JPH0249128A - Near ultraviolet ray measuring instrument - Google Patents

Near ultraviolet ray measuring instrument

Info

Publication number
JPH0249128A
JPH0249128A JP20044988A JP20044988A JPH0249128A JP H0249128 A JPH0249128 A JP H0249128A JP 20044988 A JP20044988 A JP 20044988A JP 20044988 A JP20044988 A JP 20044988A JP H0249128 A JPH0249128 A JP H0249128A
Authority
JP
Japan
Prior art keywords
light
wavelength
rays
soln
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20044988A
Other languages
Japanese (ja)
Inventor
Atsunori Okada
岡田 淳典
Seigo Wada
和田 成伍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP20044988A priority Critical patent/JPH0249128A/en
Publication of JPH0249128A publication Critical patent/JPH0249128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To easily measure wavelengths of near UV rays by hermetically sealing the soln. of an org. metal complex compd. into a light transparent vessel which allows the transmission of near UV rays or by incorporating the org. metal complex compd. into a transparent resin which transmits near UV rays. CONSTITUTION:The soln. of the org. metal complex compd. is hermetically sealed into the light transparent vessel 1 which allows the transmission of the near UV rays. The light emission mode of the soln. changes as shown in (a)-(g) by the wavelength of measuring light when the instrument is irradiated with the measuring light from one direction. The easy measurement of the wavelength of the near UV rays is, therefore, possible, by utilizing the change in the light emission mode of the soln. in the vessel by the wavelength of the irradiating light. The setting of the wavelength at which the light is emitted over the entire area of the vessel is possible by changing the concn. of the soln. Further, the org. metal complex compd. may be incorporated into the transparent resin which allows the transmission of the near UV rays.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、近紫外線の波長を簡易に計測する近紫外線計
測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a near-ultraviolet measuring device that easily measures the wavelength of near-ultraviolet rays.

[従来の技術] 近年、紫外線が各分野で用いられている。波長力30O
r+m〜380nmの近l外線については、化学工業分
野では光化学反応用の光源として、生物の分野では植物
の発育に与える影響の研究等に用いられている。
[Prior Art] In recent years, ultraviolet rays have been used in various fields. Wavelength power 30O
Near-infrared radiation from r+m to 380 nm is used in the chemical industry as a light source for photochemical reactions, and in the biological field for research on the effects on plant growth.

近紫外線の波長を計測する手段としては、分光器と紫外
線を電気的信号に変換する光電管等の素子を組み合わせ
た分光装置が用いられている。
As a means for measuring the wavelength of near-ultraviolet rays, a spectroscopic device that combines a spectroscope and an element such as a phototube that converts ultraviolet rays into an electrical signal is used.

波長が可視領域(380nm〜780nm )の光につ
いては、人間の目で直接見る事が出来るので、単色光に
ついてはその色より、また、混合された光についてはプ
リズムや回折格子で単色光に分解すれば、簡易的に波長
を知る事が出来る。
Light with a wavelength in the visible range (380 nm to 780 nm) can be seen directly by the human eye, so monochromatic light can be separated into monochromatic light by its color, and mixed light can be separated into monochromatic light using a prism or a diffraction grating. Then you can easily find out the wavelength.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、紫外線や赤外線等の可視光以外の光につ
いては、その光が目に見えない為に、その光の持ってい
るエネルギーを人間が認知できる何らかの形に変換しな
ければならない、その方法として一般的に良(使われて
いるのは、分光器と光のエネルギーを電気的信号に変換
する光電管等の素子を組み合わせた分光装置であるが、
このような装置では、計測する波長の精度もそれほど必
要としない簡易的な測定には大掛かり過ぎて適さないと
いう問題があった。
However, since the light other than visible light such as ultraviolet rays and infrared rays is invisible to the naked eye, the energy of that light must be converted into some form that humans can recognize. (What is used is a spectroscopic device that combines a spectroscope and elements such as phototubes that convert light energy into electrical signals.
Such a device has a problem in that it is too large-scale and is not suitable for simple measurements that do not require high precision in the wavelength to be measured.

本発明は上記問題点を解決するためになされたもので、
その目的とするところは、近紫外線の波長を簡易に測定
することが出来る近紫外線計測装置を提供することにあ
る。
The present invention has been made to solve the above problems,
The purpose is to provide a near-ultraviolet measuring device that can easily measure the wavelength of near-ultraviolet rays.

