JPH0249413B2 - - Google Patents

Info

Publication number
JPH0249413B2
JPH0249413B2 JP58068207A JP6820783A JPH0249413B2 JP H0249413 B2 JPH0249413 B2 JP H0249413B2 JP 58068207 A JP58068207 A JP 58068207A JP 6820783 A JP6820783 A JP 6820783A JP H0249413 B2 JPH0249413 B2 JP H0249413B2
Authority
JP
Japan
Prior art keywords
stator
rotor
bearing
space
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58068207A
Other languages
Japanese (ja)
Other versions
JPS59194125A (en
Inventor
Tsutomu Murakami
Atsushi Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority to JP58068207A priority Critical patent/JPS59194125A/en
Publication of JPS59194125A publication Critical patent/JPS59194125A/en
Publication of JPH0249413B2 publication Critical patent/JPH0249413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0487Active magnetic bearings for rotary movement with active support of four degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/30Electric properties; Magnetic properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】 この発明は、人工衛星等の宇宙飛翔体に用いる
宇宙用軸受の放電損傷防止装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a discharge damage prevention device for space bearings used in space vehicles such as artificial satellites.

人工衛星等の宇宙飛翔体が宇宙空間の光電子や
イオン等の荷電粒子との衝突や、その他の宇宙空
間における各種電磁環境により、帯電することが
知られている。人工衛星等の宇宙飛翔体に今後用
いられると思われる磁気軸受はロータをステータ
から完全に浮上させて無接触にする場合が多いの
で、宇宙飛翔体が宇宙空間を飛行している間に飛
翔体本体が帯電し、ロータと、飛翔体本体と一体
をなしているステータとの間に電位差が生じるお
それがある。一方何らかの原因で、または故意の
帯電消去のためにロータがステータに接触する際
には、ボールベアリング等の機械式軸受に接触し
て、この磁気軸受の損傷を防ぐようになつている
が、前述の電位差は数10KVにもなることもある
と思われるので、接触によつて瞬間的に大電流が
機械式軸受を流れ、例えばボールベアリングで
は、ボール、内外レース、保持器に損傷が起りか
ねない。
It is known that space vehicles such as artificial satellites become electrically charged due to collisions with charged particles such as photoelectrons and ions in outer space and various other electromagnetic environments in outer space. Magnetic bearings, which are expected to be used in the future for spacecraft such as artificial satellites, often have the rotor completely levitated above the stator, making no contact with the rotor, so the spacecraft is There is a risk that the main body will become electrically charged and a potential difference will occur between the rotor and the stator, which is integral with the projectile main body. On the other hand, when the rotor comes into contact with the stator for some reason or to intentionally erase the charge, it comes into contact with mechanical bearings such as ball bearings to prevent damage to the magnetic bearings. It is thought that the potential difference can be as high as several tens of kilovolts, so contact can cause a large current to flow momentarily through a mechanical bearing, which can cause damage to the balls, inner and outer races, and cage in ball bearings, for example. .

この発明は、上述の点にかんがみてなされたも
ので、ステータに対しロータを磁気軸受により支
承し、ステータとロータとの間に緊急接触用の機
械式軸受を備えた宇宙用軸受を有する宇宙飛翔体
が、宇宙空間を飛行するとき、その本体に光電子
やイオン等の荷電流粒子の衝突あるいは各種電磁
環境による電荷が帯電し、その電荷がステータと
ロータ間に放電し、緊急接触用の機械式軸受に流
れることによる軸受、ステータ、ロータ等の損傷
を防止するようにした宇宙用軸受の放電損傷防止
装置を提供することを目的とする。以下この発明
を図面に基づいて説明する。
This invention has been made in view of the above-mentioned points, and is a space flight vehicle having a space bearing in which a rotor is supported with respect to a stator by a magnetic bearing, and a mechanical bearing for emergency contact is provided between the stator and the rotor. When a body flies through space, the body is charged with electric charge due to collisions with charged current particles such as photoelectrons and ions or various electromagnetic environments, and the electric charge is discharged between the stator and rotor, creating a mechanical emergency contact mechanism. It is an object of the present invention to provide a discharge damage prevention device for a space bearing, which prevents damage to a bearing, a stator, a rotor, etc. due to discharge flowing into the bearing. The present invention will be explained below based on the drawings.

