JPH0248003B2 - PEESUTOKAKOYOENKABINIRUJUSHINOKAISHUHOHO - Google Patents

PEESUTOKAKOYOENKABINIRUJUSHINOKAISHUHOHO

Info

Publication number
JPH0248003B2
JPH0248003B2 JP22089882A JP22089882A JPH0248003B2 JP H0248003 B2 JPH0248003 B2 JP H0248003B2 JP 22089882 A JP22089882 A JP 22089882A JP 22089882 A JP22089882 A JP 22089882A JP H0248003 B2 JPH0248003 B2 JP H0248003B2
Authority
JP
Japan
Prior art keywords
resin
vinyl chloride
chloride resin
weight
aqueous dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22089882A
Other languages
Japanese (ja)
Other versions
JPS59109504A (en
Inventor
Masaaki Nishina
Eitaro Nakamura
Junichi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP22089882A priority Critical patent/JPH0248003B2/en
Publication of JPS59109504A publication Critical patent/JPS59109504A/en
Publication of JPH0248003B2 publication Critical patent/JPH0248003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は、ペースト加工に供される粒状の塩化
ビニル樹脂の製造方法に関する。 通常塩化ビニル樹脂をペースト加工するに際し
ては、ペースト加工用に製造された塩化ビニル樹
脂(以下樹脂ということがある)を、可塑剤、安
定剤の他、必要に応じて顔料、充てん剤等の配合
剤とともに混合し液状のプラスチゾルとし、成形
工程へ供する方法が採られる。そして液状のプラ
スチゾルを注形、コーテイング、浸漬等の手段で
賦型し、加熱溶融固化させることによつて成形品
を得る。従つて、プラスチゾルの流動特性はペー
スト加工の成形性に極めて重要な影響を及ぼす特
性であるため、配合処方上、とりわけ樹脂の品質
設計上、多大な努力と工夫が施されているのが実
情である。一般には、そのための樹脂の製造方法
としては、塩化ビニル又は塩化ビニルを主体とす
る単量体混合物をラジカル発生型重合開始剤と乳
化剤の存在下、乳化重合あるいは懸濁重合するこ
とによつて粒径0.05〜5μの球型樹脂の水性分散を
得、この水性分散液をスプレー乾燥する方法が採
られている。 ところがこうした方法で得られた樹脂は、樹脂
の水性分散液中の全ての不揮発成分を含んでお
り、成形品の熱安定性、耐水性、透明性等の特性
を低下させる原因となつている。さらに、通常の
スプレー乾燥では、噴霧された水分散液中の樹脂
粒子は、水分の蒸発に伴つて樹脂粒子が強固な集
合体として乾燥、捕捉されるため、製品として出
荷するためには粉砕工程を要する場合があるし、
こうした処理を行つてもプラスチゾル製造時の簡
単な混合では集合粒子の分散を達成できないこと
が多い。さらに、従来の樹脂は微細な粉体である
ため、製品の袋詰め時、並びにプラスチゾル製造
に際しての開袋投入及び混合時の粉体飛散等、作
業環境の低下を引き起こすばかりでなく、粉体流
動性が悪いため、自動計量、自動輸送が困難であ
る。 本発明者は、こうしたペースト加工用塩化ビニ
ル樹脂の現状の問題点について検討した結果、ペ
ースト加工用塩化ビニル樹脂の水性分散液に、水
に難溶であつてかつ該塩化ビニル樹脂を溶解又は
膨潤させない有機液体を添加して混合することに
より、塩化ビニル樹脂を粒状集合体として水相よ
り分離せしめた後乾燥することによつて、粉体と
しての流動性が良好で飛散性が少なく、プラスチ
ゾルとしたときには、十分ペースト加工に供し得
る分散性と低粘度性を有し、かつ優れた熱安定
性、耐水性、透明性を有する成形品を与える粒状
塩化ビニル樹脂が回収できることを先に見い出し
ている。 しかし、この方法の効率を一段と向上させるべ
く、更に検討を重ねた結果、上記塩化ビニル樹脂
に、特定の粒径の塩化ビニル樹脂を特定量併用す
ることにより樹脂が極めて高い効率で得られ、更
には、粒状集合体を分離した後の水相中に含まれ
る樹脂分の回収が極めて容易であることを確認
し、本発明を完成するに至つた。 すなわち本発明は、ペースト加工用塩化ビニル
樹脂の水性分散液に、水に難溶であつてかつ該塩
化ビニル樹脂を溶解又は膨潤させない有機液体を
添加して混合することにより、塩化ビニル樹脂を
粒状集合体として水相より分離せしめた後乾燥す
ることによつて、塩化ビニル樹脂を回収するに際
し、ペースト加工用塩化ビニル樹脂の水性分散液
に、平均粒径が10〜60ミクロンの範囲の粗大塩化
ビニル樹脂を、全樹脂量中1〜70重量%、好まし
くは5〜60重量%となる範囲で添加することを特
徴とするペースト加工用塩化ビニル樹脂の回収方
法に関するものである。 本発明の方法は、以下に示す基本的な工程、す
なわち、(1)樹脂の水性分散液と有機液体とを混合
し、樹脂を有機液体を介して集合せしめる第1工
程、(2)第1工程で得られた樹脂集合体を含む混合
液から水相を分離除去する第2工程、(3)水相を除
去した樹脂集合体を乾燥する第3工程、更に必要
に応じて(4)第2工程で分離された水相中の樹脂を
第1工程で使用する原料に混合する第4工程で構
成されている。 本発明において用いられるペースト加工用塩化
ビニル樹脂(平均粒径は0.05〜5μ)の水性分散液
及び平均粒径10〜60ミクロンの塩化ビニル樹脂
(以下粗大塩化ビニル樹脂ということがある)は、
通常の乳化重合又は懸濁重合により製造された塩
化ビニル樹脂の単独重合体又は塩化ビニルを主体
とし(通常は70重量%以上)、これと酢酸ビニル、
塩化ビニリデン、エチレン、プロピレン、ブテ
ン、アクリロニトリル、アクリル酸エステル、メ
タクリル酸エステル又はマレイン酸などのオレフ
イン系単量体との共重合体を、その樹脂組成とし
て有するものである。 粗大塩化ビニル樹脂としては、重合後の水分散
液、脱水後のウエツトケーキ、乾燥後の粉末樹脂
のいずれを用いてもよいが、粗大塩化ビニル樹脂
添加後の水性分散液中の全塩化ビニル樹脂の含量
が10〜70重量%であることが望ましい。10重量%
未満の場合は廃水量が製品量に比し、多くなり過
ぎる結果不経済であり、70重量%を越える場合に
は、水性分散液と有機液体の混合物の粘度が著し
く上昇してしまうため、操業が困難となる。ま
た、粗大塩化ビニル樹脂の平均粒径が60ミクロン
を越えると、薄膜コーテイング加工時の筋引きや
成形品表面の荒れ、艶消しなどを引き起こし好ま
しくない。又、10ミクロン未満になると粒状塩化
ビニル樹脂の回収効率、分離水からの樹脂分の回
収効率が低下する。又、粗大塩化ビニル樹脂の添
加量が1重量%未満の場合、樹脂の回収性、ゾル
