JPH0248573B2 - - Google Patents

Info

Publication number
JPH0248573B2
JPH0248573B2 JP3506288A JP3506288A JPH0248573B2 JP H0248573 B2 JPH0248573 B2 JP H0248573B2 JP 3506288 A JP3506288 A JP 3506288A JP 3506288 A JP3506288 A JP 3506288A JP H0248573 B2 JPH0248573 B2 JP H0248573B2
Authority
JP
Japan
Prior art keywords
phase
liquid
viscous
cellulose
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3506288A
Other languages
Japanese (ja)
Other versions
JPH01165388A (en
Inventor
Koji Fujimori
Keiko Fujimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63035062A priority Critical patent/JPH01165388A/en
Publication of JPH01165388A publication Critical patent/JPH01165388A/en
Publication of JPH0248573B2 publication Critical patent/JPH0248573B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 国内に多量に存在する木繊維を主体とする製紙
セルローズ系の廃棄資源、即ち製紙資源、製紙廃
棄物、紙、天然木破片、その他の木繊維と食酢を
混合し、そのろ過液をもつて在来のプラスチツク
原料、及びプラスチツク材を撹拌し、得られる三
つの相からなる変成物より分離して得た、熱硬化
性液粘性組成物に関する。 従来技術 従来より製紙廃棄物、木破片等の製紙セルロー
ズ系の廃棄物を利用することは試みられている
が、いずれもその繊維そのものを利用し、粉末に
したり或いはそれより板状物にする等して利用す
ることが行なわれているだけで、その繊維を変性
して利用する試みは全くなされていない。 発明が解決しようとする問題点 それ故、従来のこれらセルローズ系の廃棄物資
源の利用は自ずから限界があり、その有効な利用
もしくは活用方法の出現が望まれていた。 問題点を解決するための手段 本発明は前記の課題を解決すべく鋭意研究の結
果、セルローズ系廃棄物資源を食酢及びプラスチ
ツク原料或いはプラスチツク材と共に処理し、そ
れより得られた沈澱相が有用な変性物であること
の新知見を得、本発明に到達したものである。 即ち、本発明は、製紙資源、製紙廃棄物、紙、
天然木破片、その他の木繊維と、食酢液を混合、
撹拌し、菌と共に菌の活動できる温度範囲で静置
し、次いで混合物をろ過し、該ろ過液とプラスチ
ツク原料、又はプラスチツク材とを菌の活動でき
る温度範囲で混和撹拌、醸成し、静置して得られ
る、第1相たる液相、第2相たるイオン交換半透
膜液粘相及び第3相たる液粘相の3相抱括変性物
より分離した第3相液粘相物であつて、繊維素、
酵素、金属塩、プラスチツク変性重縮合物及び食
酢成分を主要成分として含有する熱硬化性液粘性
組成物に関するものである。 本発明の製紙資源、製紙廃棄物等、その他の木
繊維は例えば以下のものが使用される。 (イ) かつ色包装紙、セメント用紙(以下p1と称
す)、 (ロ) 新聞紙、段ボール(以下p2と称す)、 (ハ) 低級、高級印刷紙、グラビア紙(以下p3と
称す)、 (ニ) 木繊維(以下p4と称す) p1,p2,p3,p4に含まれる組成は、主
に有機物としてαセルローズ、βセルローズ、ヘ
ミセルローズ、リグニン、抽出物、インキ等、無
機物としてS、P、Si、−AlO3、Cl、その他の金
属等であり前記中には製紙処理過程中に使用され
た物質の残分も含まれており原形木質部、骨髄
部、製紙用残分を主体そする。 又、本発明の食酢液中の繊維を繊維素まで解ぐ
し、抽出物に含まれ、本発明の変性物の形成の働
きをするここに存在する菌類は石油中に含まれて
いる第二次石油製品中の菌成分と似ており、それ
らは第1表に示すとおりである。
Industrial application field: Mix vinegar with papermaking cellulose-based waste resources, mainly wood fibers, which exist in large quantities in Japan, such as papermaking resources, papermaking waste, paper, natural wood fragments, and other wood fibers, and filter the resulting mixture. The present invention relates to a thermosetting liquid-viscous composition obtained by stirring conventional plastic raw materials and plastic materials with a liquid and separating the resulting modified product consisting of three phases. Prior Art Previous attempts have been made to utilize paper manufacturing waste, wood chips, and other cellulose-based paper manufacturing wastes, but in all cases, the fibers themselves have been used and have been pulverized or made into plate-like materials. However, no attempt has been made to modify and utilize the fibers. Problems to be Solved by the Invention Therefore, the conventional use of these cellulose-based waste resources has its limits, and it has been desired to find a method for effectively using or utilizing them. Means for Solving the Problems In order to solve the above-mentioned problems, the present invention has been developed as a result of intensive research, in which cellulose-based waste resources are treated together with vinegar and plastic raw materials or plastic materials, and the resulting precipitated phase is useful. The present invention was achieved by obtaining new knowledge that it is a modified product. That is, the present invention provides paper manufacturing resources, paper manufacturing waste, paper,
Mix natural wood chips, other wood fibers, and vinegar solution.
The mixture is stirred and left to stand with the bacteria in a temperature range where the bacteria can be active, then the mixture is filtered, and the filtrate and the plastic raw material or plastic material are mixed and stirred at a temperature range where the bacteria can be active, stirred, and allowed to stand. A third phase liquid-viscous substance separated from a three-phase encapsulated modified product of a liquid phase as the first phase, an ion-exchange semipermeable membrane liquid-viscous phase as the second phase, and a liquid-viscous phase as the third phase, obtained by Cellulose,
The present invention relates to a thermosetting liquid-viscous composition containing an enzyme, a metal salt, a plastic-modified polycondensate, and a vinegar component as main components. Other wood fibers used in the present invention, such as papermaking resources and papermaking waste, include, for example, the following. (b) And colored wrapping paper, cement paper (hereinafter referred to as p1), (b) Newspaper, cardboard (hereinafter referred to as p2), (c) Low-grade and high-grade printing paper, gravure paper (hereinafter referred to as p3), (ni) ) Wood fiber (hereinafter referred to as p4) The composition contained in p1, p2, p3, and p4 is mainly composed of organic substances such as α-cellulose, β-cellulose, hemicellulose, lignin, extracts, and ink, and inorganic substances such as S, P, and Si. , -AlO 3 , Cl, and other metals, which also include the residues of substances used during the papermaking process, and are mainly composed of original wood parts, bone marrow parts, and papermaking residues. In addition, the fungi present here that work to loosen the fibers in the vinegar solution of the present invention to cellulose and form the modified products of the present invention, which are included in the extract, are the secondary fungi contained in petroleum. It is similar to bacterial components in petroleum products, and they are shown in Table 1.

