JPH0247764Y2 - - Google Patents
Info
- Publication number
- JPH0247764Y2 JPH0247764Y2 JP1986062409U JP6240986U JPH0247764Y2 JP H0247764 Y2 JPH0247764 Y2 JP H0247764Y2 JP 1986062409 U JP1986062409 U JP 1986062409U JP 6240986 U JP6240986 U JP 6240986U JP H0247764 Y2 JPH0247764 Y2 JP H0247764Y2
- Authority
- JP
- Japan
- Prior art keywords
- boot
- trough
- slope
- diameter ring
- large diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Sealing Devices (AREA)
- Diaphragms And Bellows (AREA)
Description
【考案の詳細な説明】
<産業上の利用分野>
本考案は、大径リング部と小径リング部との間
が蛇腹部とされ、該蛇腹部は大径から数えて1番
目の山部と大径リング部との間に第1谷部を形成
した構成である高分子弾性体製の機械軸継手用ブ
ーツ(以下「ブーツ」と略す)において、当該谷
部の改良に関する。このようなブーツは、例えば
乗用車の駆動軸と車軸とを連結する等速形の自在
軸継手用に好適なものである。
尚、本明細書において、谷部及び山部には大径
リング部側から数えて番号(第1、第2…)を付
けるものとする。
<従来の技術>
従来の等速形自在継手用ブーツ1は、第4図に
示すように、大径リング部3と小径リング部5と
の間の蛇腹部7における第1山部9と大径リング
部3とは直線連結されている構成であつた。
ところが昨今の乗用車の高速化更には小型車に
おける居住空間の拡大化に伴ない、エンジンルー
ムが狭小化の傾向にある。従つて軸継手部のブー
ツにも第1山部9の周径即ち占有空間(振り回り
性も含めて)の小さなブーツが要求され、大径リ
ング部3と小径リング部5との間の蛇腹部7にお
ける第1山部9と大径リング部3との間へ、第1
谷部11が設けられているタイプのブーツ10が
上市されつつある(第5図、特開昭60−201166号
公報参照)。
このようなブーツ10は、一般山部(1、第
2、3山部9,13,17)や一般谷部(第1、
2、3谷部11,15,19)の径を小さくして
も、蛇腹部7に所定の膜長が取れ、ブーツ小型化
の要求を満足するものとなる。
ところが、第5図のタイプのブーツ10は、第
4図のタイプのブーツ1に比べてグリース漏れ等
につながる損傷が第1山部9に早期に生じるおそ
れがあり、耐久性に問題があることが本考案者ら
の研究により判明した。
第6図の如く、圧縮側において、大径リング部
3の蛇腹部連結側端部4と第2山部13とに第1
山部9が挟まれて押しつぶされてしまい、即ち、
シヤープな折曲状態のつぶれが発生し、第1山部
9の屈曲疲労が促進される為であると考えられ
る。
そこで、かかる第1山部のつぶれを防止するた
めに、例えば第1山部の径を大きくしたものや
(既述の特開昭60−201166号公報参照)、第7図の
如く第1山部の裏面側斜面へ凸部27を形成した
ブーツ20(本願と同時に提出した実願昭61−
62410号(実開昭62−174122号公報)参照)があ
る。
<考案が解決しようとする問題点>
かかるブーツではその耐久性が確かに向上して
いる。そして今度は、第8図の如く、車軸21が
交差運動時、圧縮側において、第1谷部11と車
軸21との間に挟まれて押しつぶされている状態
の第2谷部において損傷が発生し易くなる(第1
表参照)。
そこで、本第1谷部の屈曲疲労を促進させない
ために第1山部の裏面側斜面部に凸部を形成した
特定構成の機械軸継手用ブーツにおいて、上記第
2谷部15への損傷の発生を抑制することによ
り、ブーツの耐久性を更に向上させることを目的
とする。
<問題を解決するための手段>
本発明者らは、かかる目的を達成しようと鋭意
検討を重ねてきたところ、下記のブーツを考案す
るに至つた。
大径リング部と小径リング部との間が蛇腹部と
され、前記蛇腹部は前記大径リング部と、大径側
から数えて一番目の山部との間に第1谷部が位置
し、
ブーツ交差回転運動時、圧縮側において、少く
とも第2谷部と第1谷部は、シヤフトと継手ハウ
ジングに挟まれる作用を受ける高分子弾性体製の
ブーツであつて、
少くとも第1山部の頂部近傍の裏面側斜面に凸
部が形成されている構成の機械軸継手用ブーツに
おいて、
前記第1谷部の少くとも一側の斜面部における
肉厚が、残余の斜面部を含む一般部の肉厚より薄
肉とされている、ことを特徴とする。
<構成の説明>
以下、本考案のブーツの一例を図例に基づいて
説明する。尚従来例(第5図)、比較例(第7図)
のブーツと同一部分には同一の図符号を付し、説
明を省略する。
第1図は本考案に係るブーツ30の半断面図、
第2図は同じく第1谷部11近傍の拡大断面図、
第3図は第1図のブーツ30を機械軸継手へ装着
し交差運動をさせたときのX線透視図である。
このブーツ30は第7図のブーツ20におい
て、第1谷部11の両側斜面部29,31の肉厚
が、一般山部(第1、2、3山部9,13,1
7)及び一般谷部(第2、3谷部15,19)の
それより薄肉に形成されたことを特徴とする。例
えば第2図の如く第1山部9の小径側斜面部33
の肉厚A(他の一般山部及び一般谷部の肉厚も等
しい)を2.3mmとしたとき、第1谷部11の両側
斜面部29,31の肉厚Bを2.0mmとする。両者
の比B/Aは0.95〜0.75の範囲が好ましい。0.95
を越えると下記の効果が得られず、0.75未満であ
るとブーツの剛性に問題が生じ各々好ましくな
い。
また、斜面部29,31を薄肉としたことによ
り、ブーツの、特に第1山部9の、振れ回り性の
低下が危具されるが、第1表の高速振れ回り性試
験の結果の如く、斜面部29,31を薄肉とした
第1図のブーツ30も第7図のブーツ20も、そ
の振れ回り性に差は生じなかつた。
かかる薄肉部位を第1谷部11のどちらか一方
の斜面部のみとしてもよく、また大径側斜面部2
9と小径側斜面部31との薄肉の度合いに差を設
けてもよい。
尚、第1谷部11の底部の肉厚は他の一般部と
同じ肉厚Aとした。底部を薄肉とすると当部位で
交差運動時、座屈変形し屈曲疲労が進行し易いか
らである(第2図参照)。
上記ブーツの成形材料である高分子弾性体とし
ては、NR、NBR、SBR、BR、CR等の合成ゴ
ム、ウレタン系、ビニル系、ポリエステル系、オ
レフイン系等のTPE等を例示できる。
<考案の作用・効果>
以上説明したように、本考案のブーツは、第1
山部の裏面側斜面部に凸部が形成された特定構成
の機械軸継手用ブーツにおいて、第1谷部の斜面
部が薄肉とされた構成であるから、第3図の如
く、機械軸継手が交差運動時の圧縮側において、
第1谷部と車軸とが第2谷部を挟んだ状態となつ
たとき、第2谷部からの反力で第1谷部の薄肉と
された斜面部が屈曲し易くなる。即ち換言すれ