としたときの粘度特性が不良となり、一方70重量
%を越えて場合、樹脂の回収効率の向上、分離水
からの樹脂分の回収の容易さは保たれるが、得ら
れた製品をプラスチゾルにしてペースト加工に供
した場合、ゲル化性の低下、成形品の機械的強度
の低下が大きくなる為、用途範囲が限定されてし
まう欠点が生じる。 塩化ビニル樹脂の水性分散液に添加される有機
液体は、水に難溶であつて、かつ本発明における
分離回収時においては樹脂を溶解又は膨潤しない
ものである。一般的にはこの有機液体としては、
融点が20℃以下、常圧における沸点が本発明の分
離回収時の温度以上、好ましくは200℃以上のも
のがいられる。有機液体として沸点が分離回収時
の温度未満のものを用いた場合には、これが揮散
するためこの回収に付加設備を要し経済的でな
い。むろん、単品としては、以上に述べた条件を
外れるものであつても混合物として上述した要件
を備えているものであれば良い。 有機液体が水に難溶であることが要求される理
由は以下の2点にある。第1には、水性分散液と
の混合のあと、分離すべき水相への同伴量を減少
させて、有機液体の損失を防ぎ、廃水処理費用を
軽減させるためであり、第2には、水に分散した
樹脂粒子を有機液体を介して集合せしめるには、
樹脂粒子と水との間に有機液体が界面を持つた液
相として存在することが必要であるためである。
また、用いる有機液体が、本発明における分離回
収時の温度において樹脂を溶解又は膨潤させるも
のである場合には、樹脂粒子が変形、変質を起こ
すため不都合である。なお、本発明で使用した有
機液体は大部分が製品樹脂に残留するため、ペー
スト加工時の操作性、加工性および成形品の品質
に対し悪影響を与えるものは避けなければならな
い。以上の点からすれば、有機液体として通常ペ
ースト加工に用いられる液状配合剤を使用するの
が一番自然で合理的である。 本発明における有機液体の例としては以下の様
なものが挙げられる。 (1) ジオクチルフタレート、ジノニルフタレー
ト、ブチルラウリルフタレート、メチルオレイ
ルフタレート等のフタル酸アルキルエステル系
可塑剤 (2) トリオクチルトリメリテート、ジエチレング
リコールジベンゾエート等の芳香族カルボン酸
エステル系可塑剤 (3) ジオクチルアジペート、ジブチルセバケー
ト、ジオクチルテトラヒドロフタレート等の脂
肪族二塩基酸エステル系可塑剤 (4) トリオクチルフオスフエート、トリクロロエ
チルフオスフエート等のリン酸エステル系可塑
剤 (5) ジエチレングリコールジカブリレート、1.4
ブチレングリコール−ジ−2−エチルヘキサノ
エート等の脂肪酸グリコールエステル系可塑剤 (6) ポリエステル系可塑剤 (7) オレイン酸ブチル、アセチルリシノール酸メ
チル2、2、4−トリメチル−1、3−ペンタ
ンジオールジイソプチレート等の脂肪酸エステ
ル系、エポキシ化大豆油、エポキシステアリン
酸オクチル等のエポキシ系、塩素化脂肪酸メチ
ル、塩素化パラフイン等の塩素化パラフイン
系、コハク酸ジオクチル等の脂肪族二塩基酸エ
ステル系の二次可塑剤 (8) ミネラルスピリツト、ミネラルターペン等の
石油系、ドデシルベンゼン等の長鎖アルキルベ
ンゼン系の希釈剤 (9) 高級アルコール、流動パラフイン、高級脂肪
酸アルキルエステル等の液状滑剤 有機液体の添加量は、水性分散液中の樹脂100
重量部に対し、0.5〜20重量部、好ましくは2〜
15重量部の範囲で選定すべきである。該添加量が
20重量部を越えると、所望の粒状物が得られずゾ
ル状物が生成する場合が起こり得る。たとえ、粒
状物が得られたとしても、有機液体の含有量が大
きい為に後段の乾燥工程での水分の除去が困難に
なる恐れがある。該添加量が0.5重量部未満では、
所望の粒状物はほとんど得られない。 有機液体と樹脂の水性分散液との混合は、20〜
70℃、好ましくは、20〜50℃の範囲で行なうべき
である。該温度が70℃を越えると、有機液体によ
る樹脂の膨潤、吸収が促進され、かつ、樹脂の軟
化による合体も起こり始める為に、最終製品の分
散性を著しく損なう危険性がある。 有機液体と樹脂の水性分散液を混合する方法と
しては、公知の方法が採用できるが、混合の程度
は樹脂の有機液体による集合能率に大きな影響を
与えるため、好ましくは混合装置の単位容積当り
の混合動力が1KW/M3(1立方メートル当り1
キロワツト)以上であつて、混合時間との積が、
4KW・Hr/M3以上であるようにすべきである。
混合装置としては混合の均一性、連続性などの点
から、高速回転式連続混合機や多翼型連続混合槽
の使用が好ましいが、通常の撹拌槽型の混合機や
静上型混合器も使用し得る。 次に有機液体を介して集合した樹脂集合体から
水相を分離するには、捕捉された樹脂混合物の形
状に応じて、公知の法を用いれば良い。ただし、
樹脂の軟化、合体を防ぐために温度は20〜70℃の
範囲としなければならない。 分離工程にて分離された樹脂粒子は、次に乾燥
工程に送られ、有機液体と付着水分が除去され
る。この乾燥工程においては、広く公知の乾燥装
置が使用可能であるが、樹脂の集合、合体の強度
がペースト加工時の分散性を損なわぬ様な条件を
設定することが必要である。すなわち乾燥工程中
の被乾燥樹脂の温度は70℃以下、好ましくは50℃
以下となる様にする。 このようにして塩化ビニル樹脂が高収率で得ら
れるが、このものは流動性が良好で飛散性が少な
く、しかも常法によりプラスチゾルとしたときの
粘度特性や成形品としたときの熱安定性等の物性
も優れている。 次に実施例により本発明の方法を説明する。な
お、塩化ビニル樹脂の平均粒径は、樹脂粒子の重
量分布で50%の点の粒径を示す。また、粒状塩化
ビニル樹脂の回収効率は下記式により算出した。 回収効率=所定の目開きの金網上に篩分けられた塩化
ビニル樹脂の重量/仕込まれた塩化ビニルラテツクス中
の塩化ビニル樹脂の重量×100(%) また、樹脂の沈降性、粉体性、ゾル(樹脂50g
とジ−2−エチルヘキシルフタレート30gとをら
いかい機で混合して調製したもの)特性及びフイ
ルム特性について下記に説明する。 スクリーン通過後の分離水中の樹脂の沈降性 分離水をガラス容器に採取して静置した後、2
〜3分以内にほぼ透明な上澄液が生成する場合を
良好、10分後でも上澄液が生じないものを不良と
する。 安息角 粉体の流動し易さを示すもので数値が小さいほ
どの流動性に優れる。 かさ比重 粉体の見掛の密度であつて、大きい数値である
ほど取扱い性が良好である。 付着性 試料を紙の上に置き水平に振動させた後試料を
捨てて紙上に付着した樹脂量の多少を観察する。
少ないほど良い。 粘 度 ブルツクフイールドBM型粘度計ローター#4
により6rpmで測定したとき(初日)、及び23℃で
7日間放置したとき(7日後)のゾル温23℃での
値。 ノースフアイネス ゾル中の樹脂粒子の粒度を示すもので、数値が
大きい程細かい(8が最も細かく0が最も荒い)。 熱安定性 ゾルをアルミニウム製モールドに注入し、190
℃の熱風雰囲気下で30分後の色調の変化をA(変
化小)〜E(変化大)の5段階で表示する。 フイルム強度 ゾルを厚み2mmのガラス板上に400μ厚みでコ
ーテイングし、180℃の熱風雰囲気下で10分間加
熱ゲル化してフイルムを成形し、JIS K−6301−
75準拠の3号ダンベルとして、引張速度200mm/
minでの破断時引張強度を測定する。 実施例 1 ペースト加工用塩化ビニル樹脂の水性分散液
