JPS5934130A - Apparatus for processing detection signal of minute leakage of sodium in atomic power plant - Google Patents

Apparatus for processing detection signal of minute leakage of sodium in atomic power plant

Info

Publication number
JPS5934130A
JPS5934130A JP57143416A JP14341682A JPS5934130A JP S5934130 A JPS5934130 A JP S5934130A JP 57143416 A JP57143416 A JP 57143416A JP 14341682 A JP14341682 A JP 14341682A JP S5934130 A JPS5934130 A JP S5934130A
Authority
JP
Japan
Prior art keywords
signal
output
sodium
leakage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57143416A
Other languages
Japanese (ja)
Inventor
Koji Uchida
内田 光司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57143416A priority Critical patent/JPS5934130A/en
Publication of JPS5934130A publication Critical patent/JPS5934130A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/228Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for radiators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To exclude an influence of noise etc. by integrating an output of Na ionization detector and sending out the detected output at the time when the number of times when the difference of this integrated output and its mean value has exceeded over a fixed value becomes a fixed value or more in the reference time. CONSTITUTION:An ionization detecting signal 21 of a Na ionization detector is integrated by an integrator 42 and is added to a decision circuit 42 and also, is added to an operator 44 operating the mean value. Further, the integrated output is discriminated from the mean output by the circuit 43 and ''1'' is set on a memory circuit 45 at the time when the integrated output has exceeded by a set point or more above the means value. The above-mentioned action is repeated periodically by a signal of a timing pulse generator 47 and (n) pieces of data of the circuit 45 are examined by a majority logic circuit 46 and then, a leakage decision output is outputted at the time when (m) pieces of data among (n) pieces of data is ''1''.

Description

【発明の詳細な説明】 原子力発電所において配管から漏洩したナトリウム(以
下本明細書においてはN、lと略記する。)をイオン化
することによって検出するN、=1検出器とタイミング
・パルス発生回路を備え、−に記Na検出器からの信号
を上記タイミング・パルス発生回路からの信号によって
積分し、そのように(7て得られる出力を設定値と比I
I1.I2するNa微少漏洩検出信号処理装置に関する
[Detailed Description of the Invention] N,=1 detector and timing pulse generation circuit that detect sodium (hereinafter abbreviated as N and l in this specification) leaked from piping at a nuclear power plant by ionizing it. The signal from the Na detector described in - is integrated by the signal from the timing pulse generation circuit, and the output obtained in (7) is compared to the set value.
I1. This invention relates to a signal processing device for detecting minute Na leakage.

液体Naは高速増殖炉の冷却材に用いられている。Na
は化学的に活性であり、Naを内包する冷却材バウンダ
リを構成する機器、配管のピンホールや熱サイクル疲労
等によって発生するクラックからのNa漏洩は、原子炉
冷却材喪失、Na火災等の重大なトラブルに発展するお
それがある。
Liquid Na is used as a coolant for fast breeder reactors. Na
is chemically active, and Na leakage from equipment that makes up the Na-containing coolant boundary, pinholes in piping, cracks caused by thermal cycle fatigue, etc. can cause serious problems such as loss of reactor coolant and Na fires. There is a risk of developing into serious trouble.

Na微少漏洩検出装置は、上述した事故に発展するのを
防止するために、配管等の亀裂から、にじみ出るような
微少漏洩を迅速に、かつ確実に検出し、原子炉の安全を
確保するだめの装置である。
In order to prevent the above-mentioned accidents from developing, the Na minute leak detection device quickly and reliably detects minute leaks that ooze out from cracks in pipes, etc., and is used to ensure the safety of the reactor. It is a device.

この微少漏洩を検出する方法として、Naイオン化検出
器(以下本明細書においてはS I I)と略称する。
A method for detecting this minute leakage is referred to as a Na ionization detector (hereinafter referred to as SII).

