JPH0249452B2 - - Google Patents

Info

Publication number
JPH0249452B2
JPH0249452B2 JP57137324A JP13732482A JPH0249452B2 JP H0249452 B2 JPH0249452 B2 JP H0249452B2 JP 57137324 A JP57137324 A JP 57137324A JP 13732482 A JP13732482 A JP 13732482A JP H0249452 B2 JPH0249452 B2 JP H0249452B2
Authority
JP
Japan
Prior art keywords
hydrogen concentration
water
change
rate
calculation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57137324A
Other languages
Japanese (ja)
Other versions
JPS5927235A (en
Inventor
Takayuki Ishida
Yoshinori Mae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57137324A priority Critical patent/JPS5927235A/en
Publication of JPS5927235A publication Critical patent/JPS5927235A/en
Publication of JPH0249452B2 publication Critical patent/JPH0249452B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/228Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for radiators

Description

【発明の詳細な説明】 本発明は水漏洩検出装置に係り、特に液体金属
領域と水領域が存在する機器の水漏洩現象を検出
するための水漏洩検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water leak detection device, and more particularly to a water leak detection device for detecting a water leak phenomenon in a device in which a liquid metal region and a water region are present.

高速中性子型原子炉において、液体金属である
液体ナトリウムは優れた冷却材であるが、一方化
学的に極めて活性であるために、原子炉を用いた
原子力発電プラントにおいては、蒸気発生器の蒸
気管から水、水蒸気が漏洩してナトリウム−水反
応が発生した場合には大事故に発展する可能性が
大きく、この反応が生じた場合には早期に検出す
ることがプラント設計上不可欠であつた。
Liquid sodium, a liquid metal, is an excellent coolant in fast neutron reactors, but because it is chemically extremely active, it is used in steam pipes of steam generators in nuclear power plants using nuclear reactors. If a sodium-water reaction were to occur due to leakage of water or steam from the reactor, there is a high possibility that a major accident would develop, so early detection of this reaction was essential in plant design.

そこで従来は、蒸気発生器において、小規模な
水漏洩事故が発生した場合、水漏洩検出の最も好
適な手段として金属拡散模型水素検出法が採用さ
れてきた。
Therefore, conventionally, when a small-scale water leakage accident occurs in a steam generator, a metal diffusion model hydrogen detection method has been adopted as the most suitable means for detecting water leakage.

この検出法は、ニツケルのような水素透過係数
の大きい金属の膜を水素拡散膜として用い、ナト
リウムと漏洩水とが反応した際に生ずる水素を上
記拡散膜を通して真空中に導き、この水素濃度レ
ベルを監視することによつて水漏洩を検出するも
のである。
This detection method uses a metal membrane with a high hydrogen permeability coefficient, such as nickel, as a hydrogen diffusion membrane. Hydrogen, which is generated when sodium and leaked water react, is guided into a vacuum through the diffusion membrane, and the hydrogen concentration level Water leakage is detected by monitoring the water leakage.

第1図に従来の水漏洩検出装置の全体構成図を
示す。ナトリウム系1を流れるナトリウムは、蒸
気発生器2(蒸発器および過熱器)において水蒸
気系3と配管により遮断されており、ナトリウム
の一部の任意の流量が電磁ポンプ5によつて蒸気
発生器2の出口から弁4a、電磁流量計6、加熱
器7を通して検出部8に導かれ、その後、弁4b
を通して元のナトリウムループに戻るようになつ
ている。電磁流量計6はこのナトリウムサンプリ
ング流量を測定するものである。検出部8内には
ニツケル膜9が設置されており、ニツケル膜9の
内側をナトリウムが流れ、外側は真空ポンプ11
により真空状態に保たれている。
FIG. 1 shows an overall configuration diagram of a conventional water leak detection device. The sodium flowing through the sodium system 1 is cut off from the steam system 3 by piping at the steam generator 2 (evaporator and superheater), and a certain flow rate of a part of the sodium is supplied to the steam generator 2 by an electromagnetic pump 5. from the outlet of the valve 4b through the valve 4a, the electromagnetic flowmeter 6, and the heater 7, and then the valve 4b.
It is designed to return to the original sodium loop through the sodium loop. The electromagnetic flowmeter 6 measures this sodium sampling flow rate. A nickel membrane 9 is installed inside the detection unit 8, sodium flows inside the nickel membrane 9, and a vacuum pump 11 is installed outside the nickel membrane 9.
is kept in a vacuum state.