(固形分含量30重量%、平均粒径1.2μ)3000g、
45μの平均粒径を有する粗大塩化ビニル樹脂の水
性分散液(固形分含量30重量%)400g及びジ−
2−エチルヘキシルフタレート61gを、内部に直
径9cmの多数の撹拌翼を持つ内径10cm、内容積
3.8の円筒型ステンレス製混合機に入れ、
1200rpmで10分間混合したところ、球状樹脂組成
物の水分散液が得られた。この分散液から60メツ
シユの金網で球状樹脂組成物を分離し、金網上の
ものを遠心脱水したところ826gの湿潤粒状物が
得られた。これを熱風式乾燥機内35℃で12時間乾
燥させたところ603gの樹脂(A)が得られた。 実施例 2 ペースト加工用塩化ビニル樹脂の水性分散液
(固形分含量30重量%、平均粒径1.2μ)3200g、
26μの平均粒径を有する粗大塩化ビニル樹脂粉末
300g及びジ−2−エチルヘキシルフタレート100
gを1000rpmで15分間混合した以外は、実施例1
と全く同様の装置・手順で実験を行なつた。得ら
れた湿潤粒状物の重量は1170g、乾燥樹脂(B)の重
量は831gであつた。 比較例 1 実施例1で用いたペースト加工用塩化ビニル樹
脂の水性分散液(固形分含量30重量%)3400gと
ジ−2−エチルヘキシルフタレート61gを用いて
実施例1と全く同様の装置・条件・手順で実験を
行なつた。得られた湿潤粒状物の重量は402g、
乾燥樹脂(C)の重量は285gであつた。 比較例 2 実施例2で用いたペースト加工用塩化ビニル樹
脂の水性分散液(ただし固形分含量は15重量%に
調整)2600g、粗大塩化ビニル樹脂粉末800g及
びジ−2−エチルヘキシルフタレート95gを用い
て、実施例2と全く同じ装置・条件・手順で実験
を行つた。得られた湿潤重量物の重量は1060g、
乾燥樹脂(D)の重量は785gであつた。 比較例 3 実施例1で用いたペースト加工用塩化ビニル樹
脂の水性分散液(固形分含量30重量%)3000g、
93μの平均粒径を有する粗大塩化ビニル樹脂の水
性分散液(固形分含量32重量%)500g及びジ−
2−エチルヘキシルフタレート64gを用いて、実
施例1と全く同様の装置、条件、手順で実験を行
つた。得られた湿潤粒状物の重量は866g、乾燥
樹脂(E)の重量は632gであつた。 参考例 1 実施例1で用いたペースト加工用塩化ビニル樹
脂の水性分散液をスプレー乾燥機により、入口温
度160℃、出口温度56℃で乾燥し、卓上パルベラ
イザーで粉砕して、乾燥樹脂(F)を得た。 表に(A)〜(F)の樹脂の回収効率及び特性等を示
す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing granular vinyl chloride resin to be subjected to paste processing. Normally, when paste processing vinyl chloride resin, the vinyl chloride resin (hereinafter referred to as resin) manufactured for paste processing is mixed with plasticizers, stabilizers, pigments, fillers, etc. as necessary. A method is adopted in which the plastisol is mixed with an agent to form a liquid plastisol and then subjected to a molding process. Then, the liquid plastisol is shaped by means such as casting, coating, dipping, etc., and a molded article is obtained by heating and melting and solidifying the plastisol. Therefore, the fluidity properties of plastisol are properties that have an extremely important effect on the formability of paste processing, and the reality is that great effort and ingenuity are put into the formulation, especially in the quality design of the resin. be. Generally, the method for producing resin for this purpose involves emulsion polymerization or suspension polymerization of vinyl chloride or a monomer mixture mainly composed of vinyl chloride in the presence of a radical-generating polymerization initiator and an emulsifier. A method has been adopted in which an aqueous dispersion of spherical resin having a diameter of 0.05 to 5 μm is obtained and this aqueous dispersion is spray-dried. However, the resin obtained by this method contains all the nonvolatile components in the aqueous resin dispersion, which causes a decrease in properties such as thermal stability, water resistance, and transparency of the molded product. Furthermore, in normal spray drying, the resin particles in the sprayed aqueous dispersion are dried and captured as a solid aggregate as the water evaporates, so a pulverization process is required to ship the product. It may require
