が少なければ前記
作動力も小さいのでダイヤフラム41は変位せ
ず、ガス弁25は閉じているが、所定の最小流量
(後述のQoと一致)まで増大すればダイヤフラム
41はスプリング28に抗して左方に変位し、弁
体27を移動させてガス弁25を最低開度に開
き、ガスバーナ24の安定燃焼に必要な最低量の
ガスを供給する。この最低量のガスの燃焼により
加熱された場合に熱交換器16内において沸騰が
生じないように、前記通水量の最小流量は定めら
れる。通水量が更に増大すればその増大につれて
ダイヤフラム41はスプリング28を撓ませて変
位し、弁体27を移動させてガス弁25の開度を
増大させる。以上の作用により、ガスバーナ24
へのガス供給量は熱交換器16への通水量とほぼ
比例したものとなる。しかして、熱交換器16か
ら後述の混合弁50に供給される熱湯の温度が常
に所定の高温度となるように、前記通水量とガス
供給量の比率は設定されている。
The space formed between the water supply channel housing 30 and the cover 31 fixed thereto is connected to both members 30, 31.
A primary chamber 42 is created by a diaphragm 41 held between
The diaphragm 4 is separated into a secondary chamber 43 and a secondary chamber 43.
1 and both chambers 42 and 43 constitute the main part of the diaphragm device 40. The secondary chamber 43 is the communication path 4
7 to the negative pressure generating part of the bench lily 46 provided in the rear half 12 of the water supply passage 10, and as described above, each part 1 of the water supply passage 10 is connected to the primary chamber 42 as described above.
One end of 1, 12, 13 is opened, and a tapered projecting member 44 fixed to the center of the diaphragm 41 is inserted into an annular member 44a provided at the opening of the bypass 13, and a diaphragm is formed between the two members 44, 44a. Part 4
5, and the rear half 12 of the water supply passage 10 is provided with a water supply temperature compensation valve 48 which is operated by a built-in thermally responsive member. The amount of water flowing to the heat exchanger 16 is distributed between the rear half 12 of the water supply passage 10 and the bypass 13 at a ratio according to the resistance of the water supply temperature compensation valve 48 and the throttle section 45, and is determined by the flow rate distributed to the rear half 12. The negative pressure generated in the bench lily 46 is transferred to the secondary chamber 4.
3 to produce an actuating force on the diaphragm 41 to the left in the drawing, and this actuating force is transmitted to the valve body 27 of the gas valve 25 by the rod 49 and the valve stem 29. If the flow rate is small, the operating force is also small, so the diaphragm 41 is not displaced and the gas valve 25 is closed. However, if the flow rate increases to a predetermined minimum flow rate (consistent with Qo described later), the diaphragm 41 resists the spring 28. and moves the valve body 27 to the left to open the gas valve 25 to the minimum opening degree and supply the minimum amount of gas necessary for stable combustion of the gas burner 24. The minimum flow rate of the water flow rate is determined so that boiling does not occur in the heat exchanger 16 when heated by combustion of this minimum amount of gas. If the amount of water flowing further increases, the diaphragm 41 deflects the spring 28 and is displaced, moving the valve body 27 and increasing the opening degree of the gas valve 25. Due to the above action, the gas burner 24
The amount of gas supplied to the heat exchanger 16 is approximately proportional to the amount of water flowing to the heat exchanger 16. Therefore, the ratio of the amount of water flow and the amount of gas supplied is set so that the temperature of the hot water supplied from the heat exchanger 16 to the mixing valve 50, which will be described later, is always at a predetermined high temperature.