〔課題を解決するための手段] 上記課題を解決するため本発明は、近紫外線を透過する
透光性の容器内に有機金属錯体化合物の溶液を密封した
ことを特徴とするものであり、近紫外線を透過する透明
樹脂にを機金属諸体化合物を混入したことを特徴とする
ものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention is characterized in that a solution of an organometallic complex compound is sealed in a translucent container that transmits near ultraviolet rays. It is characterized by mixing a metal compound into a transparent resin that transmits ultraviolet rays.

〔作 用〕[For production]

このように構成された装置に近紫外線が照射されると、
有機金属錯体化合物が発光し、近紫外線を測定できる。
When a device configured in this way is irradiated with near-ultraviolet light,
Organometallic complex compounds emit light and near ultraviolet light can be measured.

〔実施例〕〔Example〕

第1図は本発明の基本的構成を示す斜視図で、1は測定
すべき波長、すなわち近紫外線を透過する透光性の容器
で、その容器1内には有機金属錯体化合物の溶液2が密
封されている。
FIG. 1 is a perspective view showing the basic configuration of the present invention, in which 1 is a translucent container that transmits the wavelength to be measured, that is, near ultraviolet rays, and inside the container 1 is a solution 2 of an organometallic complex compound. Sealed.

一実施例として、有機金属錯体化合物を構成する金属と
してユウロピウム(Eu)、有機物としてβ−ジケトン
のC5HzF 10z(1,1,1,5,5,5−He
xafluoro−2,4−pentanedione
) 、7容剤としてアセトン(CHs COCH3)の
場合について述べる。
As an example, europium (Eu) is used as the metal constituting the organometallic complex compound, and β-diketone C5HzF 10z (1,1,1,5,5,5-He
xafluoro-2,4-pentanedione
), 7 The case of acetone (CHs COCH3) as the agent will be described.

この溶液に近紫外線を照射すると3価のユウロピウム(
Eu”)特有の発光である612nm付近にピーク波長
を持つ赤色の光が発せられる。その発光スペクトル分布
を第5図に示す。同図において横軸は波長(nm)を、
縦軸は発光の相対強度をそれぞれ示す。
When this solution is irradiated with near ultraviolet rays, trivalent europium (
Red light with a peak wavelength around 612 nm is emitted, which is characteristic of light emitted by Eu''). The emission spectrum distribution is shown in Figure 5. In the figure, the horizontal axis represents the wavelength (nm);
The vertical axis indicates the relative intensity of light emission.

第2図に示すように、本発明の装置に一方向から測定光
を照射すると、測定光の波長によって第3図(a)〜(
6)に示すように溶液の発光形態が変化する。本実施例
に用いた溶液は、濃度が2X10”’sol#2の場合
である。
As shown in FIG. 2, when the device of the present invention is irradiated with measurement light from one direction, the wavelength of the measurement light is shown in FIGS.
As shown in 6), the emission form of the solution changes. The solution used in this example had a concentration of 2×10'''sol#2.

第3図(a)は近紫外線より短い紫外線が照射された場
合で、照射された側の容器壁に接している溶液部分のみ
が僅かに光る。同図(b)は300n@の近紫外線を照
射した場合で、照射された側の容器壁に接している溶液
が光る。照射光が長波長側にずれていくと、320rv
で同図(C)、330+vで同図(d)に示すように発
光(図中、発光域を斜線で示す)し、340nmで同図
(e)に示すように溶液中の発光域の先端は照射された
容器壁とは反対側の容器壁まで達する。そして、350
nmの光が照射されると発光域は容器内全域に拡がる。
FIG. 3(a) shows a case where ultraviolet rays shorter than near ultraviolet rays are irradiated, and only the part of the solution in contact with the container wall on the irradiated side glows slightly. Figure (b) shows the case of irradiation with near ultraviolet rays of 300 n@, and the solution in contact with the wall of the container on the irradiated side glows. When the irradiation light shifts to the long wavelength side, 320rv
At 330+V, light is emitted as shown in the figure (C), and at 330+V, light is emitted as shown in the figure (d) (the light emitting region is indicated by diagonal lines), and at 340 nm, the tip of the light emitting region in the solution is shown in the figure (e). reaches the container wall opposite to the irradiated container wall. And 350
When irradiated with nm light, the luminescent region spreads throughout the interior of the container.