【表】【table】

【表】 そして、これら石油原料のメタン化資源に含ま
れる代表的菌類Bacillus属、Candida属のうち具
体的に顕微鏡実写で確認した菌類は日本産酵母
(第2a図に示す)、石油工業に利用されるものと
同一のCandida Arborea(基質n−paraffin)(第
2b図)、メタン発酵を促すバチルス−アミロバ
クタ、セルローゼメタニクス(第2c図)、後述
のバクテリア半透膜に大きな役割を果たすバチル
ス−コメツシイ(Bacillus−Comessi)(第2d
図)、これはバチルス−アミロバクタを抑制する
薄い層を造る菌である繊維束を完全に解脱させバ
チルス−フエルシネウス(Bacillus−Felsineus)
(第2e図)、バチルス−メタニクス(第2f図)、
ペクチン質の分解をうながすバチルス−アミロバ
クタ、又ペクチン質を完全分解(94%〜96%)す
るバチルス−メセンテリツクス(Bacillus−
mesentricus−pectnovus)(第2g図)である。 又、前記本発明で使用される菌体等から由来す
る酵素もろ液中に存在するが、これらの酵素につ
いて、その酵素の働きに応じて第2表に分類して
その作用を示す。第2表記載以外に作用未解明の
ものとして(第3a図)、(第3b図)による数種
の酵素の存在が確認された。
[Table] Among the representative fungi of the genus Bacillus and Candida that are included in the methanation resources of petroleum raw materials, the fungi that were specifically confirmed using a microscope are Japanese yeast (shown in Figure 2a), which is used in the petroleum industry. Candida Arborea (substrate n-paraffin) (Fig. 2b), which is the same as that used for methane fermentation, Bacillus amylobacter that promotes methane fermentation, Cellulose methanicus (Fig. 2c), and Bacillus that plays a major role in the bacterial semipermeable membrane described below. - Bacillus-Comessi (2nd d.
(Figure), this is a bacterium that creates a thin layer that suppresses Bacillus-Amylobacter.
(Fig. 2e), Bacillus Metanicus (Fig. 2f),
Bacillus amylobacter promotes the decomposition of pectin, and Bacillus mesentericus completely decomposes pectin (94% to 96%).
mesentricus-pectnovus) (Fig. 2g). Enzymes derived from the bacterial cells used in the present invention are also present in the filtrate, and these enzymes are classified according to their functions and their actions are shown in Table 2. In addition to those listed in Table 2, the presence of several enzymes whose effects have not been elucidated (Figure 3a) and (Figure 3b) was confirmed.