給水温度補償弁48は、給水温度が上昇すれば
開度が小となり熱交換器16への通水量の後半部
12への分配比率を低下させてガス弁25の開度
が小となる方向に補正し、給水温度が低下すれば
ガス弁25の開度が大となる方向に補正し、これ
により、給水温度が低下すれば熱交換器16によ
り加熱される給水の温度上昇幅が大となるように
して、熱交換器16から混合弁50に供給される
熱湯の温度が変化しないように補償するものであ
る。これにより、ガス湯沸器から出湯温度は常に
正確に制御できるようになる。
The feed water temperature compensating valve 48 decreases its opening as the feed water temperature rises, lowering the distribution ratio of the amount of water flowing to the heat exchanger 16 to the rear half 12, and decreasing the opening of the gas valve 25. If the feed water temperature decreases, the opening degree of the gas valve 25 is corrected to increase, and as a result, if the feed water temperature decreases, the temperature rise of the feed water heated by the heat exchanger 16 increases. In this way, the temperature of the hot water supplied from the heat exchanger 16 to the mixing valve 50 is compensated for so as not to change. This allows the temperature of hot water discharged from the gas water heater to be accurately controlled at all times.

給水温度補償弁48は本実施例のものに限定さ
れることなく、バイパス13の接続管14との合
流部を鎖線13aで示す如くベンチユリ46と給
水温度補償弁48との間に設け、該給水温度補償
弁48を給水温度が上昇すれば開度が大となるよ
うに構成しても同様に実施できる。
The supply water temperature compensation valve 48 is not limited to that of this embodiment, and the junction part of the bypass 13 with the connecting pipe 14 is provided between the bench lily 46 and the supply water temperature compensation valve 48 as shown by the chain line 13a, and the supply water temperature compensation valve 48 is The same effect can be achieved by configuring the temperature compensation valve 48 so that the degree of opening increases as the temperature of the water supply increases.

次に混合弁50につき説明する。混合弁50の
ハウジング51は内部に混合室52が形成され、
混合室52には熱交換器16に連通される熱湯入
口53、後述する自動弁70を介してダイヤフラ
ム装置40上流側の給水管33に連通される冷水
入口54及び給湯管17に連通される出湯口55
が開口されている。熱湯入口53の開口部に形成
された熱湯弁座52aと冷水入口54の開口部に
形成された冷水弁座52bとは互いに対向して同
心的に配置され、両弁座52a,52bと同心的
に弁軸57が設けられている。弁軸57には軸方
向に間をおいて一対の弁体56a,56bが固定
されると共にサーボモータ58により軸方向に進
退駆動される。サーボモータ58は制御装置(図
示せず)により制御され、給湯管17に設けられ
たサーミスタ(図示せず)等により検出された出
湯温度が使用者により任意に設定された出湯温度
よりも低い場合には、弁軸57を後退(第1図に
おいて下方移動)させて弁体56aと熱湯弁座5
2aの間の通路面積を増大させると同時に弁体5
6bと冷水弁座52bの間の通路面積を減少させ
て熱交換器16からの熱湯の流入比率を増大さ
せ、これにより出湯口55から給湯管17に送り
出される湯の温度を上昇させ、また、検出された
出湯温度が設定された出湯温度よりも高い場合に
は、前記と逆に弁軸57を前進させ、給水管33
からの冷水の流入比率を増大させて給湯管17に
送り出される湯の温度を低下させる。なお、出湯
量の変更は給湯管17の末端に設けた給湯栓(図
示せず)を使用者が開閉することにより行なう。
Next, the mixing valve 50 will be explained. A housing 51 of the mixing valve 50 has a mixing chamber 52 formed therein,
The mixing chamber 52 has a hot water inlet 53 that communicates with the heat exchanger 16, a cold water inlet 54 that communicates with the water supply pipe 33 on the upstream side of the diaphragm device 40 via an automatic valve 70 (described later), and an outlet that communicates with the hot water supply pipe 17. Sprue 55
is opened. A hot water valve seat 52a formed at the opening of the hot water inlet 53 and a cold water valve seat 52b formed at the opening of the cold water inlet 54 are arranged concentrically and facing each other. A valve shaft 57 is provided in the valve shaft 57 . A pair of valve bodies 56a and 56b are fixed to the valve shaft 57 with a gap in the axial direction, and are driven forward and backward in the axial direction by a servo motor 58. The servo motor 58 is controlled by a control device (not shown), and when the hot water temperature detected by a thermistor (not shown) etc. provided in the hot water supply pipe 17 is lower than the hot water temperature arbitrarily set by the user. , the valve stem 57 is moved back (moved downward in FIG. 1) to separate the valve body 56a and the hot water valve seat 5.
At the same time, the passage area between the valve body 5 and the valve body 5 is increased.
6b and the cold water valve seat 52b to increase the inflow ratio of hot water from the heat exchanger 16, thereby increasing the temperature of hot water sent from the hot water outlet 55 to the hot water supply pipe 17, and If the detected hot water temperature is higher than the set hot water temperature, the valve shaft 57 is advanced in the opposite direction to the above, and the water supply pipe 33 is opened.
The temperature of the hot water sent to the hot water supply pipe 17 is lowered by increasing the inflow ratio of cold water from the hot water supply pipe 17. The amount of hot water dispensed is changed by the user opening and closing a hot water tap (not shown) provided at the end of the hot water pipe 17.