第1図は宇宙用軸受として用いられる磁気軸受
の一例の断面図であり、第2図はステータ部およ
びロータ部の平面図である。これらの図におい
て、ステータ部1は軸3に一体的に固定されてお
り、その周囲をロータ部2が回転するような構成
とされ、ロータ部2にはフライホイール4が取付
けられている。ステータ部1は内径、外径を共に
同じくする平板円環状の3個のヨーク、すなわち
外側に配置された第1,第2のステータヨーク1
1,12と、これらに挟まれた第3のステータヨ
ーク13とを有し、第1,第3のステータヨーク
11,13の間および第3、第2のステータヨー
ク13,12の間には、それぞれ円環状の永久磁
石14,15が挟設されている。これらの永久磁
石14,15は軸方向に着磁されており、永久磁
石14,15同士の極性は第3のステータヨーク
13を中心に上下に対称的になるようにされてい
る。第1,第2のステータヨーク11,12は例
えば第2図に示すように、放射状に磁気的に8分
割されており、それぞれ十文字状の第1,第2の
電磁ヨーク16,17が取付けられている。それ
らの電磁ヨーク16,17は第2図におけるX軸
およびY軸上にある第1,第2のステータヨーク
11,12の分割部に磁気的に接続し、X軸およ
びY軸上に存在しない分割部は電磁ヨーク16,
17および他の分割部とは磁気的にほぼ絶縁され
ている。また、電磁ヨーク16および17の各脚
部16a,16b,16c,16dおよび17
a,17b,17c,17d(17b,17dは
図示せず)には、それぞれ1個ずつ計8個の電磁
コイル18a,18b,18c,18dおよび1
9a,19b,19c,19d(19b,19d
は図示せず)が巻回されている。
FIG. 1 is a sectional view of an example of a magnetic bearing used as a space bearing, and FIG. 2 is a plan view of a stator portion and a rotor portion. In these figures, a stator section 1 is integrally fixed to a shaft 3, and a rotor section 2 is configured to rotate around the stator section 1, and a flywheel 4 is attached to the rotor section 2. The stator section 1 includes three flat annular yokes having the same inner diameter and outer diameter, namely, first and second stator yokes 1 disposed on the outside.
1 and 12, and a third stator yoke 13 sandwiched between them, and between the first and third stator yokes 11 and 13 and between the third and second stator yokes 13 and 12. , annular permanent magnets 14 and 15 are sandwiched between them. These permanent magnets 14 and 15 are magnetized in the axial direction, and the polarities of the permanent magnets 14 and 15 are vertically symmetrical with respect to the third stator yoke 13. For example, as shown in FIG. 2, the first and second stator yokes 11 and 12 are radially magnetically divided into eight parts, and cross-shaped first and second electromagnetic yokes 16 and 17 are attached to them, respectively. ing. These electromagnetic yokes 16 and 17 are magnetically connected to the divided parts of the first and second stator yokes 11 and 12 on the X and Y axes in FIG. 2, and are not on the X and Y axes. The divided part is an electromagnetic yoke 16,
17 and the other divisions are substantially magnetically insulated. In addition, each leg portion 16a, 16b, 16c, 16d and 17 of the electromagnetic yokes 16 and 17
A, 17b, 17c, 17d (17b, 17d are not shown) have a total of eight electromagnetic coils 18a, 18b, 18c, 18d and 1.
9a, 19b, 19c, 19d (19b, 19d
(not shown) is wound.