ば、第2谷部に対する第1谷部の面圧が低減され
ることとなる。従つて、圧縮側における第2谷部
の屈曲疲労が低減されるとともに、摩耗の進行も
抑制されることとなる。なお、上記交差運動時の
振れ回り性も、第1谷部の斜面部のみ薄肉とされ
ているため、低下する危具がない。
このようなブーツは、後述する試験結果(第1
表)の如く−第7図のブーツに比べても−耐久性
が向上したものとなる。
<試験結果>
第5図のブーツ10(従来例)、第7図のブー
ツ20(比較例)及び第1図のブーツ30(考案
品)とを、各々駆動軸に対する車軸の交差角度を
40゜として耐久試験をした。結果はブーツ内のグ
リースが漏れ始めた駆動軸の総回転数(回転速度
×時間)で判断し、その結果を第1表の耐久試験
の欄に示す。尚、一般山部及び一般谷部の平均肉
厚は2.3mmである。
第1表の結果から、本考案のブーツは従来品の
略1.5倍の耐久性を有することが判る。
また、試験に使用した本考案に係るブーツが第
1谷部の両斜面部を薄肉とされていることにかん
がみ、駆動軸に対する車軸の交差角度を3゜とし、
駆動軸を上記耐久試験の略8倍の速度で回転させ
たときの第1山部の直径の拡張量を測定した。結
果を第1表の高速振れ回り性試験の欄に示す。第
1表に示した高速振れ回り性試験の結果から、第
1谷部の斜面部(両方のみならず片方でも勿論で
ある)が薄肉となつても、本考案のブーツの振れ
回り性に悪影響が出ないことが判る。
【表】[Detailed description of the invention] <Industrial field of application> In the present invention, a bellows portion is formed between the large diameter ring portion and the small diameter ring portion, and the bellows portion is located at the first ridge counting from the large diameter. The present invention relates to improvements in the trough in a mechanical shaft joint boot (hereinafter abbreviated as "boot") made of an elastic polymer having a first trough formed between the large-diameter ring portion and the first trough. Such a boot is suitable for, for example, a constant velocity universal joint that connects a drive shaft and an axle of a passenger car. In this specification, the troughs and peaks are numbered (first, second, etc.) counting from the large diameter ring part side. <Prior art> As shown in FIG. 4, a conventional boot 1 for a constant velocity universal joint has a first peak 9 on a bellows portion 7 between a large diameter ring portion 3 and a small diameter ring portion 5. The diameter ring portion 3 was configured to be connected in a straight line. However, as passenger cars have become faster and the passenger spaces of smaller cars have become larger, engine compartments have become smaller. Therefore, the boot of the shaft coupling part is also required to have a small circumferential diameter of the first mountain part 9, that is, a small occupied space (including swingability), and a bellows between the large diameter ring part 3 and the small diameter ring part 5 is required. between the first mountain portion 9 and the large diameter ring portion 3 in the portion 7;
Boots 10 of the type provided with troughs 11 are being put on the market (see FIG. 5, Japanese Patent Laid-Open Publication No. 60-201166). Such boots 10 have general peaks (first, second, third peaks 9, 13, 17) and general valleys (first, second, third peaks 9, 13, 17).
Even if the diameters of the second and third troughs 11, 15, 19) are made smaller, the bellows portion 7 can have a predetermined film length, which satisfies the demand for smaller boots. However, in the boot 10 of the type shown in FIG. 5, there is a risk that damage leading to grease leakage etc. may occur earlier in the first mountain part 9 compared to the boot 1 of the type shown in FIG. 4, and there is a problem in durability. was discovered through research by the present inventors. As shown in FIG. 6, on the compression side, a first
The mountain portion 9 is pinched and crushed, that is,