混合弁50の冷水入口54と給水管33の間に
設けられる自動弁70は、弁口72を有する弁座
部材71、これに固定された支持部材74に移動
可能に支持されてスプリング75により冷水入口
54側から弁座部材71に付勢されて通常は弁口
72を閉じる弁部材73よりなり、弁座部材71
にはバイパス孔76が設けられている。熱交換器
16に通水されている状態においては、自動弁7
0の両側には、後述する定流量弁60の手前側か
ら混合弁50の後側までの給水通路10の抵抗に
よる圧力差が生じ、この圧力差により自動弁70
は作動する。すなわち熱交換器16への通水量が
ガスバーナ24の安定燃焼に必要なガス弁25の
最低開度を維持するために要する最小流量(後述
のQo)以下の場合には弁部材73はスプリング
75により付勢されて弁口72を閉じ、前記通水
量が最小流量Qoを超えれば前記圧力差の増大に
より弁部材73はスプリング75に抗して弁口7
2を開くように作動するものである。なお、弁口
72が閉じた状態においても自動弁70の両側は
細いバイパス孔76により連通されている。な
お、自動弁70は上記実施例の構造には限らず、
例えばダイヤフラム41の変位と連動させること
により熱交換器16への通水量が最小流量Qo以
下となれば閉じるようにしたものでもよい。
The automatic valve 70 provided between the cold water inlet 54 of the mixing valve 50 and the water supply pipe 33 is movably supported by a valve seat member 71 having a valve port 72 and a support member 74 fixed to the valve seat member 71, and is configured to supply cold water by a spring 75. Consisting of a valve member 73 that is biased by a valve seat member 71 from the inlet 54 side and normally closes the valve port 72, the valve seat member 71
A bypass hole 76 is provided in the. When water is flowing through the heat exchanger 16, the automatic valve 7
A pressure difference occurs on both sides of the automatic valve 70 due to the resistance of the water supply passage 10 from the front side of the constant flow valve 60 to the rear side of the mixing valve 50, which will be described later.
works. That is, when the amount of water flowing into the heat exchanger 16 is less than the minimum flow rate (Qo, described later) required to maintain the minimum opening degree of the gas valve 25 necessary for stable combustion in the gas burner 24, the valve member 73 is activated by the spring 75. When the valve member 73 is energized to close the valve port 72 and the water flow rate exceeds the minimum flow rate Qo, the valve member 73 resists the spring 75 and closes the valve port 72 due to the increase in the pressure difference.
It operates to open 2. Note that even when the valve port 72 is closed, both sides of the automatic valve 70 are communicated through the thin bypass hole 76. Note that the automatic valve 70 is not limited to the structure of the above embodiment.
For example, it may be configured to close when the amount of water flowing to the heat exchanger 16 becomes equal to or less than the minimum flow rate Qo by linking with the displacement of the diaphragm 41.