発光強度が最大である350nmより長波長側に照射光
を変化していくと、波長が長くなるにつれて、容器内全
域の発光強度が低下する。
When the irradiation light is changed to a longer wavelength side than 350 nm at which the emission intensity is maximum, the emission intensity in the entire area inside the container decreases as the wavelength becomes longer.

上述のように第3図に示した実施例は、溶液の濃度が2
 X 10−’mol/ lの場合であるが、濃度を変
化させると、容器内の全域が発光する(第3図(f)に
相当する)照射光、が変、化する。その関係を第4図に
示す、同図において横軸に溶液の濃度(+go!/2)
を対数目盛りで、縦軸に第3図(f)の状態になる照射
光の波長を示す。同図より明らかなように、溶液の濃度
を10”’LIIot/ lから10−’mol/fま
で変化することによって、容器内の溶液全域が強く発光
する照射光の波長を近紫外線領域全域にわたって設定す
ることができる。
As mentioned above, in the embodiment shown in FIG.
In the case of X 10-'mol/l, when the concentration is changed, the irradiation light emitted from the entire area inside the container (corresponding to FIG. 3(f)) changes. The relationship is shown in Figure 4, where the horizontal axis represents the concentration of the solution (+go!/2).
is on a logarithmic scale, and the vertical axis indicates the wavelength of the irradiated light that produces the state shown in FIG. 3(f). As is clear from the figure, by changing the concentration of the solution from 10''LIIot/l to 10-'mol/f, the wavelength of the irradiation light that emits intense light from the entire solution in the container can be changed over the entire near-ultraviolet region. Can be set.

従って、照射光の波長による容器内の溶液の発光形態の
変化を利用することによって、近紫外線の波長の簡易測
定が可能となる。また、溶液の濃度を変えることにより
、容器内全域にわたって発光する波長を設定することが
できるので、溶液の濃度を測定すべき波長に対応する濃
度に設定することにより、測定すべき波長の近紫外線を
簡易に測定できる。
Therefore, by utilizing the change in the light emission form of the solution in the container depending on the wavelength of the irradiated light, it becomes possible to easily measure the wavelength of near ultraviolet rays. In addition, by changing the concentration of the solution, it is possible to set the wavelength that emits light throughout the entire area within the container, so by setting the concentration of the solution to the concentration that corresponds to the wavelength to be measured, it is possible to can be easily measured.

なお、上記実施例では一つの容器1で構成したが、濃度
の異なる溶液が密封された複数個の容器を配列して構成
し、それぞれの容器に対応する近紫外線の波長を記して
おけば、簡易計測装置としてはより好ましい。
In the above embodiment, one container 1 is used, but if a plurality of sealed containers containing solutions of different concentrations are arranged and the wavelength of the near ultraviolet rays corresponding to each container is recorded, It is more preferable as a simple measuring device.

また、発光色については、上記実施例(金属がユウロピ
ウムの場合)では、612nm近辺に発光スペクトルの
ピークを持つ赤色の発光が現れるが、金属をテルビウム
(Tb)に変えると546nI11近辺に発光スペクト
ルのピークを持つ緑色の発光が得られる。このように、
発光色は錯体化合物を形成する金属を選択することによ
り選択できる。
Regarding the emission color, in the above example (when the metal is europium), red emission appears with an emission spectrum peak around 612 nm, but when the metal is changed to terbium (Tb), the emission spectrum changes around 546nI11. Green light emission with a peak is obtained. in this way,
The color of the emitted light can be selected by selecting the metal that forms the complex compound.