It is thought that this is because a sharp bending collapse occurs and bending fatigue of the first mountain portion 9 is accelerated. Therefore, in order to prevent such crushing of the first mountain part, for example, the diameter of the first mountain part may be increased (see the above-mentioned Japanese Patent Application Laid-Open No. 60-201166), or the first mountain part as shown in FIG. Boots 20 in which a convex portion 27 is formed on the slope of the back surface of the boot (Utility Application filed in 1983-
No. 62410 (see Utility Model Application Publication No. 62-174122)). <Problems to be solved by the invention> The durability of such boots is certainly improved. Then, as shown in FIG. 8, when the axle 21 crosses, damage occurs on the compression side at the second trough that is pinched and crushed between the first trough 11 and the axle 21. (1st
(see table). Therefore, in a boot for a mechanical shaft joint having a specific configuration in which a convex portion is formed on the back slope portion of the first peak portion in order to prevent the bending fatigue of the first valley portion from accelerating, damage to the second valley portion 15 is prevented. The purpose is to further improve the durability of boots by suppressing the occurrence of such problems. <Means for Solving the Problem> The inventors of the present invention have made extensive studies to achieve the above object, and have come up with the following boots. The space between the large diameter ring part and the small diameter ring part is a bellows part, and the bellows part has a first valley part located between the large diameter ring part and the first peak part counted from the large diameter side. , at least the second trough portion and the first trough portion on the compression side are made of a polymeric elastic material and are subjected to the action of being sandwiched between the shaft and the joint housing during the cross-rotation movement of the boot, and at least the first trough portion is In the boot for a mechanical shaft joint having a configuration in which a convex portion is formed on the slope on the back side near the top of the part, the wall thickness of the slope part on at least one side of the first valley part is approximately the same as that of the remaining slope part. It is characterized by having a thinner wall than the other parts. <Description of Configuration> Hereinafter, an example of the boot of the present invention will be described based on the drawings. Conventional example (Fig. 5), comparative example (Fig. 7)
The same parts as in the boots are given the same reference numerals, and their explanation will be omitted. FIG. 1 is a half-sectional view of a boot 30 according to the present invention,
FIG. 2 is an enlarged sectional view of the vicinity of the first trough 11,
FIG. 3 is an X-ray perspective view when the boot 30 shown in FIG. 1 is attached to a mechanical shaft joint and subjected to cross movement. This boot 30 is different from the boot 20 shown in FIG.
7) and the general valley portions (second and third valley portions 15, 19). For example, as shown in FIG.