【表】 本発明で利用するプラスチツク原料、又はプラ
スチツク材は例えば以下のものが挙げられる。 HCl,CH2=CHCl,C2H2,CH3CHO,
CH3COOH,C2H4,HOCH2−CH2OH,
C6H5OH,HCHO,フルフラール、イソシアネ
ート、メラミン、エポキシ化合物、アクリル化合
物、H3C− −CH3,HOOC− −COOH,
NH3CO(NH),HOOC(CH2)COOHなどプラス
チツク製造過程の反応中間生成物及びウレタン樹
脂、メラミン樹脂、ポリエステル樹脂、シリコー
ン樹脂等のthermosetting plastics、アクリル樹
脂、ポリメチルメタクリレート樹脂、ABS樹脂、
プリエチレン樹脂、ポリプロピレン樹脂、ナイロ
ン等のthermoplastics等。 本発明の繊維及びプラスチツク変性物であつ
て、熱硬化性液粘性組成物は、次のようにして製
造される。 先ず、廃棄セルローズ等の木繊維を食酢中に
1:50以内の重量比で混和し、撹拌し、該廃棄セ
ルローズ、食酢中に存在する菌と共に静置した
後、ろ過することによりプラスチツク攻撃剤たる
ろ液を得る。この反応時、特に静置に当つては温
度は菌の活動できる温度であればどのような範囲
でもよいが、一般に100℃以下、特に常温〜60℃
以下で行なうのが好ましく、混和時間は混和によ
り混合物がパルプ状(粥状)となるまで行えばよ
いが、一般には3時間以上行うものとする。この
ものをしばらく静置後、ろ過を行い、ろ液を得
る。 該ろ液に、後述するプラスチツク原料(モノマ
ー、反応中間生成物等)、プラスチツク材を加え、
数時間以上撹拌し、醸成すると3相に分かれた液
状物が得られる(第1b図)。この撹拌、醸成に
おける温度は上記の場合と同様である。該3相
は、上から順に液状の第1相(a)、イオン交換性を
有する半透膜状液粘物たる第2相(b)、及び熱硬化
性の液粘相たる第3相(c)である。 又、第1a図は3つの相から抱括変性物の電位
ポテンシヤルを示す図であり、後述の方法で測定
したものであるが、縦軸Yは電位ポテンシヤルで
あり、Xは製造容器内の上から下へ向つての深さ
寸法を表わし、3相分離の各相状態バンドを示
す。N1(−a−)は第1相の負性度を示し、(−
b−)は第2相のイオン溶解現象を表わし、N2
(−c−)は第3相の負性度を示す。pは第3相
からプロトン(H+)が多量に第1相に過渡的に
放出されるために、瞬時正値を示しており、第1
相及び第3相は安定した負性を示す。第2相(−
b−)はプロトンの移動のために不安定な電位ポ
テンシヤルをしめしていることがわかる。 測定法としては第1a図は、テフロンカバーを
した熱電対(洋銀−Cu)センサーを3本用意し、
1本は第3相に固定し、もう1本を第2相にお
き、ポテンシヨメータで電極の双極子現象をひろ
わないようにしてガルバノメーター(μAオーダ
ー)で測定した。対の第3本目の電極は第1相に
切換えスイツチを中途で挿入して測定した傾向特
性である。 以下に第1相、第2相及び第3相の変性物(第
1b図)について述べる。 液粘相(第3相) 食酢と繊維素とにより作られたろ過液をプラス
チツク原料乃至プラスチツク材と混和撹拌し静置
後、濃度の高いものとして、製造容器内の底部
(第3相)に沈澱醸成するものである。 この第3相であるろ過液との反応生成物は次の
ものと推定される。 1 フエノール樹脂変性物 既知の如く、フエノールにホルマリンが作用す
るとフエノールのオルト位置及びパラ位置にメチ
ロール化が起こり、これが縮重合して水を放出し
て高分子物質を作る。ろ液中のアルデヒド類中に
ホルマリンとグリコン酸が含まれており、ノボラ
ツク型とならず、ノボラツク−鎖状高分子形のフ
エノール変性物が出来るものと考えられる。な
お、ろ液中には酵素、セルロース、ヘミセルロー
ス、リグニンその他の成分を含有する。したがつ
て、実際の反応は更に複雑になるものと考えられ
る。得られる変成物は粘度25sec/25℃〔フオー
ドカツプ(FC:#4)〕、比重1.05〜1.25、PH3.7、
赤褐色であり、性能としては、ノボラツク型フエ
ノールより耐酸、、耐熱に勝り密着(金属等に対
して)の非常に良いものが得られる。 2 ウレタン樹脂変性物 製紙資源からのセルローズに基き、ろ液中の多
量のセルローズ系窒素の存在の為、アミド結合が
生じ、変形し更にエステル化し、アミドとの重縮
合物が生成するものと考えられる。この変性物は
粘度30〜40sec/25℃(FC:#4)、比重0.9〜
1.02、PH2.8〜3.5、淡黄桃色であつた。 なお、ろ過液中には前記したように、酵素、セ
ルロース、ヘミセルローズ、リグニン、金属塩、
食酢成分等の成分が存在し、複雑であるため、そ
の反応が多岐にわたると考えられる。 例えば3相粘液相を成形加工すると、混和プラ
スチツクの夫々が、2次元結合及び3次元結合の
両方の性質を有する従来にない特殊なプラスチツ
クに変成される。この事実は、物理化学的特性に
て、又顕微鏡断面確認にても立証される。 イオン交換半透膜粘液相(第2相) イオン交換半透膜粘液相(第2相)とは、の
液粘相(第3相)の上部に醸成する液粘相をい
う。バクテリヤ(バチルスコメツシイ、酢酸菌、
酵母菌、ブタノール菌)、紙資源に基づく金属塩、
キチン質、セルロース等が密集した部分を言う。 第2相はプロトン(H+)に対する半透膜の働
きをする。第1b図が外観状態図、第1c図が第
3相液粘相と第2相との接面状態の顕微鏡写真で
あり、第1d図が第1相液相と第2相との接面状
態の顕微鏡写真である。 そして金属及び酵素により第3相の液粘相から
ビニル化合物が生成し、これが第1相の液相中に
運ばれる(第1e図)。第1e図は第1相、第2
相、第3相成分を取り出し、プレパラート上でシ
ユミレートし、その反応状態の顕微鏡写真であ
る。濃度の高い第3相内側から膜(第2相)を通
して、濃度の低い外側に細孔を通して物の放出し
ている状態が認められる。 第1b図はろ過液とプラスチツク原材と混和撹
拌後、静置した後、イオン交換半透膜粘液相(第
2相)に支配されて底部第3相、中間部第2相、
上部第1相からなる、3つの相に分かれた状態を
示す図面であり、aが第1相、bが第2相、cが
第3相である。 そして、第2相を成形加工すると、半導体性特
性を有する成形物が得られる。 液相(第1相) 第1相は液相であつて、基本的には酵素とプロ
トン(H+)とを多量に含む液である。 酢酸、ビニル化合物の一部が通過して出来た水
及び、その他前述の酵素溶液ホルムアルデヒド、
エチルアルコール、メタノール等が含まれてい
る。これ等は気体として空気中に放出もする。 その他、酵素、繊維素、菌体が多量に含有され
ている。従つて液はたんぱく質に近い旋光性(左
旋光10゜〜12゜)を有し、電解液であり、超音波振
動10MH〜27MHの振動数を有するエネルギーの
高い液である。 剥離性を有する錆落剤他、金属表面処理剤等と
して上記の性質は多く産業界に供与出来る。 実施例 以下に本発明の製造例を示す。 製造実施例 1 食酢3000Kgに粉砕した廃棄紙(かつ色包装紙20
重量%、新聞紙50重量%、高級印刷紙30重量%)
7Kgを加え、この混合物を3時間撹拌してパルプ
状(粥状)のものが得られた。該粥状物を約40℃
において3日間寝かせておいた。廃棄紙に存在す
る菌、主としてバチルス−アミロバクタ、バチル
ス−フエルシネウス、バチルス−メタニクス、バ
チルス−メセンテリツクス、食酢に残存する酢酸
菌等が粥状物中に存在していることを確認した。
この醸成した粥状物を絞つてろ液を得る。該ろ液
は約40℃において再び3日間寝かせた。上記菌体
とそれに由来する酵素、アミラーゼ、オキシダー
ゼ、カタラーゼ等の存在する、ろ液へウレタンの
原料たるエチレングリコール(大日本インキ株式
会社D−290−70−Burnock1液、水酸基価204、
OH%6.2NC当量15.3)を加え、3時間撹拌後3
日間寝かせて3相に分かれたプラスチツク変性物
を得る。 この変性物の第3相のみを分離する。このもの
は繊維素、溶解キチン質、リグニン、エチレング
リコールと廃棄紙に由来するシアネート類とが結
合した変性ウレタン、酵素類、金属塩及び食酢成
分を主要成分として含有する粘度30sec/25℃
(FC:#4)、比重2.0、PH3.5、淡黄色〜赤桃色液
粘物であつた。このものは二次元及び三次元結合
可能な性質を有し、塗料、接着剤として用いるこ
とができ、またこの粘液物を熱硬化して固体状と
したものはスクリーン、波長カツトスクリーン、
偏光板等の光学材料として利用することができ、
また静電気を全く帯びない繊維とすることができ
るという、すぐれた特性を有するものである。 なお、第1相は、食酢成分、繊維素、酵素、菌
体、ホルムアルデヒド、ビニル化合物、アルコー
ル類及び水を主要成分として含有し、電解性の液
状物であり、第2相は繊維素、酵素、菌体、金属
塩、キチン質物質を主要成分として含有し、高粘
度のイオン交換性を有する半透膜液粘物であつ
た。 製造実施例 2〜9 プラスチツク原料或いはプラスチツク材とし
て、以下の第3表に示すものを加える以外は前記
実施例1と同様にして変性物を得た。得られた変
性物の性状および用途を第3表に示す。
[Table] Examples of the plastic raw materials or plastic materials used in the present invention include the following. HCl, CH 2 = CHCl, C 2 H 2 , CH 3 CHO,
CH 3 COOH, C 2 H 4 , HOCH 2 −CH 2 OH,
C6H5OH , HCHO, furfural , isocyanate, melamine, epoxy compound, acrylic compound, H3C- -CH3 , HOOC- -COOH ,
Reaction intermediate products in the plastic manufacturing process such as NH 3 CO (NH), HOOC (CH 2 ) COOH, thermosetting plastics such as urethane resin, melamine resin, polyester resin, silicone resin, acrylic resin, polymethyl methacrylate resin, ABS resin,
Thermoplastics such as preethylene resin, polypropylene resin, and nylon. The thermosetting liquid-viscous composition of the modified fiber and plastic of the present invention is produced as follows. First, wood fibers such as waste cellulose are mixed in vinegar at a weight ratio of 1:50 or less, stirred, left to stand together with the waste cellulose and bacteria present in the vinegar, and then filtered to form a plastic attack agent. Obtain the filtrate. During this reaction, especially when left standing, the temperature may be in any range as long as the bacteria can be active, but it is generally below 100℃, especially between room temperature and 60℃.