)が一般に用いられている。第1図にSIDによるNa
微少漏洩検出装置を示す。高温Naは、配管1に内包さ
れており、その外側に保温材2が設けられる。配管1に
亀裂が発生し、Naが漏洩すると保温材に囲まれたアニ
ユラス部でpJaの一部が蒸発し、Naエアロゾルが発
生する。このNaエアロゾルをサンプリング配管3に導
いて、流量調節弁4により所定流量にして5ID11を
介して、サンプリングポンプ5で吸引する。
) is commonly used. Figure 1 shows Na by SID.
A micro leakage detection device is shown. High-temperature Na is contained in a pipe 1, and a heat insulating material 2 is provided outside of the pipe 1. When a crack occurs in the pipe 1 and Na leaks, a portion of pJa evaporates in the annulus surrounded by the heat insulating material, generating Na aerosol. This Na aerosol is guided to the sampling pipe 3, set to a predetermined flow rate by the flow rate control valve 4, and sucked by the sampling pump 5 via the 5ID11.

このNaエアロゾルは、8ID11で、イオン化し、イ
オン電流を増幅器12に出力する。増幅器12でNa漏
洩信号に変換し、信号処理装置13で漏洩判定を行ない
、必要な場合には飾報装置14に出力する。
This Na aerosol is ionized at 8ID11 and an ion current is output to the amplifier 12. The amplifier 12 converts the signal into an Na leak signal, the signal processing device 13 performs leakage determination, and outputs it to the display device 14 if necessary.

第2図に漏洩判定に関する信号処理装置の従来技術を示
す。Na漏洩信号21は、信号処理装置13に人力され
、比較器22によシ設定値23と比較され、設定値超過
で警報装置14に出方する。
FIG. 2 shows a conventional technique of a signal processing device related to leakage determination. The Na leakage signal 21 is inputted to the signal processing device 13, is compared with a set value 23 by a comparator 22, and is output to the alarm device 14 if the set value is exceeded.

以上の方法では、プラント運転状態の変化や異物混入等
の影響、さらにエアロゾルの挙動の変化等の影響により
、実Nam洩情報との判別が困難であり、また設定値の
決定も困難である。したがって特に事故の早期検知、波
及の防IEの目的に対し、十分機能を果たさない欠点が
あった。
In the above method, it is difficult to distinguish the information from the actual Nam leakage information, and it is also difficult to determine the set value, due to the effects of changes in plant operating conditions, foreign matter contamination, etc., and changes in aerosol behavior. Therefore, there was a drawback that it did not function sufficiently, especially for the purpose of early accident detection and prevention of spillover.

第3図に、Sより出力信号の時間的変化の一例を示す。FIG. 3 shows an example of a temporal change in the output signal from S.

図中1゜はNa漏洩発生時点を示す。信号の特長として
、Na漏洩がない場合にも、パルス状の突発的な信号が
現れる。しだがって従来のレベルによる設定値との比較
方式の場合には、時刻t′時の信号のような設定レベル
31を超過し7たものに対して漏洩信号が出る。その上
、初期の運転状態の条件によりバックグランドレベルの
変動が生じた場合にも同様の不都合が生じる。以上のよ
うに従来の技術では確実に漏洩判定を行なえず、極めて
信頼性の低いものであった。
In the figure, 1° indicates the point at which Na leakage occurs. A characteristic of the signal is that a sudden pulse-like signal appears even when there is no Na leakage. Therefore, in the case of the conventional level-based comparison method with a set value, a leakage signal is generated for a signal that exceeds the set level 31, such as the signal at time t'. Moreover, similar inconveniences occur when the background level fluctuates due to initial operating conditions. As described above, the conventional techniques cannot reliably determine leakage and are extremely unreliable.

本発明の目的は、Na微少漏洩を迅速かつ確実に検出す
るためのNa微少漏洩検出器の信号処理装置を提供する
ことにある。
An object of the present invention is to provide a signal processing device for a Na minute leak detector for quickly and reliably detecting Na minute leaks.