Even with such treatments, it is often impossible to achieve dispersion of aggregated particles by simple mixing during plastisol production. Furthermore, since conventional resins are fine powders, they not only cause a deterioration of the working environment, such as powder scattering when products are packed into bags or when opened and mixed during plastisol production, but also cause powder flow. Due to poor performance, automatic weighing and transportation are difficult. As a result of studying the current problems of the vinyl chloride resin for paste processing, the present inventor found that the vinyl chloride resin is difficult to dissolve in water and can be dissolved or swollen in an aqueous dispersion of the vinyl chloride resin for paste processing. By adding and mixing an organic liquid that does not cause oxidation, the vinyl chloride resin is separated from the aqueous phase as a granular aggregate, and then dried, resulting in a powder with good fluidity and little scattering, and is similar to plastisol. We have previously discovered that when this process is carried out, it is possible to recover granular vinyl chloride resin that has sufficient dispersibility and low viscosity to be subjected to paste processing, and which provides molded products with excellent thermal stability, water resistance, and transparency. . However, in order to further improve the efficiency of this method, as a result of further studies, we found that by combining the above vinyl chloride resin with a specific amount of vinyl chloride resin of a specific particle size, a resin can be obtained with extremely high efficiency. confirmed that it is extremely easy to recover the resin contained in the aqueous phase after separating the granular aggregates, and completed the present invention. That is, the present invention makes the vinyl chloride resin granular by adding and mixing an organic liquid that is sparingly soluble in water and does not dissolve or swell the vinyl chloride resin into an aqueous dispersion of the vinyl chloride resin for paste processing. When recovering vinyl chloride resin by separating it from the aqueous phase as an aggregate and drying it, coarse chloride with an average particle size in the range of 10 to 60 microns is added to the aqueous dispersion of vinyl chloride resin for paste processing. The present invention relates to a method for recovering vinyl chloride resin for paste processing, characterized in that vinyl resin is added in an amount of 1 to 70% by weight, preferably 5 to 60% by weight based on the total amount of resin. The method of the present invention consists of the following basic steps: (1) a first step of mixing an aqueous resin dispersion and an organic liquid and aggregating the resin via the organic liquid; A second step of separating and removing the aqueous phase from the mixed liquid containing the resin aggregate obtained in the step, (3) a third step of drying the resin aggregate from which the aqueous phase has been removed, and (4) a further step as necessary. The fourth step consists of mixing the resin in the aqueous phase separated in the second step with the raw material used in the first step. The aqueous dispersion of vinyl chloride resin for paste processing (average particle size: 0.05 to 5 μm) and vinyl chloride resin (hereinafter referred to as coarse vinyl chloride resin) having an average particle size of 10 to 60 μm used in the present invention are:
A vinyl chloride resin homopolymer or vinyl chloride produced by normal emulsion polymerization or suspension polymerization (usually 70% by weight or more), and vinyl acetate,
Its resin composition is a copolymer with an olefinic monomer such as vinylidene chloride, ethylene, propylene, butene, acrylonitrile, acrylic ester, methacrylic ester, or maleic acid. As the coarse vinyl chloride resin, any of an aqueous dispersion after polymerization, a wet cake after dehydration, and a powder resin after drying may be used. It is desirable that the content is between 10 and 70% by weight. 10% by weight
If the amount is less than 70% by weight, the amount of wastewater will be too large compared to the amount of product, which is uneconomical. If it exceeds 70% by weight, the viscosity of the mixture of aqueous dispersion and organic liquid will increase significantly, making it difficult to operate. becomes difficult. Furthermore, if the average particle size of the coarse vinyl chloride resin exceeds 60 microns, it is undesirable because it causes streaks during thin film coating processing, roughening and matting of the surface of the molded product. Moreover, if it is less than 10 microns, the recovery efficiency of granular vinyl chloride resin and the recovery efficiency of the resin component from separated water will decrease. In addition, if the amount of coarse vinyl chloride resin added is less than 1% by weight, the recovery efficiency of the resin and the viscosity characteristics when made into a sol will be poor, while if it exceeds 70% by weight, the recovery efficiency of the resin will be improved and the separation will be poor. Although the ease of recovering the resin component from water is maintained, if the obtained product is made into plastisol and subjected to paste processing, the gelling property and mechanical strength of the molded product will be significantly reduced. The disadvantage is that the scope of use is limited. The organic liquid added to the aqueous dispersion of vinyl chloride resin is one that is sparingly soluble in water and does not dissolve or swell the resin during separation and recovery in the present invention. Generally, this organic liquid is
Those having a melting point of 20° C. or lower and a boiling point at normal pressure higher than the temperature during separation and recovery of the present invention, preferably 200° C. or higher are used. If an organic liquid having a boiling point lower than the temperature at the time of separation and recovery is used, additional equipment is required for recovery because the organic liquid evaporates, which is not economical. Of course, even if it does not meet the above-mentioned conditions as a single product, it may be used as a mixture as long as it satisfies the above-mentioned requirements. There are two reasons why organic liquids are required to be poorly soluble in water. Firstly, this is to reduce the amount entrained in the aqueous phase to be separated after mixing with the aqueous dispersion, thereby preventing loss of organic liquid and reducing wastewater treatment costs.Secondly, To aggregate resin particles dispersed in water via an organic liquid,
This is because the organic liquid needs to exist as a liquid phase with an interface between the resin particles and water.