この状態において水漏洩が蒸気発生器2内で発
生するとナトリウム−水反応を起こす。
If water leaks in the steam generator 2 in this state, a sodium-water reaction will occur.

Na+H2O→NaOH+1/2H2↑ このナトリウム−水反応によつて発生する水素
は、ナトリウムと共に弁4a、電磁ポンプ5、電
磁流量計6、加熱器7を通り、検出部8内に達し
た後、検出部8内のニツケル膜9を透過して真空
計10に出てくる。このようにして真空系10に
導かれた水素を用いて、ゲージ12、真空計13
で検出される真空度により水素の濃度が測定さ
れ、この水素濃度出力14が信号処理装置15に
より処理される。
Na+H 2 O→NaOH+1/2H 2 ↑ Hydrogen generated by this sodium-water reaction passes through the valve 4a, electromagnetic pump 5, electromagnetic flowmeter 6, and heater 7 together with sodium, and after reaching the detection part 8. , passes through the nickel film 9 in the detection section 8 and comes out to the vacuum gauge 10. Using the hydrogen introduced into the vacuum system 10 in this way, the gauge 12 and the vacuum gauge 13 are
The concentration of hydrogen is measured based on the degree of vacuum detected by the sensor, and this hydrogen concentration output 14 is processed by a signal processing device 15.

従来はこの水素濃度出力を信号処理装置15
で、警報設定値及びトリツプ設定値と比較し、
各々の設定値を超えた場合に、警報信号及びトリ
ツプ信号を出力していた。
Conventionally, this hydrogen concentration output was processed by the signal processing device 15.
and compare it with the alarm set value and trip set value,
When each set value was exceeded, an alarm signal and a trip signal were output.

このような従来技術における水漏洩検出装置に
おいては、警報出力信号16及びトリツプ出力信
号17は各々予め定められた設定値を越えるか越
えないかによつて左右されるために、瞬時的な電
気的ノイズ、水素濃度のバツクグラウンドの変動
及びナトリウム流量、温度等のプロセス量の変化
等により濃度出力14が変動することによつて警
報設定値またはトリツプ設定値に達すると、実質
上は水素濃度が増大していないにも拘らず、警報
出力信号又はトリツプ出力信号が誤信号として出
力されるという欠点があつた。また、ごく小規模
の水漏洩が生じた場合、水素濃度出力の変化が極
めてゆつくりとなり、警報設定値及びトリツプ設
定値に達するまでに非常に長い時間がかかるとい
う欠点があつた。これらの従来技術における欠点
は原子力発電プラントの運転上、機器の異常監視
としては信頼性、応答性の点で大きな問題であつ
た。
In such a conventional water leak detection device, the alarm output signal 16 and the trip output signal 17 depend on whether or not each exceeds a predetermined set value, so instantaneous electrical noise is generated. When the concentration output 14 reaches the alarm set value or trip set value due to fluctuations in the background of the hydrogen concentration and changes in process quantities such as sodium flow rate and temperature, the hydrogen concentration essentially increases. However, there is a drawback that the alarm output signal or trip output signal is output as an erroneous signal even though the alarm output signal or trip output signal is not detected. Another disadvantage is that when a very small water leak occurs, the hydrogen concentration output changes very slowly, and it takes a very long time to reach the alarm and trip settings. These shortcomings in the conventional techniques have caused major problems in terms of reliability and responsiveness when it comes to operating nuclear power plants and monitoring equipment abnormalities.