給水通路10の前半部11のうち給水路ハウジ
ング30内に形成される部分には定流量弁60が
設けられている。定流量弁60は給水路ハウジン
グ30内に形成された嵌合孔10aに摺動自在に
嵌合されてスプリング63により上流側に付勢さ
れた摺動筒62及びこれと同心的に支持され先細
の先端部を摺動筒62の内向フランジ部62a中
央の開口62b内に挿入して開口62bとの間に
可変絞り部61を形成するテーパ部材65を備え
ている。テーパ部材65の根本部は給水路ハウジ
ング30に固定された案内筒69により摺動自在
に支持され、案内筒69との間に介装したスプリ
ング68により上流側に付勢され、その先端は嵌
合孔10aと同心的に給水通路10内に支持され
た熱応動部材66先端の作動部66aに当接され
ている。熱応動部材66は給水路ハウジング30
内にクリツプ止めされた支持円板67により支持
され、支持円板67は熱交換器16への給水を通
過させる連通孔を有し、またスプリング63によ
り付勢される摺動筒62のストツパを形成してい
る。摺動筒62は熱交換器16への通水量がガス
弁25の最大開度すなわちガスバーナ24の最大
能力に対応する最大流量に達すれば、内向フラン
ジ部62aの前後に生じる圧力差によりスプリン
グ63に抗して下流側に移動して可変絞り部61
の通路面積を減少し、通水量が前記最大流量以上
となるのを防止して混合弁50の熱湯入口53に
供給される熱湯が常に所定の高温度に保たれるよ
うにするものである。
A constant flow valve 60 is provided in a portion of the front half 11 of the water supply passage 10 that is formed inside the water supply channel housing 30 . The constant flow valve 60 includes a sliding tube 62 that is slidably fitted into a fitting hole 10a formed in the water supply channel housing 30 and urged upstream by a spring 63, and a sliding tube 62 that is supported concentrically with the sliding tube 62 and has a tapered shape. A tapered member 65 is provided, the tip of which is inserted into an opening 62b at the center of the inward flange portion 62a of the sliding tube 62 to form a variable throttle portion 61 between the opening 62b and the opening 62b. The root portion of the tapered member 65 is slidably supported by a guide tube 69 fixed to the water supply channel housing 30, and is biased upstream by a spring 68 interposed between the guide tube 69 and the tip thereof. It is in contact with an actuating portion 66a at the tip of a thermally responsive member 66 supported in the water supply passage 10 concentrically with the matching hole 10a. The thermally responsive member 66 is attached to the water supply channel housing 30
It is supported by a support disk 67 clipped therein, which has a communication hole through which the water supply to the heat exchanger 16 passes, and which also has a stopper of the sliding tube 62 biased by a spring 63. is forming. When the amount of water flowing into the heat exchanger 16 reaches the maximum flow rate corresponding to the maximum opening of the gas valve 25, that is, the maximum capacity of the gas burner 24, the sliding tube 62 is activated by the spring 63 due to the pressure difference generated before and after the inward flange portion 62a. The variable throttle section 61 moves downstream against the
This prevents the water flow rate from exceeding the maximum flow rate so that the hot water supplied to the hot water inlet 53 of the mixing valve 50 is always maintained at a predetermined high temperature.