Furthermore, if the organic liquid used is one that dissolves or swells the resin at the temperature during separation and recovery in the present invention, this is disadvantageous because the resin particles may be deformed or altered in quality. In addition, since most of the organic liquid used in the present invention remains in the product resin, it is necessary to avoid any liquid that would have an adverse effect on the operability and processability during paste processing and the quality of the molded product. In view of the above points, it is most natural and rational to use a liquid compounding agent commonly used in paste processing as an organic liquid. Examples of the organic liquid in the present invention include the following. (1) Phthalic acid alkyl ester plasticizers such as dioctyl phthalate, dinonyl phthalate, butyl lauryl phthalate, and methyl oleyl phthalate (2) Aromatic carboxylic acid ester plasticizers such as trioctyl trimellitate and diethylene glycol dibenzoate (3) ) Aliphatic dibasic acid ester plasticizers such as dioctyl adipate, dibutyl sebacate, and dioctyl tetrahydrophthalate (4) Phosphate ester plasticizers such as trioctyl phosphate and trichloroethyl phosphate (5) Diethylene glycol dicarbonate rate, 1.4
Fatty acid glycol ester plasticizers such as butylene glycol di-2-ethylhexanoate (6) Polyester plasticizers (7) Butyl oleate, methyl acetyl ricinolate 2,2,4-trimethyl-1,3-pentane Fatty acid esters such as diol diisoptylate, epoxidized soybean oil, epoxys such as octyl epoxystearate, chlorinated fatty acid methyl, chlorinated paraffins such as chlorinated paraffin, aliphatic dibasic acids such as dioctyl succinate Ester-based secondary plasticizers (8) Petroleum-based diluents such as mineral spirits and mineral turpentine, and long-chain alkylbenzene-based diluents such as dodecylbenzene (9) Liquid lubricants such as higher alcohols, liquid paraffin, and higher fatty acid alkyl esters Organic The amount of liquid added is 100% of the resin in the aqueous dispersion.
0.5 to 20 parts by weight, preferably 2 to 20 parts by weight
It should be selected within the range of 15 parts by weight. The amount added is
If it exceeds 20 parts by weight, the desired granules may not be obtained and a sol may be formed. Even if granules are obtained, the large content of organic liquid may make it difficult to remove water in the subsequent drying step. If the amount added is less than 0.5 parts by weight,
Very little of the desired granules are obtained. The mixing of the organic liquid and the aqueous dispersion of the resin is
It should be carried out at 70°C, preferably in the range 20-50°C. If the temperature exceeds 70°C, swelling and absorption of the resin by the organic liquid will be promoted, and coalescence will begin to occur due to softening of the resin, so there is a risk that the dispersibility of the final product will be significantly impaired. Any known method can be used to mix the organic liquid and the aqueous dispersion of the resin, but since the degree of mixing has a large effect on the aggregation efficiency of the resin with the organic liquid, it is preferable to mix the amount per unit volume of the mixing device. Mixed power is 1KW/ M3 (1 per cubic meter
kilowatts) and the product with the mixing time is
It should be 4KW・Hr/M 3 or more.
From the viewpoint of uniformity and continuity of mixing, it is preferable to use a high-speed rotating continuous mixer or a multi-blade continuous mixing tank as a mixing device, but ordinary stirring tank mixers and static top mixers are also recommended. Can be used. Next, in order to separate the aqueous phase from the assembled resin aggregate via the organic liquid, a known method may be used depending on the shape of the captured resin mixture. however,
The temperature must be in the range of 20-70°C to prevent softening and coalescence of the resin. The resin particles separated in the separation process are then sent to a drying process to remove the organic liquid and attached moisture. In this drying process, widely known drying equipment can be used, but it is necessary to set conditions such that the strength of resin aggregation and coalescence does not impair dispersibility during paste processing. In other words, the temperature of the resin to be dried during the drying process is 70°C or less, preferably 50°C.