一方、ロータ部2にはステーターク11,1
2,13の周囲を非接触で回転するためのステー
タヨーク11,12,13よりも大径の3個の平
板円環状ヨークが設けられており、第1,第2の
ロータヨーク21,22の内周面が第1,第2の
ステータヨーク11,12の外周面とそれぞれ対
向し、第3のロータヨーク23の内周面が第3の
ステータヨーク13の外周面と対向するように配
置されている。また、ロータヨーク21,22,
23同士の間にもステータ部1と同様に軸方向に
着磁された永久磁石24,25が、第3のロータ
ヨーク23を中心に極性を対称とするように配置
されている。なお、このロータ部2の永久磁石2
4,25の極性はステータ部1の永久磁石14,
15の極性の向きとは逆方向となつている。26
はロータ部2のX軸方向の変位を検出するための
位置センサであり、Y軸方向用の位置センサは図
面においては省略されている。X軸用位置センサ
26の出力は図示しない制御回路、パワーアンプ
を経て、電磁ヨーク16および17のX軸方向の
脚部16a,16cおよび17a,17cに巻回
された電磁コイル18a,18cおよび19a,
19cに電流を流すようにされている。同様にし
て、図示しないY軸用位置センサからはY軸方向
の脚部16b,16dおよび17b,17dに巻
回された電磁コイル18b,18dおよび19
b,19dに電流が供給される。27は前記ロー
タ部2の浮上制御が不能になつたときや停電時等
にロータ部2を支持するための玉軸受である。な
お、実線および点線の矢印は磁束を示す。
On the other hand, the stator arcs 11 and 1 are provided in the rotor section 2.
Three flat annular yokes with a larger diameter than the stator yokes 11, 12, 13 are provided to rotate around the first and second rotor yokes 21, 22 without contact. The rotor yoke 23 is arranged such that its circumferential surface faces the outer circumferential surface of the first and second stator yokes 11 and 12, respectively, and the inner circumferential surface of the third rotor yoke 23 faces the outer circumferential surface of the third stator yoke 13. . In addition, the rotor yokes 21, 22,
Permanent magnets 24 and 25, which are magnetized in the axial direction similarly to the stator section 1, are arranged between the rotor yoke 23 so that their polarities are symmetrical about the third rotor yoke 23. In addition, the permanent magnet 2 of this rotor part 2
The polarities of 4 and 25 correspond to the permanent magnets 14 and 25 of the stator section 1, respectively.
The direction of polarity is opposite to that of No. 15. 26
is a position sensor for detecting the displacement of the rotor portion 2 in the X-axis direction, and the position sensor for the Y-axis direction is omitted in the drawing. The output of the X-axis position sensor 26 passes through a control circuit and a power amplifier (not shown) to electromagnetic coils 18a, 18c, and 19a wound around the legs 16a, 16c, 17a, and 17c of the electromagnetic yokes 16 and 17 in the X-axis direction. ,
A current is caused to flow through 19c. Similarly, from the Y-axis position sensor (not shown), electromagnetic coils 18b, 18d, and 19 wound around the legs 16b, 16d, 17b, and 17d in the Y-axis direction are detected.
A current is supplied to b and 19d. Reference numeral 27 denotes a ball bearing for supporting the rotor section 2 when the floating control of the rotor section 2 becomes impossible or during a power outage. Note that solid and dotted arrows indicate magnetic flux.

上記の構成の磁気軸受において、通常は、ロー
タ部2はステータ部1から完全に浮上させた状態
である。このような磁気軸受を塔載した宇宙飛翔
体が宇宙空間を飛航すると、光電子、イオン等の
荷電粒子の衝突やその他の宇宙における各種電磁
環境により帯電され、そのためにロータ部2とス
テータ部1との間に電位差が生じる。何らかの原
因でロータ部2がステータ部1と機械的に接触し
ようとする際には、ボールベアリング等の機械式
の玉軸受27に接触して磁気軸受の損傷を防ぐよ
うになつている。しかしながら前述のように数
10kVになり得る帯電電圧があると、玉軸受27
に接触の瞬間、瞬時に大電流が玉軸受27に流
れ、例えば図示のようなボールベアリング軸受で
はボール27a、内外レース27b、保持器等に
損傷が起こりかねない。帯電を故意に消去するた
めにロータ部2とステータ部1を接触させたとき
も同様な損傷が起りかねない。
In the magnetic bearing configured as described above, the rotor portion 2 is normally in a state completely floating above the stator portion 1. When a spacecraft equipped with such a magnetic bearing flies through space, it becomes charged due to collisions with charged particles such as photoelectrons and ions, as well as various other electromagnetic environments in space. A potential difference occurs between the two. When the rotor section 2 attempts to come into mechanical contact with the stator section 1 for some reason, it comes into contact with a mechanical ball bearing 27 such as a ball bearing to prevent damage to the magnetic bearing. However, as mentioned above, the number
With a charging voltage that can be 10kV, the ball bearing 27
At the moment of contact, a large current instantly flows through the ball bearing 27. For example, in a ball bearing like the one shown in the figure, damage may occur to the balls 27a, inner and outer races 27b, retainer, etc. Similar damage may occur when the rotor section 2 and stator section 1 are brought into contact in order to intentionally erase the charge.