さらに、本発明に係る近紫外線計測装置は、近紫外線を
透過する透明樹脂に有機金属錯体化合物を混入して(練
り込んで)構成しても、上記溶液を用いた実施例と同様
の効果が得られる。
Furthermore, even if the near-ultraviolet measuring device according to the present invention is constructed by mixing (kneading) an organometallic complex compound into a transparent resin that transmits near-ultraviolet light, the same effect as in the embodiment using the above solution can be obtained. can get.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように、近紫外線を透過する透光性の容
器内に有機金属錯体化合物の溶液を密封したことにより
、あるいは近紫外線を透過する透明樹脂に有機金属錯体
化合物を混入したことにより、近紫外線の波長を簡易に
測定することができる。
As described above, the present invention is achieved by sealing a solution of an organometallic complex compound in a translucent container that transmits near ultraviolet rays, or by mixing an organometallic complex compound into a transparent resin that transmits near ultraviolet rays. , the wavelength of near-ultraviolet light can be easily measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成を示す斜視図、第2図及び
第3図はそれぞれ測定方法を説明する正面図、第4図は
溶液の濃度と容器内全域が発光する波長との関係を示す
グラフ、第5図は本発明の実施例に係る発光スペクトル
分布図である。 1・・・容器、2・・・溶液。
Figure 1 is a perspective view showing the basic configuration of the present invention, Figures 2 and 3 are front views explaining the measurement method, and Figure 4 is the relationship between the concentration of the solution and the wavelength at which the entire area inside the container emits light. FIG. 5 is an emission spectrum distribution diagram according to an example of the present invention. 1... Container, 2... Solution.

Claims (2)

【特許請求の範囲】[Claims] (1)近紫外線を透過する透光性の容器内に有機金属錯
体化合物の溶液を密封してなる近紫外線計測装置。
(1) A near-ultraviolet measuring device comprising a solution of an organometallic complex compound sealed in a translucent container that transmits near-ultraviolet rays.
(2)近紫外線を透過する透明樹脂に有機金属錯体化合
物を混入してなる近紫外線計測装置。
(2) A near-ultraviolet measuring device made by mixing an organometallic complex compound into a transparent resin that transmits near-ultraviolet rays.
JP20044988A 1988-08-10 1988-08-10 Near ultraviolet ray measuring instrument Pending JPH0249128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20044988A JPH0249128A (en) 1988-08-10 1988-08-10 Near ultraviolet ray measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20044988A JPH0249128A (en) 1988-08-10 1988-08-10 Near ultraviolet ray measuring instrument

Publications (1)

Publication Number Publication Date
JPH0249128A true JPH0249128A (en) 1990-02-19

Family

ID=16424490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20044988A Pending JPH0249128A (en) 1988-08-10 1988-08-10 Near ultraviolet ray measuring instrument

Country Status (1)

Country Link
JP (1) JPH0249128A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498359A (en) * 1993-02-24 1996-03-12 Hitachi Maxell, Ltd. Lubricant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498359A (en) * 1993-02-24 1996-03-12 Hitachi Maxell, Ltd. Lubricant

Similar Documents

Publication Publication Date Title
FI94177B (en) Color sensor for detecting fluorescence or a fluorescent specimen
Alfano et al. Human teeth with and without caries studied by laser scattering, fluorescence, and absorption spectroscopy
US8582103B2 (en) Bulbless spectrometer
US4560286A (en) Optical temperature measurement techniques utilizing phosphors
IE821688L (en) Apparatus for measuring light reflected by a coloured area¹of skin
JPH10508940A (en) Apparatus and method for measuring and analyzing spectral radiation mainly for measuring and analyzing color characteristics
GB1605118A (en) Optical temperature sensing means
JPS57166529A (en) Method and device for measuring temperature
GB2198530B (en) Radiation meters
GB2064107A (en) Measuring physical quantities by their effect on fluorescent material
Clyne et al. Studies of ground-state 2 P [fraction three-over-two] halogen atoms using atomic resonance absorption
Hein et al. The effect of ultraviolet induced fluorescence on visually perceived tooth color under normal light conditions
Kirkpatrick A primer on radiometry
CN105910708B (en) A kind of method and device that characteristic excitation spectra is detected using fluorescent optical sensor
JPH0249128A (en) Near ultraviolet ray measuring instrument
US20060028639A1 (en) Light meter for detecting and measuring intensity of two or more wavelengths of light
Jagger Phototechnology and biological experimentation
Seliger [44] Excited states and absolute calibrations in bioluminescence
CN2844906Y (en) Color recorder for measuring concentration of element
JP3262149B2 (en) Infrared detector and excitation method thereof
Roberts et al. Spectroradiometer–Luminometer for Chemiluminescence and Fluorescence Quantum-Yield Studies
Hauser et al. A simple photometer based on a new tri-colour light-emitting diode
JPS57147039A (en) Data discriminating device for photometer
DE2728951A1 (en) Automatic colorimetric titration - using light emitting diodes of different wavelengths with receptor cell to detect colour change w.r.t. reagent addition
JPS5524671A (en) Contamination meter for rinsing water