When the wall thickness A (the wall thicknesses of the other general peaks and general valleys are also the same) is 2.3 mm, the wall thickness B of the slope portions 29 and 31 on both sides of the first valley portion 11 is 2.0 mm. The ratio B/A between the two is preferably in the range of 0.95 to 0.75. 0.95
If it exceeds 0.75, the following effects will not be obtained, and if it is less than 0.75, problems will arise in the rigidity of the boot, which is not preferable. Furthermore, by making the slope parts 29 and 31 thinner, there is a danger that the swinging performance of the boot, especially the first mountain part 9, will be reduced; There was no difference in the swingability between the boot 30 of FIG. 1 and the boot 20 of FIG. 7, in which the slope portions 29 and 31 were made thinner. Such a thin wall portion may be provided only at one slope portion of the first valley portion 11, or the large diameter side slope portion 2
9 and the small diameter side slope portion 31 may have different degrees of thinness. The thickness of the bottom of the first valley portion 11 was set to the same thickness A as the other general portions. This is because if the bottom part is made thin, buckling deformation occurs at this part during cross motion, and bending fatigue tends to progress (see Fig. 2). Examples of the polymeric elastomer that is the molding material for the boots include synthetic rubbers such as NR, NBR, SBR, BR, and CR, TPEs such as urethane-based, vinyl-based, polyester-based, and olefin-based. <Functions and effects of the invention> As explained above, the boots of the invention have the first
In a boot for a mechanical shaft joint having a specific configuration in which a convex portion is formed on the slope portion on the back side of the mountain portion, since the slope portion of the first valley portion is configured to be thin, the mechanical shaft joint as shown in FIG. On the compression side during cross motion,
When the first trough and the axle sandwich the second trough, the thin sloped surface of the first trough becomes easier to bend due to the reaction force from the second trough. In other words, the surface pressure of the first valley with respect to the second valley is reduced. Therefore, the bending fatigue of the second valley portion on the compression side is reduced, and the progress of wear is also suppressed. In addition, since only the slope portion of the first valley portion is made thin, there is no danger that the swinging ability during the above-mentioned cross motion will deteriorate. Such boots were tested according to the test results (first
As shown in Table 1, the durability is improved compared to the boots shown in Figure 7. <Test Results> The boot 10 shown in Fig. 5 (conventional example), the boot 20 shown in Fig. 7 (comparative example), and the boot 30 shown in Fig.
Durability tests were conducted at 40°. The results were determined based on the total number of rotations (rotational speed x time) of the drive shaft at which the grease in the boot began to leak, and the results are shown in the durability test column of Table 1. Note that the average wall thickness of the general peaks and general valleys is 2.3 mm. From the results in Table 1, it can be seen that the boots of the present invention have approximately 1.5 times the durability of conventional products. In addition, considering that the boot according to the present invention used in the test has thin walls on both slopes of the first valley, the intersection angle of the axle with the drive shaft is set to 3 degrees,
The amount of expansion in the diameter of the first peak was measured when the drive shaft was rotated at a speed approximately eight times faster than in the above durability test. The results are shown in the column of high-speed whirlability test in Table 1. From the results of the high-speed swivel test shown in Table 1, even if the slope part of the first valley (not only both but also one) is thin, it has a negative effect on the swivel performance of the boots of the present invention. It turns out that it does not appear. 【table】
図は機械軸継手用ブーツを示し、第1図は本考
案のブーツの一例を示す半断面図、第2図は同じ
く第1谷部近傍の拡大断面図、第3図は駆動軸交
差運動時の第1図のブーツのX線透視図であり、
第4図は従来における第1山部が大径リング部
に直結しているタイプのブーツの装着状態半断面
図、第5図は従来における第1山部と大径リング
部の間に第1谷部が形成されているタイプのブー
ツの半断面図、第6図は駆動軸交差運動時の第5
図のブーツのX線透視図であり、
第7図は本願出願人による改良品であるブーツ
の半断面図、第8図は駆動軸交差運動時の第7図
のブーツのX線透視図である。
3……大径リング部、5……小径リング部、7
……蛇腹部、9……第1山部、11……第1谷
部、15……第2谷部、30……(機械軸継手
用)ブーツ。
The figure shows a boot for a mechanical shaft coupling, Fig. 1 is a half-sectional view showing an example of the boot of the present invention, Fig. 2 is an enlarged sectional view of the vicinity of the first valley, and Fig. 3 is a cross-sectional view of the drive shaft. FIG. 4 is a half-sectional view of the conventional boot in which the first peak is directly connected to the large diameter ring, and FIG. 5 is a half-sectional view of the conventional boot shown in FIG. A half-sectional view of a type of boot in which a first trough is formed between the first peak and the large-diameter ring.