第3図はこの発明の宇宙用軸受の放電損傷防止
装置の一実施例の概略図で、上記磁気軸受の玉軸
受27部分の一部拡大断面図である。同図におい
て、28は電気絶縁体で、ステータ部1が固定さ
れている軸3に固定され、この電気絶縁体28に
は玉軸受27が固定されている。29はコイル、
30は抵抗器であり、このコイル29と抵抗器3
0は直列に接続され、この直列体の一端は玉軸受
27に接続され、他端は軸3に接続される。な
お、コイル29と抵抗器30は必要に応じ設ける
ものとする。
FIG. 3 is a schematic view of an embodiment of the apparatus for preventing discharge damage for space bearings according to the present invention, and is a partially enlarged sectional view of the ball bearing 27 portion of the magnetic bearing. In the figure, an electrical insulator 28 is fixed to the shaft 3 to which the stator section 1 is fixed, and a ball bearing 27 is fixed to the electrical insulator 28. 29 is a coil,
30 is a resistor, and this coil 29 and resistor 3
0 are connected in series, one end of this series body is connected to the ball bearing 27, and the other end is connected to the shaft 3. Note that the coil 29 and resistor 30 are provided as necessary.

上記の構成において、いま、コイル29と抵抗
器30の直列体がない場合についてまず説明す
る。何らかの原因でロータ部2が変位し、ロータ
部2が玉軸受27に接触しても、ロータ部2と軸
3の間には電気絶縁体28が直列に介在している
ために、ステータ部1あるいはロータ部2に帯電
した電荷は、ステータ部1からロータ部2へ、あ
るいは反対にロータ部2からステータ部1へは流
れない。
In the above configuration, the case where there is no series body of the coil 29 and the resistor 30 will be first described. Even if the rotor section 2 is displaced for some reason and comes into contact with the ball bearing 27, the stator section 1 will not move because the electrical insulator 28 is interposed in series between the rotor section 2 and the shaft 3. Alternatively, the electric charges charged in the rotor section 2 do not flow from the stator section 1 to the rotor section 2, or vice versa.

次にコイル29と抵抗器30の直列体がある場
合を説明する。ロータ部2が玉軸受27に接触す
ると、コイル29のインダクタンスLと抵抗器3
0の抵抗rとが第4図に示すような等価回路を形
成する。同図において、Eは帯電電圧、Rは電気
絶縁体28の抵抗、Iは軸3からロータ部2へ流
れる電流である。電流Iは、 I=E/R+E/r・1/1+jωL/r,R≫r となる。従つて、もしも電圧がステツプ状だとす
ると、電流Iは第5図の実線のように流れるが、
実際には電流が流れるにつれて電位差Eが減少す
るので、同図の破線のように流れる。つまり電流
Iはロータ部2と軸受3の接触初期はコイル29
のインダクタンスLにより制御されて、瞬時に大
電流が玉軸受27に流れることはない。従つて玉
軸受27の損傷はまねがれる。
Next, a case where there is a series body of the coil 29 and the resistor 30 will be explained. When the rotor part 2 contacts the ball bearing 27, the inductance L of the coil 29 and the resistor 3
A resistor r of 0 forms an equivalent circuit as shown in FIG. In the figure, E is the charging voltage, R is the resistance of the electrical insulator 28, and I is the current flowing from the shaft 3 to the rotor section 2. The current I is as follows: I=E/R+E/r·1/1+jωL/r, R≫r. Therefore, if the voltage is step-like, the current I flows as shown by the solid line in Figure 5, but
In reality, as the current flows, the potential difference E decreases, so the current flows as indicated by the broken line in the figure. In other words, the current I is at the coil 29 at the initial stage of contact between the rotor section 2 and the bearing 3.
is controlled by the inductance L, so that a large current does not instantaneously flow through the ball bearing 27. Damage to the ball bearing 27 is therefore simulated.