上記目的を達成するために、冒頭に述べた種類の本発明
による原子力発電所におけるN″a微少漏洩検出信号処
理装置は、さらに多数決論理回路が備えられ、靴音レベ
ルに相当する長時間の平均値から求めた基準値との差分
が予め定められた値を超過したものに対して多数決論理
を働かせ、その状態の継続を確認し、突発的なパルス信
号および雑音変動による信号を弁別することを要旨とす
る。
In order to achieve the above object, the N″a micro leakage detection signal processing device in a nuclear power plant according to the present invention of the type mentioned at the beginning is further provided with a majority logic circuit, and a long-term average value corresponding to the shoe sound level is The main idea is to apply majority logic to those whose difference from the reference value calculated from the reference value exceeds a predetermined value, confirm the continuation of that state, and discriminate between sudden pulse signals and signals due to noise fluctuations. shall be.

以下、本発明の一実施例を第4図により説明する。An embodiment of the present invention will be described below with reference to FIG.

図示の回路は、Sより信号(Si)21をとりこみ積分
演算を行なう積分器42、設定値との比較を行なう判定
回路43、比較した結果を記憶する記憶回路45、最終
的に漏洩判定の処理を下す多数決論理回路46、周期的
パルスを出すタイミング・パルス発生回路47、基準値
(Co)を算出するだめの演算器44から構成されてお
り、SIDの出力信号から積分値(Ci)を求めること
により、漏洩後の信号の微妙な増加に対し有効に漏洩判
定ができ、また突発的なパルス信号、バックグランド変
動に対して誤動作を防止することもできる装置である。
The illustrated circuit includes an integrator 42 that takes in a signal (Si) 21 from S and performs an integral calculation, a determination circuit 43 that performs a comparison with a set value, a storage circuit 45 that stores the comparison result, and finally a leakage determination process. It is composed of a majority logic circuit 46 that determines the timing, a timing pulse generation circuit 47 that outputs periodic pulses, and an arithmetic unit 44 that calculates the reference value (Co), and calculates the integral value (Ci) from the output signal of the SID. As a result, the device is capable of effectively determining leakage in the case of a subtle increase in the signal after leakage, and can also prevent malfunctions in response to sudden pulse signals and background fluctuations.

S I I)信号(Si)21をタイミングパルス発生
器47からの信号により、30秒4′T!度の間隔(1
)で積分器42にとりこみ、次式で示すように?11分
イ直(Ci)を算出する。
S I I) signal (Si) 21 is transmitted for 30 seconds 4'T! by the signal from the timing pulse generator 47. degree interval (1
) into the integrator 42, as shown in the following equation? Calculate the 11 minute straightness (Ci).

tゎ一1ll−1=を 積分値(C1)を求めることにより漏洩に起因しない突
発的なパルス状の信号は除去できる。(1)式で得られ
た積分値(C1)は、漏洩判定および基準値(CO)の
設定に用いる。漏洩判定回路43においては、次式で示
すような比較、t11宇が行なわれる。
By calculating the integral value (C1) of tゎ-1ll-1=, sudden pulse-like signals not caused by leakage can be removed. The integral value (C1) obtained by equation (1) is used for leakage determination and setting of the reference value (CO). In the leakage determination circuit 43, a comparison t11 is performed as shown in the following equation.

Ci>C8・・・(2) 0、 i −CO、> CS            
 ・・・(3)但し、C1:積分値、C5:設定値、C
O:基準値。
Ci>C8...(2) 0, i-CO,>CS
...(3) However, C1: integral value, C5: set value, C
O: Reference value.

ここで設定値(C3)は、あらかじめ5II)仏号レベ
ルを基準に定めた値である。基準値(CO)は、+1.
在算出l〜ている積分値(C1)に対i〜、−周期以前
のSID信号の平均値で、次式で示される。
Here, the set value (C3) is a value determined in advance based on the 5II) Buddhist name level. The reference value (CO) is +1.
It is the average value of the SID signal i~, - period before the current calculated integral value (C1), and is expressed by the following equation.