本発明の目的は、蒸気発生器における水漏洩
を、早期にかつ誤信号を発することのない高い信
頼性で検出することのできる水漏洩検出装置を提
供することにある。
An object of the present invention is to provide a water leakage detection device that can detect water leakage in a steam generator early and with high reliability without generating false signals.

本発明は、経時的に変化のある水素濃度のデー
タを、信号処理装置で前処理した後、水素濃度の
変化率を算出し、その変化率が予め定めた変化率
設定値を越えたかどうかの判定を行い、ある規定
時間内に存在する上記判定結果の総数のうち、変
化率設定値を越えた判定結果の総和が、規定した
割合以上あるかで水漏洩の有無を判定することに
より水漏洩を早期にかつ高い信頼性で検出するこ
とができることを特徴とした検出方式である。
The present invention preprocesses hydrogen concentration data that changes over time using a signal processing device, calculates the rate of change in hydrogen concentration, and determines whether the rate of change exceeds a predetermined change rate setting value. Water leakage is detected by determining the presence or absence of water leakage based on whether the total number of determination results that exceed the change rate setting value exceeds a specified percentage of the total number of determination results that exist within a certain specified time. This detection method is characterized by its ability to detect early and with high reliability.

以下、本発明の一実施例を第2図と第3図によ
り説明する。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3.

真空計13よりの水素濃度出力14を、ある時
間内(本実施例ではΔTと仮定する)に、ある一
定周期(本実施例ではΔT/hと仮定する)でn
回、信号処理装置15に取り込む。信号処理装置
15は、水素濃度計算回路18、水素濃度変化率
計算回路19、水漏洩判定回路20より構成され
る。まず水素濃度計算回路18では、取り込んだ
水素濃度出力14を信号処理し、ΔT間の平均水
素濃度を計算する。この信号処理とは、例えば
ΔT間の水素濃度信号C11,C12,……,C1oの平均
値を平均水素濃度C1とするケース、 C1=C11+C12+……+C1o/n C11,C12,……,C1oのうち、高い方の値から
順にk個、低い方の値から順にk個除いたものの
平均値を平均水素濃度C1とするケース等が考え
られる。上記方式により得られた時間TからT+
ΔT間の平均水素濃度をC1、時間T+ΔTからT
+2ΔT間の平均水素濃度をC2、……、時間T+
12ΔTからT+13ΔT間の平均水素濃度をC13と仮
定する。
The hydrogen concentration output 14 from the vacuum gauge 13 is calculated as n within a certain period (assumed to be ΔT in this embodiment) and at a certain period (assumed to be ΔT/h in this embodiment).
times, the signal is taken into the signal processing device 15. The signal processing device 15 includes a hydrogen concentration calculation circuit 18, a hydrogen concentration change rate calculation circuit 19, and a water leakage determination circuit 20. First, the hydrogen concentration calculation circuit 18 processes the input hydrogen concentration output 14 and calculates the average hydrogen concentration during ΔT. This signal processing is, for example, a case where the average value of the hydrogen concentration signals C 11 , C 12 , ..., C 1o during ΔT is set as the average hydrogen concentration C 1 , C 1 = C 11 + C 12 + ... + C 1o / A case may be considered in which the average hydrogen concentration C 1 is the average value of n C 11 , C 12 , ..., C 1o , by removing k values in order from the highest value and k values in order from the lowest value. . From the time T obtained by the above method to T+
C 1 is the average hydrogen concentration during ΔT, and time T + ΔT to T
The average hydrogen concentration during +2ΔT is C 2 , ..., time T+
Assume that the average hydrogen concentration between 12ΔT and T+13ΔT is C 13 .