第6図はこの発明の他の実施例を示す図で、ロ
ータ部2に電気絶縁体31を固定し、この電気絶
縁体31に玉軸受27を固定した構造のもので、
第3図のコイル29と抵抗器30は省略してあ
る。
FIG. 6 shows another embodiment of the present invention, which has a structure in which an electrical insulator 31 is fixed to the rotor portion 2, and a ball bearing 27 is fixed to this electrical insulator 31.
The coil 29 and resistor 30 in FIG. 3 are omitted.

第7図,第8図はそれぞれこの発明の他の実施
例を示す図であり、いずれもコイル29と抵抗器
30は省略してある。同図に示すように、電気絶
縁体32,33を軸3およびロータ部2の両者に
設けた場合である。
7 and 8 are views showing other embodiments of the present invention, and in both cases the coil 29 and resistor 30 are omitted. As shown in the figure, this is a case in which electrical insulators 32 and 33 are provided on both the shaft 3 and the rotor section 2.

なお、上記の実施例では玉軸受27を用いた
が、これは一般的には機械式軸受であればよい。
In addition, although the ball bearing 27 was used in the above embodiment, it may generally be a mechanical bearing.

以上説明したように、この発明にかかる宇宙用
軸受の放電損傷防止装置は、磁気軸受のロータ側
またはステータ側あるいは両者に電気絶縁体部材
をロータとステータ間を電気的に絶縁するように
挿入し、機械式軸受とステータ間に抵抗とインダ
クタンスの直列体を接続したので、何らかの原因
でロータあるいはステータが機械式軸受に接触し
ても、抵抗とインダクタンスの直列体がステータ
とロータ間に存在するので、帯電電荷を緩慢に放
電させることができ、帯電を安全に消去すること
が可能になる。
As explained above, the space bearing discharge damage prevention device according to the present invention inserts an electrical insulator member into the rotor side, stator side, or both of the magnetic bearing so as to electrically insulate between the rotor and the stator. Since a series body of resistance and inductance is connected between the mechanical bearing and the stator, even if the rotor or stator comes into contact with the mechanical bearing for some reason, there will be a series body of resistance and inductance between the stator and rotor. , the electrical charge can be slowly discharged, and the electrical charge can be safely erased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は宇宙軸受として用いる磁気軸受の断面
図、第2図はステータ部およびロータ部の平面
図、第3図はこの発明の一実施例をなす宇宙軸受
の放電損傷防止装置の概略図、第4図は宇宙軸受
の放電損傷防止装置の等価回路、第5図は放電電
流の変化を示す図、第6図、第7図、第8図はこ
の発明の他の実施例をそれぞれ示す要部の概略図
である。 図中、2はロータ部、3は軸、27は玉軸受、
28は電気絶縁体、29はコイル、30は抵抗
器、31,32,33は電気絶縁体である。
FIG. 1 is a sectional view of a magnetic bearing used as a space bearing, FIG. 2 is a plan view of a stator portion and a rotor portion, and FIG. 3 is a schematic diagram of a space bearing discharge damage prevention device that is an embodiment of the present invention. FIG. 4 is an equivalent circuit of a space bearing discharge damage prevention device, FIG. 5 is a diagram showing changes in discharge current, and FIGS. 6, 7, and 8 are diagrams showing other embodiments of the present invention. FIG. In the figure, 2 is a rotor part, 3 is a shaft, 27 is a ball bearing,
28 is an electrical insulator, 29 is a coil, 30 is a resistor, and 31, 32, and 33 are electrical insulators.