Make it as follows. In this way, vinyl chloride resin can be obtained in high yield, and this resin has good fluidity and low scattering, and also has good viscosity characteristics when made into plastisol by conventional methods and thermal stability when made into molded products. It also has excellent physical properties. The method of the invention will now be explained by way of examples. Note that the average particle size of the vinyl chloride resin indicates the particle size at the 50% point in the weight distribution of the resin particles. In addition, the recovery efficiency of granular vinyl chloride resin was calculated using the following formula. Recovery efficiency = Weight of vinyl chloride resin sieved on a wire mesh with a predetermined opening/weight of vinyl chloride resin in the charged vinyl chloride latex x 100 (%) In addition, the sedimentation property and powder property of the resin , sol (resin 50g
and 30 g of di-2-ethylhexyl phthalate in a sieve machine) and the properties of the film will be explained below. Sedimentation property of resin in separated water after passing through a screen After collecting separated water in a glass container and allowing it to stand still,
A case where an almost transparent supernatant liquid is formed within 3 minutes is considered good, and a case where a supernatant liquid is not formed even after 10 minutes is judged poor. Angle of repose Indicates the ease of fluidity of powder; the smaller the value, the better the fluidity. Bulk specific gravity This is the apparent density of the powder, and the larger the value, the better the handling properties. Adhesion After placing the sample on paper and vibrating it horizontally, discard the sample and observe the amount of resin attached to the paper.
The less the better. Viscosity Burtskfield BM type viscometer rotor #4
Values at a sol temperature of 23°C when measured at 6 rpm (on the first day) and when left at 23°C for 7 days (after 7 days). North Finesse This indicates the particle size of the resin particles in the sol, and the larger the number, the finer it is (8 is the finest and 0 is the coarsest). Thermal stability The sol was poured into an aluminum mold and the 190
Changes in color tone after 30 minutes in a hot air atmosphere at ℃ are displayed in 5 levels from A (small change) to E (large change). Film strength The sol was coated on a 2 mm thick glass plate to a thickness of 400μ, heated to gel in a hot air atmosphere at 180°C for 10 minutes, and then formed into a film.JIS K-6301-
75 compliant No. 3 dumbbell, tensile speed 200mm/
Measure the tensile strength at break at min. Example 1 3000 g of an aqueous dispersion of vinyl chloride resin for paste processing (solid content 30% by weight, average particle size 1.2μ),
400g of an aqueous dispersion (solid content 30% by weight) of coarse vinyl chloride resin having an average particle size of 45μ and a
61g of 2-ethylhexyl phthalate was transferred into a container with an inner diameter of 10cm and an internal volume that had numerous stirring blades of 9cm in diameter inside.
Place in a 3.8 cylindrical stainless steel mixer,
After mixing at 1200 rpm for 10 minutes, an aqueous dispersion of a spherical resin composition was obtained. The spherical resin composition was separated from this dispersion using a 60-mesh wire mesh, and the material on the wire mesh was centrifugally dehydrated to obtain 826 g of wet granules. When this was dried in a hot air dryer at 35°C for 12 hours, 603 g of resin (A) was obtained. Example 2 3200 g of an aqueous dispersion of vinyl chloride resin for paste processing (solid content 30% by weight, average particle size 1.2μ),
Coarse vinyl chloride resin powder with average particle size of 26μ
300g and 100g of di-2-ethylhexyl phthalate
Example 1 except that g was mixed at 1000 rpm for 15 minutes.