水素濃度変化率計算回路19では、平均水素濃
度C1、C2、……、Coより、ある時間間隔(本実
施例ではaΔTとする)での水素濃度の変化率 ΔCo+a=Co+a−Co/aΔT を計算する。その時点で得られた平均水素濃度
と、それよりaΔT前の時点での平均水素濃度を
比較し、aΔT間にどれほど水素濃度が変化した
かを順次求める。このようにして得られた平均水
素濃度C1を基準にしたaΔT間の水素濃度変化率
をΔC1、平均水素濃度C2を基準にしたaΔT間の
水素濃度変化率をΔC2、……、平均水素濃度C13
を基準にしたaΔT間の水素濃度変化率をΔC13
仮定する。
The hydrogen concentration change rate calculation circuit 19 calculates the rate of change in hydrogen concentration in a certain time interval (in this example, aΔT ) from the average hydrogen concentrations C 1 , C 2 , ..., C o ΔC o+a = C Calculate o+a −C o /aΔT. The average hydrogen concentration obtained at that point in time is compared with the average hydrogen concentration at a point aΔT before that point, and how much the hydrogen concentration has changed during aΔT is sequentially determined. The rate of change in hydrogen concentration between aΔT based on the average hydrogen concentration C 1 obtained in this way is ΔC 1 , and the rate of change in hydrogen concentration between aΔT based on the average hydrogen concentration C 2 is ΔC 2 ,... Average hydrogen concentration C 13
Assume that the rate of change in hydrogen concentration between aΔT and ΔC is 13 .

水漏洩判定回路20では、水素濃度変化率
ΔC1、ΔC2、……、ΔCoとその変化率に対する警
報設定値あるいはトリツプ設定値との比較を行
い、設定値を超えたかどうか判定すると同時に、
ある規定時間内に存在する判定結果の総数のう
ち、変化率設定値を越えた判定結果の総和が、規
定した割合以上であるかどうかで水漏洩の有無を
判定する。第3図では、水素濃度変化率と設定変
化率を比較した結果を次のように仮定する。
The water leakage determination circuit 20 compares the rate of change in hydrogen concentration ΔC 1 , ΔC 2 , .
The presence or absence of water leakage is determined based on whether or not the sum of the determination results that exceed the change rate setting value out of the total number of determination results that exist within a certain prescribed time is equal to or greater than a prescribed percentage. In FIG. 3, the results of comparing the rate of change in hydrogen concentration and the set rate of change are assumed as follows.

ただし 水素濃度変化率<設定変化率……0 水素濃度変化率>設定変化率……1 とする。 however Hydrogen concentration change rate < Setting change rate...0 Hydrogen concentration change rate > Setting change rate...1 shall be.

ΔC1……0、ΔC2……0、ΔC3……0 ΔC4……1、ΔC5……0、ΔC6……0 ΔC7……1、ΔC8……1、ΔC9……0 ΔC10……1、ΔC11……1、ΔC12……1 ΔC13……1 上記ケースにおいて、多数決論理として3回の
うち2回以上が“1”と判定された場合に水漏洩
が生じたと判断する例を示す。
ΔC 1 …0, ΔC 2 …0, ΔC 3 …0 ΔC 4 …1, ΔC 5 …0, ΔC 6 …0 ΔC 7 …1, ΔC 8 …1, ΔC 9 … 0 ΔC 10 …1, ΔC 11 …1, ΔC 12 …1 ΔC 13 …1 In the above case, if two or more out of three times are determined to be “1” based on majority logic, water leakage will occur. An example of determining that this has occurred is shown below.