Claims (1)

【特許請求の範囲】[Claims] 1 ステータに対しロータを磁気軸受により支承
し、前記ステータとロータとの間に緊急接触用の
機械式軸受を前記ステータまたはロータのいずれ
か一方に取り付け介在させた宇宙用軸受におい
て、前記ロータ側とステータ側の少なくとも一方
に電気絶縁体を前記ロータとステータ間を電気的
に絶縁するように前記機械式軸受に挿入し、前記
機械式軸受とステータ間に抵抗とインダクタンス
の直列体を接続したことを特徴とする宇宙用軸受
の放電損傷防止装置。
1. A space bearing in which a rotor is supported with respect to a stator by a magnetic bearing, and a mechanical bearing for emergency contact is installed and interposed between the stator and rotor on either the stator or the rotor, and the rotor side and An electrical insulator is inserted into the mechanical bearing on at least one side of the stator so as to electrically insulate between the rotor and the stator, and a series body of resistance and inductance is connected between the mechanical bearing and the stator. Features: Discharge damage prevention device for space bearings.
JP58068207A 1983-04-18 1983-04-18 Discharging damage preventing device for space bearing Granted JPS59194125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58068207A JPS59194125A (en) 1983-04-18 1983-04-18 Discharging damage preventing device for space bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068207A JPS59194125A (en) 1983-04-18 1983-04-18 Discharging damage preventing device for space bearing

Publications (2)

Publication Number Publication Date
JPS59194125A JPS59194125A (en) 1984-11-02
JPH0249413B2 true JPH0249413B2 (en) 1990-10-30

Family

ID=13367114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068207A Granted JPS59194125A (en) 1983-04-18 1983-04-18 Discharging damage preventing device for space bearing

Country Status (1)

Country Link
JP (1) JPS59194125A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194025A (en) * 1986-02-18 1987-08-26 Ebara Corp Magnetic bearing
JPH0198316U (en) * 1987-12-21 1989-06-30
JPH0645699Y2 (en) * 1989-01-13 1994-11-24 エヌティエヌ株式会社 Spindle device for magnetic bearing
DE69730781T2 (en) * 1996-06-26 2005-09-29 Rolls-Royce Corp., Indianapolis Storage combination for a gas turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235943Y2 (en) * 1972-01-26 1977-08-16

Also Published As

Publication number Publication date
JPS59194125A (en) 1984-11-02

Similar Documents

Publication Publication Date Title
AU600412B2 (en) Magnetically-damped testable accelerometer
US5729065A (en) Magnetic bearing cell with rotor and stator
US20110101905A1 (en) Generating electromagnetic forces in large air gaps
US6657344B2 (en) Passive magnetic bearing for a horizontal shaft
EP0130541A1 (en) Flywheel apparatus
US4700094A (en) Magnetic suspension system
US5321329A (en) Permanent magnet shaft bearing
Sabnis et al. A magnetically suspended large momentum wheel
EP3148057B1 (en) Electric motor
AU611372B2 (en) Temperature-compensating accelerometer
US11852623B2 (en) Magnetic sensor for capturing metal wear particles in suspension in a lubrication fluid
US5550413A (en) Elongate torque motor and angular displacement control device incorporating it
JPH02121245A (en) Floating system of rotating anode of x-ray tube having passive magnetic bearing
JPH0249413B2 (en)
JPS5943220A (en) Gimbal-controlled magnetic bearing
JP3021046B2 (en) Rotary single-phase electromagnetic actuator
EP3148056A1 (en) Electric motor
JPS58184319A (en) Magnetic bearing
US5804899A (en) Miniature magnetic bearing with at least one active axis
EP0084653A2 (en) Composite concentric-gap magnetic lens
CN109322973B (en) Five-degree-of-freedom magnetic suspension flywheel
JP2886891B2 (en) Axial magnetic bearing assembly
US4306206A (en) Linear solenoid device
JPS6146683B2 (en)
CN109268391B (en) Multi-coil axial magnetic bearing for magnetic suspension stable platform