It is preferable to carry out the mixing for a period of at least 3 hours or more, and the mixing time may be until the mixture becomes pulp-like (porridge-like). After allowing this to stand for a while, it is filtered to obtain a filtrate. Adding plastic raw materials (monomers, reaction intermediate products, etc.) and plastic materials to the filtrate, which will be described later,
When stirred and fermented for several hours or more, a liquid substance separated into three phases is obtained (Figure 1b). The temperature during this stirring and brewing is the same as in the above case. The three phases are, in order from the top, a liquid first phase (a), a second phase (b) that is a semipermeable membrane-like liquid viscous substance having ion exchange properties, and a third phase (a thermosetting liquid viscous phase). c). In addition, Figure 1a is a diagram showing the potential potential of the encapsulated modified product from the three phases, which was measured by the method described below. The vertical axis Y is the potential potential, and It represents the depth dimension from the bottom to the bottom, and shows each phase state band of three-phase separation. N 1 (-a-) indicates the degree of negativity of the first phase, (-
b-) represents the ion dissolution phenomenon of the second phase, N 2
(-c-) indicates the degree of negativity of the third phase. p shows an instantaneous positive value because a large amount of protons (H + ) are transiently released from the third phase to the first phase.
Phase and 3rd phase show stable negativity. Second phase (-
It can be seen that b-) shows an unstable potential potential due to the movement of protons. The measurement method shown in Figure 1a is to prepare three thermocouple (nickel silver-Cu) sensors with Teflon covers.
One wire was fixed in the third phase and the other wire was placed in the second phase, and measurements were taken with a galvanometer (μA order) while using a potentiometer to prevent the dipole phenomenon of the electrodes from spreading. The third electrode in the pair is a trend characteristic measured by inserting a changeover switch halfway into the first phase. The modified products of the first, second and third phases (Fig. 1b) will be described below. Liquid-viscous phase (3rd phase) The filtrate made from vinegar and cellulose is mixed with plastic raw materials or plastic materials, stirred, and left to stand still. It is a sediment-brewing method. The reaction product with the filtrate, which is the third phase, is estimated to be as follows. 1 Modified Phenol Resin As is known, when formalin acts on phenol, methylolization occurs at the ortho and para positions of the phenol, which undergoes polycondensation and releases water to produce a polymeric substance. Since formalin and glyconic acid are contained in the aldehydes in the filtrate, it is thought that the phenol modified product is not a novolac type but a novolac chain polymer type. Note that the filtrate contains enzymes, cellulose, hemicellulose, lignin, and other components. Therefore, it is thought that the actual reaction will be even more complicated. The resulting modified product has a viscosity of 25 sec/25°C [Food Cup (FC: #4)], a specific gravity of 1.05 to 1.25, and a pH of 3.7.
It has a reddish-brown color, and has better acid resistance and heat resistance than novolac type phenol, and has very good adhesion (to metals, etc.). 2 Modified urethane resin Based on cellulose from papermaking resources, it is thought that due to the presence of a large amount of cellulose-based nitrogen in the filtrate, amide bonds are formed, deformed, and further esterified to form a polycondensate with amide. It will be done. This modified product has a viscosity of 30~40sec/25℃ (FC: #4) and a specific gravity of 0.9~
1.02, pH 2.8-3.5, pale yellow-pink color. As mentioned above, the filtrate contains enzymes, cellulose, hemicellulose, lignin, metal salts,
Since components such as vinegar are present and complex, their reactions are thought to be wide-ranging. For example, when a three-phase slime phase is molded, each of the miscible plastics is transformed into a unique, unprecedented plastic that has both two-dimensional bonding and three-dimensional bonding properties. This fact is confirmed by physicochemical properties and microscopic cross-sectional examination. Ion-exchange semipermeable membrane mucus phase (second phase) The ion-exchange semipermeable membrane mucus phase (second phase) refers to a liquid-viscous phase that is formed on top of the liquid-viscous phase (third phase). Bacteria (Bacillus cometsii, Acetobacter,
yeast bacteria, butanol bacteria), metal salts based on paper resources,