ガス弁25の最大開度に対応する熱交換器16
への最大流量は給水温度により異なり、給水温度
が高い状態を基準として定流量弁60による最大
流量を設定すればその値は比較的大となり、給水
温度が低下した場合において熱交換器16に前記
最大流量の通水をすればガスバーナ24の最大能
力を超えることになるので、熱交換器16から混
合弁50の熱湯入口53に供給される熱湯の温度
は所定の高温度よりも低下する。逆に給水温度が
低い状態を基準として前記最大流量を設定すれば
その値は比較的小となり、給水温度が上昇した場
合にはガスバーナ24が最大能力に達する以前に
通水量が最大流量に達するので、ガスバーナ24
の最大能力を発揮することができない。本実施例
においては給水温度が上昇すれば、熱感応部材6
6先端の作動部66aが伸びてテーパ部材65を
後退(第1図において下方移動)させるので、摺
動筒62の内向フランジ部62aとテーパ部材6
5の間の可変絞り部61の開口面積は大となり、
最大流量の設定値が大となつて給水温度が高い場
合に適した特性となる。また給水温度が低下すれ
ばテーパ部材65が前進するので可変絞り部61
の開口面積は小となり、最大流量の設定値が小と
なつて給水温度が低い場合に適した特性となる。
何れの場合にも、熱交換器16への通水量が設定
された最大流量に達すると同時にガスバーナ24
は最大能力に達するので、常にガスバーナ24の
最大能力は発揮される。
Heat exchanger 16 corresponding to the maximum opening degree of gas valve 25
The maximum flow rate to the heat exchanger 16 varies depending on the temperature of the water supply, and if the maximum flow rate by the constant flow valve 60 is set based on a state where the temperature of the water supply is high, the value will be relatively large. If the maximum flow rate of water is passed, the maximum capacity of the gas burner 24 will be exceeded, so the temperature of the hot water supplied from the heat exchanger 16 to the hot water inlet 53 of the mixing valve 50 will be lower than a predetermined high temperature. Conversely, if the maximum flow rate is set based on a state where the water supply temperature is low, the value will be relatively small, and if the water supply temperature rises, the water flow rate will reach the maximum flow rate before the gas burner 24 reaches its maximum capacity. , gas burner 24
unable to demonstrate their maximum potential. In this embodiment, if the water supply temperature rises, the heat sensitive member 6
Since the actuating portion 66a at the tip of the sliding tube 62 extends and moves the tapered member 65 backward (moves downward in FIG. 1), the inward flange portion 62a of the sliding tube 62 and the tapered member 6
The opening area of the variable diaphragm section 61 between 5 and 5 is large,
This characteristic is suitable when the maximum flow rate setting is large and the supply water temperature is high. Also, if the water supply temperature decreases, the tapered member 65 moves forward, so the variable throttle part 61
The opening area is small, the set value of the maximum flow rate is small, and the characteristics are suitable when the water supply temperature is low.
In either case, as soon as the amount of water flowing to the heat exchanger 16 reaches the set maximum flow rate, the gas burner 24
reaches its maximum capacity, so the maximum capacity of the gas burner 24 is always exhibited.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案によるガス湯沸器の一実施例の構
造説明図である。 符号の説明、10……給水通路、10a……嵌
合孔、16……熱交換器、24……ガスバーナ、
25……ガス弁、40……ダイヤフラム装置、4
1……ダイヤフラム、48……給水温度補償弁、
60……定流量弁、61……可変絞り、62……
摺動筒、62a……内向フランジ部、62b……
開口、63……スプリング、65……テーパ部
材、66……熱応動部材。
The drawing is a structural diagram of an embodiment of the gas water heater according to the present invention. Explanation of symbols, 10... Water supply passage, 10a... Fitting hole, 16... Heat exchanger, 24... Gas burner,
25...Gas valve, 40...Diaphragm device, 4
1...Diaphragm, 48...Water supply temperature compensation valve,
60... Constant flow valve, 61... Variable throttle, 62...
Sliding tube, 62a...Inward flange portion, 62b...
Opening, 63...spring, 65...tapered member, 66...thermally responsive member.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ガスバーナにより加熱される熱交換器に連通す
る給水通路に設けられ該熱交換器への通水量に応
じて変位するダイヤフラムを有するダイヤフラム
装置と、前記ダイヤフラムに連動され前記通水量
に応じてガスバーナへのガス供給量を増減させる
ガス弁を備えてなるガス湯沸器において、前記給
水通路には前記通水量に対する前記ダイヤフラム
の変位量を給水温度の上昇に応じて減少させて該
給水温度の如何に拘わらず前記熱交換器により常
にほぼ一定の高温度の熱湯が得られるようにする
給水温度補償弁と前記熱交換器への通水量が前記
ガスバーナの最大能力に対応する最大流量以上と
なることを制限する定流量弁を設け、この定流量
弁は前記給水通路に沿つてその内面に形成された
嵌合孔に軸方向摺動可能に嵌合され中央に開口が
設けられた内向フランジ部を有する摺動筒と、こ
の摺動筒と同心的に軸方向移動可能に設けられて
一部が前記開口内に挿入されて該開口との間に可
変絞り部を形成するテーパ部材と、前記給水通路
内に位置する熱応動部材を備え、前記摺動筒とテ
ーパ部材の何れか一方はスプリングにより前記給
水通路の上流側に付勢されて位置決めされると共
に下流側に移動すれば前記可変絞り部の通路面積
を減少させるよう構成し、前記摺動筒とテーパ部
材の他方は前記熱応動部材に接続され該熱応動部
材の温度上昇に伴い軸方向に移動して前記可変絞
り部の通路面積を増大させるよう構成したことを
特徴とするガス湯沸器。
A diaphragm device having a diaphragm installed in a water supply passage communicating with a heat exchanger heated by a gas burner and displaced according to the amount of water flowing to the heat exchanger; In a gas water heater equipped with a gas valve that increases or decreases the amount of gas supplied, the water supply passage is configured to reduce the amount of displacement of the diaphragm with respect to the amount of water flowing in accordance with a rise in the temperature of the water supply, regardless of the temperature of the water supply. First, there is a water supply temperature compensation valve that allows the heat exchanger to always provide hot water at a substantially constant high temperature, and a restriction that restricts the amount of water flowing to the heat exchanger from exceeding a maximum flow rate corresponding to the maximum capacity of the gas burner. A constant flow valve is provided, and the constant flow valve is fitted into a fitting hole formed on the inner surface along the water supply passage so as to be slidable in the axial direction, and has an inward flange portion with an opening in the center. a moving cylinder, a tapered member that is provided so as to be movable in the axial direction concentrically with the sliding cylinder, and a portion of which is inserted into the opening to form a variable throttle portion between the sliding cylinder and the water supply passage; one of the sliding tube and the tapered member is positioned by being biased toward the upstream side of the water supply passage by a spring, and when moved downstream, the sliding tube and the tapered member are positioned in the passage of the variable throttle section. The other of the sliding tube and the tapered member is connected to the thermally responsive member and moves in the axial direction as the temperature of the thermally responsive member increases to increase the passage area of the variable throttle portion. A gas water heater characterized by being configured as follows.
JP1986076746U 1986-05-21 1986-05-21 Expired JPH0249480Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1986076746U JPH0249480Y2 (en) 1986-05-21 1986-05-21
KR1019870004528A KR950002485B1 (en) 1986-05-21 1987-05-08 Gas hot water feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986076746U JPH0249480Y2 (en) 1986-05-21 1986-05-21