The experiment was conducted using exactly the same equipment and procedure as in the previous study. The weight of the wet granules obtained was 1170 g, and the weight of the dry resin (B) was 831 g. Comparative Example 1 Using 3400 g of the aqueous dispersion of vinyl chloride resin for paste processing used in Example 1 (solid content 30% by weight) and 61 g of di-2-ethylhexyl phthalate, the same equipment and conditions as in Example 1 were carried out. The experiment was carried out according to the procedure. The weight of the wet granules obtained was 402 g;
The weight of the dry resin (C) was 285 g. Comparative Example 2 Using 2,600 g of the aqueous dispersion of vinyl chloride resin for paste processing used in Example 2 (however, the solid content was adjusted to 15% by weight), 800 g of coarse vinyl chloride resin powder, and 95 g of di-2-ethylhexyl phthalate. The experiment was conducted using exactly the same equipment, conditions, and procedures as in Example 2. The weight of the obtained wet weight is 1060g,
The weight of the dry resin (D) was 785 g. Comparative Example 3 3000 g of the aqueous dispersion of vinyl chloride resin for paste processing used in Example 1 (solid content 30% by weight),
500 g of an aqueous dispersion (solids content 32% by weight) of coarse vinyl chloride resin having an average particle size of 93μ and a
An experiment was conducted using 64 g of 2-ethylhexyl phthalate using the same equipment, conditions, and procedure as in Example 1. The weight of the wet granules obtained was 866 g, and the weight of the dry resin (E) was 632 g. Reference Example 1 The aqueous dispersion of vinyl chloride resin for paste processing used in Example 1 was dried with a spray dryer at an inlet temperature of 160°C and an outlet temperature of 56°C, and pulverized with a tabletop pulverizer to obtain dry resin (F). I got it. The table shows the recovery efficiency and characteristics of resins (A) to (F). 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ペースト加工用塩化ビニル樹脂の水性分散液
に水に難溶であつてかつ該塩化ビニル樹脂を溶解
又は膨潤させない有機液体を添加して混合するこ
とにより、塩化ビニル樹脂を粒状集合体として水
相より分離せしめた後乾燥することによつて、塩
化ビニル樹脂を回収するに際し、ペースト加工用
塩化ビニル樹脂の水性分散液に、平均粒径が10〜
60ミクロンの塩化ビニル樹脂を、全樹脂量中1〜
70重量%となる範囲で添加することを特徴とする
ペースト加工用塩化ビニル樹脂の回収方法。
1. By adding and mixing an organic liquid that is sparingly soluble in water and does not dissolve or swell the vinyl chloride resin into an aqueous dispersion of a vinyl chloride resin for paste processing, the vinyl chloride resin is formed into a granular aggregate in the aqueous phase. When recovering the vinyl chloride resin by separating it further and drying it, the aqueous dispersion of the vinyl chloride resin for paste processing has an average particle size of 10 to
60 micron vinyl chloride resin from 1 to 100% of the total resin amount
A method for recovering vinyl chloride resin for paste processing, characterized in that the amount is added within a range of 70% by weight.
JP22089882A 1982-12-16 1982-12-16 PEESUTOKAKOYOENKABINIRUJUSHINOKAISHUHOHO Expired - Lifetime JPH0248003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22089882A JPH0248003B2 (en) 1982-12-16 1982-12-16 PEESUTOKAKOYOENKABINIRUJUSHINOKAISHUHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22089882A JPH0248003B2 (en) 1982-12-16 1982-12-16 PEESUTOKAKOYOENKABINIRUJUSHINOKAISHUHOHO

Publications (2)

Publication Number Publication Date
JPS59109504A JPS59109504A (en) 1984-06-25
JPH0248003B2 true JPH0248003B2 (en) 1990-10-23

Family

ID=16758256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22089882A Expired - Lifetime JPH0248003B2 (en) 1982-12-16 1982-12-16 PEESUTOKAKOYOENKABINIRUJUSHINOKAISHUHOHO

Country Status (1)

Country Link
JP (1) JPH0248003B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914154A (en) * 1984-08-24 1990-04-03 Wacker-Chemie Gmbh Novel matting agent and its use

Also Published As

Publication number Publication date
JPS59109504A (en) 1984-06-25

Similar Documents

Publication Publication Date Title
US4439385A (en) Continuous process for the agglomeration of PTFE powders in a liquid medium
US3090763A (en) Table iii
JPH0160049B2 (en)
US4097558A (en) Resin blend for making plastisols and organosols
Guo et al. Agitating transformation during vinyl chloride suspension polymerization: aggregation morphology and PVC properties
US4002702A (en) Novel method for manufacturing plastisol resins
US5349049A (en) Method of production of polyvinyl chloride resin for paste processing
JPH0562126B2 (en)
JPH0248003B2 (en) PEESUTOKAKOYOENKABINIRUJUSHINOKAISHUHOHO
JPS60120019A (en) Manufacture of polyvinyl chloride polymer particulate matter
US5231125A (en) Method of preparation of vinyl chloride resin plastisol
JPH0240089B2 (en) ENKABINIRUJUSHINOKAISHUHOHO
JPH0142282B2 (en)
US4119687A (en) Process for the production of powder-form hydrolyzed ethylene/vinyl acetate copolymers
JPH0155647B2 (en)
JPH0124175B2 (en)
US4171428A (en) Method for manufacturing plastisol resins using spray-drying
JPH0378413B2 (en)
JPH0247482B2 (en) NETSUKASOSEIJUSHINOSEIZOHOHO
US3067162A (en) Method of forming uniform-sized plasticized resin granules and resulting product
JPH0432858B2 (en)
JPS5859249A (en) Plastisol for pasting
US5155185A (en) Process for producing dust free polyvinyl chloride resins
JPH01131213A (en) Lumpy polyvinyl chloride resin
JP2773582B2 (en) Plastisol coating method