Refers to areas where chitin, cellulose, etc. are densely packed. The second phase acts as a semipermeable membrane for protons (H + ). Figure 1b is an external state diagram, Figure 1c is a microscopic photograph of the contact surface between the third liquid viscous phase and the second phase, and Figure 1d is the contact surface between the first liquid phase and the second phase. This is a microscopic photograph of the condition. Then, a vinyl compound is generated from the liquid-viscous phase of the third phase by the metal and the enzyme, and this is carried into the liquid phase of the first phase (Fig. 1e). Figure 1e shows the first phase and the second phase.
This is a microscopic photograph of the reaction state obtained by taking out the phase and third phase components and simulating them on a slide. It is observed that substances are released from the inside of the third phase, which has a high concentration, through the membrane (second phase), and through the pores, to the outside, where the concentration is low. Figure 1b shows that after mixing and stirring the filtrate and the plastic raw material and allowing it to stand still, it is dominated by the ion-exchange semipermeable membrane mucus phase (second phase), with a third phase at the bottom and a second phase at the middle.
It is a drawing showing a state divided into three phases consisting of an upper first phase, where a is the first phase, b is the second phase, and c is the third phase. Then, by molding the second phase, a molded article having semiconducting properties is obtained. Liquid Phase (First Phase) The first phase is a liquid phase, and is basically a liquid containing a large amount of enzyme and protons (H + ). acetic acid, water produced by a portion of the vinyl compound passing through, and other enzyme solutions such as formaldehyde,
Contains ethyl alcohol, methanol, etc. These are also released into the air as gases. Additionally, it contains large amounts of enzymes, cellulose, and bacterial cells. Therefore, the liquid has an optical rotation similar to that of a protein (left optical rotation of 10° to 12°), is an electrolytic solution, and is a high-energy liquid having an ultrasonic vibration frequency of 10 MH to 27 MH. The above-mentioned properties can be provided to many industries as a rust remover with peeling properties and as a metal surface treatment agent. Examples Production examples of the present invention are shown below. Manufacturing Example 1 Waste paper crushed into 3000 kg of vinegar (and 20 pieces of colored wrapping paper)
weight%, newspaper 50% by weight, high-grade printing paper 30% by weight)
7 kg was added and the mixture was stirred for 3 hours to obtain a pulp-like (porridge-like) product. The gruel is heated to about 40℃
It was left to rest for 3 days. It was confirmed that bacteria present in the waste paper, mainly Bacillus amylobacter, Bacillus ferucineus, Bacillus metanicus, Bacillus mesentericus, and acetic acid bacteria remaining in the vinegar, were present in the gruel.
This brewed gruel is squeezed to obtain a filtrate. The filtrate was aged again for 3 days at about 40°C. Ethylene glycol, a raw material for urethane (Dainippon Ink Co., Ltd. D-290-70-Burnock 1 liquid, hydroxyl value 204,
Add OH% 6.2 NC equivalent 15.3) and stir for 3 hours.
After aging for a day, a modified plastic product separated into three phases is obtained. Only the third phase of this modification is separated. This product contains cellulose, dissolved chitin, lignin, modified urethane in which ethylene glycol and cyanates derived from waste paper are combined, enzymes, metal salts, and vinegar components as main components, and has a viscosity of 30 seconds/25℃.
(FC: #4), specific gravity 2.0, pH 3.5, pale yellow to reddish pink liquid and mucus. This substance has the property of being able to be bonded two-dimensionally and three-dimensionally, and can be used as a paint or adhesive.Also, this slimy substance can be thermally cured into a solid state to be used as a screen, wavelength cut screen, etc.
It can be used as an optical material such as a polarizing plate,
Furthermore, it has the excellent property that it can be made into a fiber that does not carry static electricity at all. The first phase is an electrolytic liquid containing vinegar components, cellulose, enzymes, bacterial cells, formaldehyde, vinyl compounds, alcohols, and water as main components, and the second phase contains cellulose, enzymes, and water. It was a semipermeable liquid slime with high viscosity and ion exchange properties, containing bacterial cells, metal salts, and chitinous substances as main components. Production Examples 2 to 9 Modified products were obtained in the same manner as in Example 1 except that the plastic raw materials or plastic materials shown in Table 3 below were added. Table 3 shows the properties and uses of the obtained modified product.