ΔC1、ΔC2、ΔC3……0、0、0→無 ΔC2、ΔC3、ΔC4……0、0、1→無 ΔC3、ΔC4、ΔC5……0、1、0→無 ΔC4、ΔC5、ΔC6……1、0、0→無 ΔC5、ΔC6、ΔC7……0、0、1→無 ΔC6、ΔC7、ΔC8……0、1、1→有 ΔC7、ΔC8、ΔC9……1、1、0→有 ΔC8、ΔC9、ΔC10……1、0、1→有 ΔC9、ΔC10、ΔC11……0、1、1→有 ΔC10、ΔC11、ΔC12……1、1、1→有 ΔC11、ΔC12、ΔC13……1、1、1→有 本ケースにおいては、時刻T+7ΔTに水漏洩
発生が検出される。
ΔC 1 , ΔC 2 , ΔC 3 ...0, 0, 0 → No ΔC 2 , ΔC 3 , ΔC 4 ...0, 0, 1 → No ΔC 3 , ΔC 4 , ΔC 5 ...0, 1, 0 → No ΔC 4 , ΔC 5 , ΔC 6 ... 1, 0, 0 → No ΔC 5 , ΔC 6 , ΔC 7 ...0, 0, 1 → No ΔC 6 , ΔC 7 , ΔC 8 ...0, 1, 1 → ΔC 7 , ΔC 8 , ΔC 9 ... 1, 1, 0 → ΔC 8 , ΔC 9 , ΔC 10 ... 1, 0, 1 → ΔC 9 , ΔC 10 , ΔC 11 ... 0, 1, 1 → present ΔC 10 , ΔC 11 , ΔC 12 ... 1, 1, 1 → present ΔC 11 , ΔC 12 , ΔC 13 ... 1, 1, 1 → present In this case, water leak occurrence was detected at time T+7ΔT be done.

本発明によれば、水素濃度変化率が設定変化率
を超えた回数の多数決論理を取ることにより、水
漏洩の有無を判定するため、変化率を計算する時
間間隔に応じて、極めて小規模の水漏洩から大規
模の水漏洩を検出できると同時に、瞬時的な電気
的ノイズ、水素濃度のバツクグラウンドの変動及
びプロセス量変化による濃度出力の変動に対して
も誤まつた警報信号やトリツプ信号の発信を防止
することができる。
According to the present invention, the presence or absence of water leakage is determined by taking majority logic of the number of times the rate of change in hydrogen concentration exceeds a set rate of change. It is possible to detect large-scale water leaks from water leaks, and at the same time, it can prevent false alarm signals and trip signals from instantaneous electrical noise, background fluctuations in hydrogen concentration, and fluctuations in concentration output due to changes in process volume. It is possible to prevent outgoing calls.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の水漏洩検出装置の全体構成図を
示す。第2図は本発明の実施例である信号処理装
置の構成図、第3図は水素濃度データと水素濃度
変化率、水漏洩判定結果の時間的変化の関係図を
示す。 1……ナトリウム系、2……蒸気発生器、3…
…水蒸気系、4a,4b……弁、5……電磁ポン
プ、6……電磁流量計、7……加熱器、8……検
出部、9……ニツケル膜、10……真空系、11
……真空ポンプ、12……ゲージ、13……真空
計、14……水素濃度出力、15……信号処理装
置、16……警報出力信号、17……トリツプ出
力信号、18……水素濃度計算回路、19……水
素濃度変化率計算回路、20……水漏洩判定回
路。
FIG. 1 shows an overall configuration diagram of a conventional water leak detection device. FIG. 2 is a block diagram of a signal processing device according to an embodiment of the present invention, and FIG. 3 is a diagram showing the relationship between hydrogen concentration data, hydrogen concentration change rate, and temporal changes in water leak determination results. 1...Sodium system, 2...Steam generator, 3...
...Water vapor system, 4a, 4b... Valve, 5... Electromagnetic pump, 6... Electromagnetic flow meter, 7... Heater, 8... Detection section, 9... Nickel film, 10... Vacuum system, 11
... Vacuum pump, 12 ... Gauge, 13 ... Vacuum gauge, 14 ... Hydrogen concentration output, 15 ... Signal processing device, 16 ... Alarm output signal, 17 ... Trip output signal, 18 ... Hydrogen concentration calculation Circuit, 19...Hydrogen concentration change rate calculation circuit, 20...Water leakage determination circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 液体金属領域と水領域が存在する機器の、水
領域から液体金属領域への水漏洩を水素濃度出力
によつて検出する水漏洩検出装置において、経時
的に変化のある各水素濃度出力のデータを平均化
処理する水素濃度計算回路と、その平均化処理し
た平均水素濃度の変化率を一定時間間隔で計算す
る水素濃度変化率計算回路と、その変化率が予め
定めた変化率設定値を越えたかどうかの判断を行
い、ある規定時間内に存在する上記判断結果の総
数のうち、変化率設定値を越えた判定結果の総和
が、規定した割合以上あるかどうかで水漏洩の有
無を判断する水漏洩判定回路とを備えたことを特
徴とする水漏洩検出装置。
1. Data on each hydrogen concentration output that changes over time in a water leak detection device that detects water leakage from the water region to the liquid metal region of a device in which a liquid metal region and a water region exist by hydrogen concentration output. a hydrogen concentration calculation circuit that averages the average hydrogen concentration, a hydrogen concentration change rate calculation circuit that calculates the rate of change of the averaged hydrogen concentration at fixed time intervals, and a hydrogen concentration change rate calculation circuit that calculates the rate of change of the averaged hydrogen concentration at fixed time intervals; The presence or absence of water leakage is determined based on whether or not the total number of judgment results that exceed the change rate setting value exceeds a specified percentage out of the total number of judgment results that exist within a certain specified time. A water leak detection device comprising a water leak determination circuit.
JP57137324A 1982-08-09 1982-08-09 Apparatus for detecting water leakage Granted JPS5927235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57137324A JPS5927235A (en) 1982-08-09 1982-08-09 Apparatus for detecting water leakage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57137324A JPS5927235A (en) 1982-08-09 1982-08-09 Apparatus for detecting water leakage