通常、基準値(CO)は、漏洩以前の状態ではほぼ一定
で、突発的なパルス信号に対しても、長時間の平均をと
るため安定した信号であり、バックグランドの信号の平
均値に相当している。
Normally, the reference value (CO) is almost constant in the state before leakage, and even in response to sudden pulse signals, it is a stable signal because it is averaged over a long period of time, and is equivalent to the average value of the background signal. are doing.

Na漏洩後、漏洩信号の増加に伴い、積分値(C1)が
大きくなり設定値(C5)を超過することにより(2)
式の条件を満たし、さらに積分値(Ci)からバックグ
ランドを除いた値が設定値(C8)を超過することによ
シ(3)式を満たすと、漏洩判定のパルスが出て、初期
状態にはすべて′O”がセットされていた記憶回路45
に@ 1 #のフラッグを立てる。そうでない場合は′
0#となる。
After Na leaks, as the leakage signal increases, the integral value (C1) increases and exceeds the set value (C5) (2)
When the condition of the equation is satisfied and the value obtained by subtracting the background from the integral value (Ci) exceeds the set value (C8), the leakage judgment pulse is output and the initial state is All memory circuits 45 were set to 'O'.
Put up a @ 1 # flag. If not, ′
It becomes 0#.

データは順次判定回路45に格納されでいくため、常時
n個のデータに対して漏洩判定が行なわれ、n個のうち
m個のフラッグが′1”の場合には、漏洩判定の多数決
論理回路46を介して、漏洩判定出力48が出る。すな
わち、Sより信号の突発的なパルス波形および増加・減
少をくりかえす不規則性に対して、確実に漏洩判定を下
せる最小限の時間の監視を行ない、性急な判定による誤
動作を防止できる構成となっている。
Since data is sequentially stored in the determination circuit 45, leakage determination is always performed on n pieces of data, and if m flags out of n are '1', the majority logic circuit for leakage determination A leakage judgment output 48 is outputted via 46. In other words, S monitors the sudden pulse waveform of the signal and the irregularity of repeated increases and decreases for the minimum amount of time that allows a reliable leakage judgment to be made. The system is designed to prevent malfunctions caused by hasty judgments.

第5図に本信号処理装置のタイムチャートを示す。SI
D信号(Si)に対し、タイミング・パルスにより積分
値(C1)が順次算出される。通常、Na漏洩以前のS
ID信号(Si)21は、突発的な信号が出るものの、
ある−宇レベルのバックグランド信号で、大きなレベル
の変動はない。
FIG. 5 shows a time chart of this signal processing device. S.I.
Integral values (C1) are sequentially calculated for the D signal (Si) using timing pulses. Usually, S before Na leakage
Although the ID signal (Si) 21 suddenly outputs a signal,
The background signal is at a certain level, and there are no large level fluctuations.

したがって(2)式および(3)式を連続して満たすこ
とはない。ところが、で示すNa漏洩時点の後では、バ
ックグランド信号に対して微妙ながらも有意な信号が現
われ、連続することにより、積分値(C1)が(2)式
および(3)式を満足すると、漏洩判定のフラッグが立
ち、多数決論理回路46が働くことにより、漏洩判定出
力48が出る。
Therefore, equations (2) and (3) are not satisfied consecutively. However, after the Na leakage point shown by, a subtle but significant signal appears with respect to the background signal and continues, so that when the integral value (C1) satisfies equations (2) and (3), A leak determination flag is raised and the majority logic circuit 46 operates, thereby producing a leak determination output 48.