【表】 第3相 液粘相の産業への利用 液粘状態のものから熱硬化した固相迄のものが
ある。これらの持つ特性に鑑みて産業面での利用
範囲は、非常に多岐にわたる。例えば第4図は鉄
(Fe)に液粘相を塗料として塗布、その断面を示
すものである。第5図は液粘相を接着剤に用い
FeとFeを接合した断面の顕微鏡写真で、これ等
の示す液粘相の持つ性状から従来の塗料、接着剤
の欠点とされる膨脹係数の差による応力ひずみの
影響、又は被着材同志の膨脹係数が異なる場合の
むずかしさが解決され、第4表、第6表に示す結
果が得られた。液粘相は硬化して固体とすること
ができ、主に光学材料となり、スクリーン、波長
カツトスクリーン、偏光板に成形する。第6図は
液粘相を繊維に加工したものの顕微鏡写真であ
り、静電気を全く帯びない繊維が出来、繊維産業
に大きな変革をなす。以上、種々の試験データ結
果、第3,4,5,6,7表が示すごとく、産業
利用範囲が多岐にわたる事が大きな特長であり、
天然廃棄資源、天然資源を利用し、プラスチツク
原料、プラスチツク材を変性して、これを産業分
野の全てに係るその基材となす変性物の発明であ
る。
[Table] Phase 3 Industrial use of liquid-viscous phase There are various types ranging from liquid-viscous to heat-cured solid phase. In view of these characteristics, the scope of industrial use is extremely wide-ranging. For example, Figure 4 shows a cross section of iron (Fe) coated with a liquid viscous phase as a paint. Figure 5 uses liquid-viscous phase as adhesive.
This is a microscopic photograph of a cross section of Fe and Fe bonded together. The properties of the liquid-viscous phase they exhibit indicate the influence of stress and strain due to the difference in expansion coefficients, which is a drawback of conventional paints and adhesives, or the effects of stress and strain on the bonding of adherends. The difficulty in the case of different expansion coefficients was resolved, and the results shown in Tables 4 and 6 were obtained. The liquid-viscous phase can be hardened into a solid, and is mainly used as an optical material, which is molded into screens, wavelength cut screens, and polarizing plates. Figure 6 is a microscopic photograph of a liquid-viscous phase processed into fibers.Fibers with no static electricity were created, which would bring about a major revolution in the textile industry. As shown in the various test data results and Tables 3, 4, 5, 6, and 7 above, the major feature of this product is that it can be used in a wide range of industrial applications.
This is an invention of a modified product that utilizes natural waste resources and natural resources to modify plastic raw materials and plastic materials and uses them as base materials for all industrial fields.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 発明の効果 本発明は製紙資源、紙廃棄資源、紙、天然木破
片、その他の木繊維を食酢中で菌と処理し、ろ過
液にプラスチツク原料、又はプラスチツク材を添
加反応して得られるプラスチツク変性物であつ
て、この変性物は三つの異なる物からなり、それ
より分離された第3相である熱硬化性組成物は塗
料、接着剤、又固化してスクリーン、偏光板等と
しても利用でき、きわめてすぐれたセルローズ系
廃棄物の利用発明といえる。
[Table] Effects of the Invention The present invention is produced by treating paper resources, paper waste resources, paper, natural wood fragments, and other wood fibers with bacteria in vinegar, and adding and reacting plastic raw materials or plastic materials to the filtrate. This modified product consists of three different components, and the third phase, a thermosetting composition, is used as paints, adhesives, and when solidified, it can be used as screens, polarizing plates, etc. It can be said that this invention is an extremely excellent invention for utilizing cellulose waste.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(第1a図及び第1b図)は3相抱括プ
ラスチツク変性物の性状、状態を示す図面であ
る。第1a図第1相〜第3相抱括プラスチツク変
性物の電位ポテンシヤルを示す。 X……3相分離の各相状態バンド、Y……電位
ポテンシヤル、O……電位ポテンシヤル零位、a
……第1相、液相、b……第2相、イオン交換半
透膜相(バクテリヤ帯)、c……第3相、液粘相、
N1……第1相、液相電位ポテンシヤル、N2……
第3相、液粘相電位ポテンシヤル、p……第3相
から第1相へプロトンが移動することによる電位
ポテンシヤル。 第1b図は3相抱括外観状態図である。第2図
は菌類の顕微鏡写真であり、第2a図は日本産酵
母、第2b図はcandida−Arbonea(n−
paraffin)、第2c図はバチルス−アミロバクタ、
セルローゼ−メタニクス、第2d図はBacillus−
Comessi、第2e図はBacillus−Felsineus、第2
f図はBacillus−メタニクス、第2g図は
Bacillus−mesentricus−pectnovusの顕微鏡写真
である。第3図は含有酵素の顕微鏡写真であり、
第3a図、第3b図は作用未解明の酵素であり、
第3c図はグリコレート・オキシダーゼ、第3d
図はカタラーゼ、第3e図はトランス・ケトラー
ゼ、第3f図はトランス・アミラーゼ、第3g図
はαアミラーゼ、第3h図はβアミラーゼ、第3
i図はペプチナーゼ、第3j図はリゾチーム、第
3k図はトリホスフエート・イソメラーゼ、第3
l図はヒドラーゼの顕微鏡写鏡である。第4図は
上部塗料と金属(Fe)の接面の顕微鏡写真であ
る。第5図は金属(Fe+Fe)と接着剤の接面の
顕微鏡写真である。第6図は第3相液粘相を繊維
に加工したものの顕微鏡写真である。
FIG. 1 (FIG. 1a and FIG. 1b) is a drawing showing the properties and state of a modified three-phase encapsulated plastic. FIG. 1a shows the potential potentials of phase 1 to phase 3 encapsulated plastic modifications. X...Each phase state band of three-phase separation, Y...Potential potential, O...Potential potential zero, a
...First phase, liquid phase, b...Second phase, ion exchange semipermeable membrane phase (bacteria zone), c...Third phase, liquid-viscous phase,
N 1 ... 1st phase, liquid phase potential, N 2 ...
Third phase, liquid-viscous phase potential potential, p... Potential potential due to the movement of protons from the third phase to the first phase. FIG. 1b is a three-phase inclusive external state diagram. Figure 2 is a microscopic photograph of fungi, Figure 2a is Japanese yeast, and Figure 2b is candida-Arbonea (n-
paraffin), Figure 2c is Bacillus-Amylobacter,
Cellulose-metanics, Figure 2d is Bacillus-
Comessi, Fig. 2e is Bacillus-Felsineus, Fig. 2
Figure f is Bacillus-metanics, Figure 2g is
It is a micrograph of Bacillus-mesentricus-pectnovus. Figure 3 is a microscopic photograph of the enzyme contained;
Figures 3a and 3b are enzymes whose actions are unknown,
Figure 3c is glycolate oxidase, Figure 3d
Figure 3e shows catalase, Figure 3e shows trans-ketolase, Figure 3f shows trans-amylase, Figure 3g shows alpha-amylase, Figure 3h shows beta-amylase,
Figure i is peptinase, Figure 3j is lysozyme, Figure 3k is triphosphate isomerase, Figure 3 is
Figure l is a microscopic image of hydrase. Figure 4 is a micrograph of the contact surface between the upper paint and metal (Fe). Figure 5 is a microscopic photograph of the contact surface between metal (Fe+Fe) and adhesive. FIG. 6 is a microscopic photograph of the third phase liquid-viscous phase processed into fibers.