FIG. 7 is a half-sectional view of the boot which is an improved product by the applicant, and FIG. 8 is an X-ray perspective view of the boot of FIG. 7 during movement across the drive shaft. be. 3...Large diameter ring part, 5...Small diameter ring part, 7
... Bellows section, 9 ... First peak, 11 ... First valley, 15 ... Second valley, 30 ... (For mechanical shaft coupling) Boot.
Claims (1)
され、前記蛇腹部は前記大径リング部と、大径側
から数えて一番目の山部との間に第1谷部が位置
し、 ブーツ交差回転運動時、圧縮側において、少く
とも第2谷部と第1谷部は、シヤフトと継手ハウ
ジングに挟まれる作用を受ける高分子弾性体製の
ブーツであつて、 少くとも第1山部の頂部近傍の裏面側斜面に凸
部が形成されている構成の機械軸継手用ブーツに
おいて、 前記第1谷部の少くとも一側の斜面部における
肉厚が、残余の斜面部を含む一般部の肉厚より薄
肉とされている、 ことを特徴とする機械軸継手用ブーツ。[Scope of Claim for Utility Model Registration] A bellows portion is defined between the large diameter ring portion and the small diameter ring portion, and the bellows portion is between the large diameter ring portion and the first ridge counted from the large diameter side. The first trough is located in the boot, and at least the second trough and the first trough are sandwiched between the shaft and the joint housing on the compression side during the boot cross-rotation movement. In the boot for a mechanical shaft coupling having a configuration in which a convex portion is formed on the slope on the back side near the top of the first ridge, the wall thickness of the slope on at least one side of the first trough is A boot for a mechanical shaft coupling, characterized in that the wall thickness is thinner than that of the general part including the remaining slope part.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1986062409U JPH0247764Y2 (en) | 1986-04-24 | 1986-04-24 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1986062409U JPH0247764Y2 (en) | 1986-04-24 | 1986-04-24 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS62174121U JPS62174121U (en) | 1987-11-05 |
| JPH0247764Y2 true JPH0247764Y2 (en) | 1990-12-14 |
Family
ID=30896656
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1986062409U Expired JPH0247764Y2 (en) | 1986-04-24 | 1986-04-24 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0247764Y2 (en) |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5512003Y2 (en) * | 1971-11-29 | 1980-03-15 | ||
| JPS5918200U (en) * | 1982-07-26 | 1984-02-03 | 三菱電機株式会社 | Missile receiver |
-
1986
- 1986-04-24 JP JP1986062409U patent/JPH0247764Y2/ja not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| JPS62174121U (en) | 1987-11-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4278262A (en) | Rubber boot for use in universal joint | |
| US8313107B2 (en) | Rolling boot with transition region | |
| JPH0337052B2 (en) | ||
| JPS61236925A (en) | Mechanical shaft coupling boot | |
| JP5666092B2 (en) | Constant velocity universal joint boot and constant velocity universal joint | |
| JPH0247764Y2 (en) | ||
| JPH071531Y2 (en) | Flexible boots for constant velocity joints | |
| US6715771B2 (en) | Boot for constant velocity universal joint | |
| US4693484A (en) | Boot for universal joint | |
| JPH0619861Y2 (en) | Machine shaft coupling boots | |
| US20090166987A1 (en) | Boot for Constant Velocity Universal Joint | |
| JP3644584B2 (en) | Constant velocity joint boots | |
| JPH0247765Y2 (en) | ||
| JPH0341150Y2 (en) | ||
| US7513507B2 (en) | Flexible boot for constant velocity universal joint | |
| JPH0736184Y2 (en) | Constant velocity universal joint | |
| JP2015132334A (en) | Boot for constant velocity universal joint | |
| JPH0716072U (en) | boots | |
| JP2533994Y2 (en) | Boot for mechanical shaft coupling | |
| JPS6011778A (en) | Flexible boot | |
| JP4339144B2 (en) | Fixed type constant velocity universal joint | |
| JP2014043891A (en) | Resin boot for constant velocity joint | |
| JPH0328189Y2 (en) | ||
| JP5188897B2 (en) | Constant velocity universal joint boot and constant velocity universal joint | |
| JP3624345B2 (en) | Wide angle joint boot and universal joint device made of polyester resin |