以上述べたように、SID信号に対して、その信号処理
法として積分値を算出]2、設定値と比較することによ
り、SID信号の特長である信号レベルの微妙な変化、
突発的な信号に対しても誤qb作を防止できるとともに
、プラントの初期状態に依存するバックグランドレベル
の信号を除去し、バックグランドによる影響をも除去で
きる。特に漏洩Na縫が4f’7 ’FNで、SID信
号が、ごくわずかにしか上昇しない場合にも、積分比較
法により信号の平均的増分をとるだめ微妙な増加をとら
えることができ、十分に漏洩判定を行なえる。
As mentioned above, the integral value is calculated as a signal processing method for the SID signal] 2. By comparing with the set value, it is possible to detect subtle changes in the signal level, which is a feature of the SID signal.
It is possible to prevent erroneous QB operation even in response to sudden signals, and also to remove background level signals that depend on the initial state of the plant, thereby also removing the influence of the background. In particular, even if the leakage Na stitch is 4f'7'FN and the SID signal rises only slightly, the integral comparison method can capture the subtle increase by taking the average increment of the signal, and the leakage is sufficient. Able to make judgments.

したがって、従来の技術に対し、Na微少漏洩検出シス
テムの信頼性向−ヒに大きくつながる。さらに、ノ・−
ドウエアの構成とL7て、1台のマイクロプロセッサ等
にて実現可能であり、十分実用可能である。
Therefore, the reliability of the Na microleakage detection system is greatly improved compared to the conventional technology. Furthermore, no--
The software configuration and L7 can be realized with one microprocessor or the like, and are fully practical.

以上説、明したと卦り、本発明によれば、SID信号を
定計的に取り扱うことができ、従来のSID信号をレベ
ルの変動だけで漏洩判定を行なうのに対シ2、マイクロ
プロセッサ等を用い、信号処理をすることにより、漏洩
判定を行なうことができる洩検出系のシステノ、信頼性
向上にもつながり効果。
As has been explained and clarified above, according to the present invention, SID signals can be handled quantitatively, and conventional SID signals can be used to determine leakage based only on level fluctuations. By using this system and performing signal processing, the leak detection system can be used to determine leakage, and the reliability of the system can be improved.

非常に犬である。Very dog-like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のSIDによるNa2少l届洩検出装置の
ブロック図、第2図は漏洩判定のだめの従来のイば号処
理装置の説明図、第3図はS J I) (ri j;
゛の一例を示すMXX第4冫t本発明による漏洩判定の
だめの信号処理装置のブロック1ン1、第51シ1は第
4図に示す装置におけるタイムチャートでA’>る。 1・・′・配管、2・・・保温材、3・・・サンプリン
グ配〜f、4・・・流蔽調節弁、訃・・サンプリングボ
ンフ”、11・・・8ID検出器、12・・・増11i
?l器、13・・・(K対処J!■装省°、21 ・8
 I D信号(Na漏洩信シt)、22・・・比較器、
42・・・積分器、43・・・′I′41定回路、44
・・・演算器、45・・・記憶回路、46・・・多数決
論理101路、47・・・タイミング・ノくルス発生回
路、48・・・端2図 第3図
Fig. 1 is a block diagram of a conventional SID-based Na2 small liter leak detection device, Fig. 2 is an explanatory diagram of a conventional Iba processing device for leak detection, and Fig. 3 is a block diagram of a conventional SID-based Na2 small liter leak detection device.
Block 1 and block 51 of the signal processing device for leakage determination according to the present invention are A' in the time chart of the device shown in FIG. 1...' Piping, 2... Heat insulating material, 3... Sampling arrangement ~ f, 4... Flow control valve, Sampling valve, 11... 8 ID detector, 12...・・Masu 11i
? l equipment, 13...(K coping J!
ID signal (Na leakage signal t), 22... comparator,
42... Integrator, 43...'I'41 Constant circuit, 44
. . . Arithmetic unit, 45 . . . Memory circuit, 46 . . . 101 majority logic circuits, 47 .