Claims (1)

【特許請求の範囲】[Claims] 1 製紙資源、製紙廃棄物、紙、天然木破片、そ
の他の木繊維と、食酢液を混合、撹拌し、原料に
存在する菌と共に菌の活動できる温度範囲で静置
し、次いで混合物をろ過し、該ろ過液とプラスチ
ツク原料、又はプラスチツク材とを菌の活動でき
る温度範囲で混和撹拌、醸成し、静置して得られ
る、第1相たる液相、第2相たるイオン交換半透
膜液粘相及び第3相たる液粘相の3相抱括変性物
より分離した第3相液粘相物であつて、繊維素、
酵素、金属塩、プラスチツク変性重縮合物及び食
酢成分を主要成分として含有する熱硬化性液粘性
組成物。
1. Mix paper resources, paper manufacturing waste, paper, natural wood fragments, and other wood fibers with vinegar solution, stir, and let stand at a temperature range where bacteria can be active together with bacteria present in the raw materials. Then, filter the mixture. The first phase is a liquid phase, and the second phase is an ion-exchange semipermeable membrane liquid, which is obtained by mixing the filtrate and plastic raw material or plastic material at a temperature range where bacteria can be active, stirring, cultivating, and standing still. A third-phase liquid-viscous substance separated from a three-phase encapsulated modified product of the viscous phase and the third phase, the liquid-viscous phase, comprising cellulose, cellulose,
A thermosetting liquid-viscous composition containing an enzyme, a metal salt, a plastic modified polycondensate, and a vinegar component as main components.
JP63035062A 1988-02-19 1988-02-19 Modified plastic by wood fiber, paper manufacturing resource, waste paper resource and edible vinegar Granted JPH01165388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035062A JPH01165388A (en) 1988-02-19 1988-02-19 Modified plastic by wood fiber, paper manufacturing resource, waste paper resource and edible vinegar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035062A JPH01165388A (en) 1988-02-19 1988-02-19 Modified plastic by wood fiber, paper manufacturing resource, waste paper resource and edible vinegar