Publications (2)

Publication Number Publication Date
JPS62192043U JPS62192043U (en) 1987-12-07
JPH0249480Y2 true JPH0249480Y2 (en) 1990-12-26

Family

ID=13614165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986076746U Expired JPH0249480Y2 (en) 1986-05-21 1986-05-21

Country Status (2)

Country Link
JP (1) JPH0249480Y2 (en)
KR (1) KR950002485B1 (en)

Also Published As

Publication number Publication date
KR950002485B1 (en) 1995-03-20
KR870011434A (en) 1987-12-23
JPS62192043U (en) 1987-12-07

Similar Documents

Publication Publication Date Title
JPH0249480Y2 (en)
JPH0332932Y2 (en)
JPH0249481Y2 (en)
JPS6235574B2 (en)
CN219263262U (en) Bypass valve and water heater comprising same
JP2529763B2 (en) Water heater
JPS6225616Y2 (en)
JP3381287B2 (en) Hot water supply system with differential pressure governor
GB1585695A (en) Gas-fired continuous-flow water heater
JPS621563Y2 (en)
JP2864605B2 (en) Fluid control valve device
JPS6141023Y2 (en)
JPH0429233Y2 (en)
JPS5825214Y2 (en) gas
JPS5844274Y2 (en) instant water heater
JPS6113866Y2 (en)
JP3932227B2 (en) Bypass mixing water heater
JPS6311463Y2 (en)
JP3932228B2 (en) Bypass mixing water heater
JPH0313654Y2 (en)
JPH0345005Y2 (en)
JPH0241466Y2 (en)
JPH029338Y2 (en)
JPH04340050A (en) By-pass control valve of hot water supply device
JPS585894Y2 (en) Stop-start water heater