Claims (1)

【特許請求の範囲】 1、原子力発電所において配管から漏洩したナトリウム
をイオン化することによって検出するナトリウム検出器
とタイミング・パルス発生回路を備え、上記ナトリウム
検出器からの信号を上記タイミング・パルス発生回路か
らの信号【よって積分し、そのようにして得られる出力
を設定値と比較するナトリウム微少漏洩検出装置におい
て、さらに多数決論理回路が備えられ、雑音レベルに相
当する長時間の平均値から求めた基準値との差分が予め
定められた値を超過したものに対して多数決論理を働か
せ、その状態の継続を確認し7、突発的なパルス信号お
よび雑音変動による信号を弁別することを特徴とする、
原子力発電所におけるナトリウム微少漏洩検出信号処理
装置。
[Claims] 1. A sodium detector and a timing pulse generation circuit are provided, which detect sodium leaked from piping at a nuclear power plant by ionizing it, and the signal from the sodium detector is transmitted to the timing pulse generation circuit. In the sodium microleak detection device, which integrates the signal from [therefore] and compares the output thus obtained with a set value, a majority logic circuit is further provided, and a reference value obtained from a long-term average value corresponding to the noise level is provided. It is characterized by applying majority logic to those whose difference from the value exceeds a predetermined value, confirming the continuation of that state, and discriminating between sudden pulse signals and signals due to noise fluctuations.
Signal processing device for detecting small sodium leaks in nuclear power plants.
JP57143416A 1982-08-20 1982-08-20 Apparatus for processing detection signal of minute leakage of sodium in atomic power plant Pending JPS5934130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57143416A JPS5934130A (en) 1982-08-20 1982-08-20 Apparatus for processing detection signal of minute leakage of sodium in atomic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143416A JPS5934130A (en) 1982-08-20 1982-08-20 Apparatus for processing detection signal of minute leakage of sodium in atomic power plant

Publications (1)

Publication Number Publication Date
JPS5934130A true JPS5934130A (en) 1984-02-24

Family

ID=15338251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143416A Pending JPS5934130A (en) 1982-08-20 1982-08-20 Apparatus for processing detection signal of minute leakage of sodium in atomic power plant

Country Status (1)

Country Link
JP (1) JPS5934130A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231130A (en) * 1984-05-01 1985-11-16 Hitachi Ltd Apparatus for detecting leakage of sodium
CN103175658A (en) * 2013-03-05 2013-06-26 中国核电工程有限公司 Method and system for testing nuclear power station pipeline leakage rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231130A (en) * 1984-05-01 1985-11-16 Hitachi Ltd Apparatus for detecting leakage of sodium
CN103175658A (en) * 2013-03-05 2013-06-26 中国核电工程有限公司 Method and system for testing nuclear power station pipeline leakage rate

Similar Documents

Publication Publication Date Title
US11385122B2 (en) Method and device for detecting fault of monitoring device
CA1096009A (en) Electronic fluid pipeline leak detector and method
WO2018108138A1 (en) Method and system for detecting integrity of fuel element cladding of nuclear power station
CN109210386A (en) A kind of leakage detection method, electronic equipment and storage medium
JPS5934130A (en) Apparatus for processing detection signal of minute leakage of sodium in atomic power plant
JPS6310799B2 (en)
JP3334373B2 (en) Gas shut-off device
JPS60120241A (en) Sodium-leakage detecting apparatus
US4293853A (en) Method and apparatus for detecting flow instability in steam generator
JP3349234B2 (en) Neutron flux monitoring device
JPS58198743A (en) Signal processing device
JPH01262434A (en) Detecting and processing device of slight leakage of sodium
JP3056593B2 (en) Micro radiation leak detector
JPS5977328A (en) Apparatus for detecting leakage of liquid metal
CN113280980B (en) Target detection method and device
JPH1130689A (en) Leakage fuel assembly detector
EP0113670B1 (en) Method of detecting breakage in nuclear reactor
CN110082480B (en) Laboratory safety management system and method
JPS63286735A (en) Sodium leakage detector
JPS62229304A (en) Plant abnormality detector
JPS58100729A (en) Confirming method for normality of cooling material leakage detector
JPS628095A (en) Monitor device for loose part
CN116092707A (en) Device and method for monitoring coolant leakage of containment outside system pipeline
CN117091649A (en) Online monitoring system, method and device for grounding ring and storage medium
JPS5847277A (en) Monitoring device for radiation