Publications (2)

Publication Number Publication Date
JPS5927235A JPS5927235A (en) 1984-02-13
JPH0249452B2 true JPH0249452B2 (en) 1990-10-30

Family

ID=15196010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57137324A Granted JPS5927235A (en) 1982-08-09 1982-08-09 Apparatus for detecting water leakage

Country Status (1)

Country Link
JP (1) JPS5927235A (en)

Also Published As

Publication number Publication date
JPS5927235A (en) 1984-02-13

Similar Documents

Publication Publication Date Title
FI109617B (en) System and method for detecting leaks from a chemical soda boiler
JP2011196962A (en) Method and apparatus for monitoring hydrogen concentration
JPH0249452B2 (en)
JPH1039083A (en) In-furnace information monitoring apparatus
KR100871288B1 (en) Method and system of earlier leak detection in nuclear reactor system by using chemical concentration monitoring
US4293853A (en) Method and apparatus for detecting flow instability in steam generator
JP3117841B2 (en) Gas leak detection method
JPS58215522A (en) Water leakage detector
CN113434803B (en) Thermal power calculation method, device, medium and equipment of thermal power conversion system
CN216978267U (en) Generator stator cooling water tank hydrogen leakage monitoring devices
JP2002341081A (en) Atomic reactor coolant purification system leakage detection system
McKee et al. Use of in-sodium hydrogen detectors during steam generator tests in the SCTI
JPH0353570B2 (en)
MXPA06011175A (en) Improved on-line steam flow measurement device and method.
Osterhout Operation of the water-to-sodium leak detection system at the experimental breeder reactor II
JPS5866036A (en) Leak detector for nuclear reactor coolant purification system
JPH01250896A (en) Coolant leakage detector
CN116092707A (en) Device and method for monitoring coolant leakage of containment outside system pipeline
JPH037080B2 (en)
JPS5934130A (en) Apparatus for processing detection signal of minute leakage of sodium in atomic power plant
JPS62209349A (en) Apparatus for monitoring corrosive environment
TW202225656A (en) Method of loop state detection suitable for power plant, system thereof and computer program product thereof
Hayes Water leaks in sodium-heated fast reactor boilers
CN116776039A (en) Method and device for evaluating containment breach leakage rate, storage medium and electronic equipment
Ford et al. Leak detection in sodium-heated steam generators