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9146177A Division JPS5426398A (en) 1977-08-01 1977-08-01 Modified plastic substans by wood fiber * paper making material and waste paper material

Publications (2)

Publication Number Publication Date
JPH01165388A JPH01165388A (en) 1989-06-29
JPH0248573B2 true JPH0248573B2 (en) 1990-10-25

Family

ID=12431535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035062A Granted JPH01165388A (en) 1988-02-19 1988-02-19 Modified plastic by wood fiber, paper manufacturing resource, waste paper resource and edible vinegar

Country Status (1)

Country Link
JP (1) JPH01165388A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4424403B4 (en) * 1994-07-11 2005-07-28 Josef Moser Processable mass of mainly vegetable material and process for their preparation

Also Published As

Publication number Publication date
JPH01165388A (en) 1989-06-29

Similar Documents

Publication Publication Date Title
Baccile et al. Unusual, pH-induced, self-assembly of sophorolipid biosurfactants
US4711936A (en) Curing agent for epoxy resin and method for curing epoxy resin
DE112016002429T5 (en) ISATINCOPOLYMERS WITH INTRINSIC MICROPOROSITY
Cargnin et al. Pinus residue/pectin-based composite hydrogels for the immobilization of β-D-galactosidase
Wu et al. Thermal responsive microgels as recyclable carriers to immobilize active proteins with enhanced nonaqueous biocatalytic performance
KR19990037728A (en) How to Treat Bacterial Cellulose
CN101260124B (en) Method for extracting and purifying humic acid from aerobic compost and measuring carbon content of the same
JPS6150961B2 (en)
Zhou et al. Application of Maillard reaction product of xylose–pea protein enzymatic hydrolysate in 3D printing
Li et al. Flexible recyclable cellulose paper templated cu‐doped polydopamine membranes with dual enzyme‐like activity
JPH0248573B2 (en)
CN108217776A (en) It is a kind of to be used to handle medicament at water source of chemical contamination and preparation method thereof
CN102108131B (en) Hydrophilic cationic polyurethane foam plastics and preparation method thereof
JPS61179276A (en) Adhesive
JPH0127118B2 (en)
JP2528096B2 (en) Modified solids of fibers and plastics
CN109135474A (en) A kind of cation acrylic -ol acid resin water paint
CN102159637A (en) Cellulose-containing mass
Yang et al. Mussel-inspired electro-oxidation-modified three-dimensional printed carriers for a versatile enzyme immobilization approach
DE3301102C2 (en)
Bajpai et al. Comparison of deep eutectic solvents and ionic liquids
CA1312327C (en) Method of adding boric acid or a borate to a mixing or reaction zone
JPS61179887A (en) Rust remover
TW460523B (en) Manufacturing method for natural cross-linker genipin
JPS61171772A (en) Paint