JPH0247338B2 - - Google Patents

Info

Publication number
JPH0247338B2
JPH0247338B2 JP57072620A JP7262082A JPH0247338B2 JP H0247338 B2 JPH0247338 B2 JP H0247338B2 JP 57072620 A JP57072620 A JP 57072620A JP 7262082 A JP7262082 A JP 7262082A JP H0247338 B2 JPH0247338 B2 JP H0247338B2
Authority
JP
Japan
Prior art keywords
stabilizer
die
bubble
diameter
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57072620A
Other languages
Japanese (ja)
Other versions
JPS58188626A (en
Inventor
Masayoshi Shirakawa
Takashi Kobayashi
Masao Akasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP57072620A priority Critical patent/JPS58188626A/en
Publication of JPS58188626A publication Critical patent/JPS58188626A/en
Publication of JPH0247338B2 publication Critical patent/JPH0247338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • B29C48/902Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 本発明は空冷インフレーシヨン法により、管状
フイルムを成形する方法、より詳しくは、管状フ
イルムを成形する際に、成形機の運転を中断する
ことなく、継続したまゝで、バブルのくびれ部の
径の変化に応じて、該成形機の円筒形安定体の最
大外径を伸縮することにより、安定した操業を維
持する方法、及びそれに使用される円筒形安定体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for forming a tubular film by an air-cooled inflation method, and more specifically, a method for forming a tubular film by continuing the operation of a forming machine without interrupting the operation of the forming machine. The present invention relates to a method for maintaining stable operation by expanding and contracting the maximum outer diameter of a cylindrical stabilizer of the molding machine according to changes in the diameter of the constriction of a bubble, and a cylindrical stabilizer used therein. It is something.

従来、ポリエチレンなどのポリオレフイン系合
成樹脂を空冷インフレーシヨン法により、成形ダ
イスから管状に溶融押出し、空気で冷却しつつダ
イスの環状リツプとほゞ同形に保ちつつ引き取
り、ついで環状リツプの口径より大きく膨張さ
せ、樹脂バブルをロート状に成形して、フイルム
を製造する方法は、縦横両方向の機械的強度のバ
ランスが良く、衝撃強度のすぐれたものが得られ
るという点で、広く用いられている。しかしなが
ら、この成形方法において、管状フイルムを成形
すると、樹脂バブルが揺れ動きがちで、そのため
得られた管状フイルムに、偏肉、しわ、又はたる
みが生じ、かつ、管状フイルムの折り径が不均一
になるという欠点があつた。かかる欠点を、解決
する方法として、ダイスの環状リツプの口径と、
ほゞ同一の外径を有する円筒形安定体を設置し、
ダイスから押出された膨張開始前の溶融状態脂バ
ブルを安定体の側壁外面に沿わせ、樹脂バブルの
揺れを防止するという手段が採用されている。
Conventionally, polyolefin synthetic resin such as polyethylene is melt-extruded from a molding die into a tubular shape using the air-cooled inflation method, cooled with air, and taken out while maintaining the same shape as the annular lip of the die. The method of manufacturing a film by expanding and molding a resin bubble into a funnel shape is widely used because it provides a film with good balance of mechanical strength in both vertical and horizontal directions and excellent impact strength. However, when a tubular film is formed using this forming method, the resin bubbles tend to oscillate, resulting in uneven thickness, wrinkles, or sag in the resulting tubular film, and the folded diameter of the tubular film becomes uneven. There was a drawback. As a way to solve this drawback, the diameter of the annular lip of the die,
A cylindrical stabilizer with approximately the same outer diameter is installed,
A method is adopted in which the molten resin bubbles extruded from the die and before the start of expansion are made to follow the outer surface of the side wall of the stabilizer to prevent the resin bubbles from shaking.

バブルのくびれ部の径を決定する要因は、フイ
ルムの折り径、フイルムの厚み、ダイスの形状、
フイルムの引取速度、溶融樹脂の温度、さらに樹
脂の物性などが考えられる。そこで、要求される
フイルムの折り径および厚みに応じて安定体の形
状もその都度、変更されねばならないが、従来は
一旦運転操作を中断し別個の安定体に交換する方
法をとつていた。そのために操作上の手間がかゝ
り、多量の製品のロスが避けられなかつた。
The factors that determine the diameter of the bubble neck are the folding diameter of the film, the thickness of the film, the shape of the die,
Possible factors include the film take-up speed, the temperature of the molten resin, and the physical properties of the resin. Therefore, the shape of the stabilizer must be changed each time depending on the required folding diameter and thickness of the film, but conventionally the method was to temporarily stop the operation and replace it with a separate stabilizer. This required a lot of operational effort and unavoidable loss of a large amount of product.

本発明は、上述の欠点を克服し、運転を中断す
ることなく、バブルのくびれ部の径に応じて、円
筒形安定体の最大外径を随時、伸縮させ、縦横の
強度のバランスのとれたフイルムを高速度で生産
できるインフレーシヨンフイルム成形法を提供す
ることを目的とする。
The present invention overcomes the above-mentioned drawbacks, expands and contracts the maximum outer diameter of the cylindrical stabilizer at any time according to the diameter of the neck of the bubble without interrupting operation, and achieves a balanced vertical and horizontal strength. The purpose of the present invention is to provide an inflation film forming method that can produce films at high speed.

すなわち本発明の方法は、合成樹脂を使用して
フイルムを成形するに当り、伸縮自在な円筒形安
定体が、気密構造であつて、その中心軸がインフ
レーシヨンダイスと同軸になるように固定され、
かつ、その軸にそつて設置された空気注入口を通
じて、安定体内部の空気圧を加減することによ
り、安定体の最大外径が可変であるような構造を
もつように施工されているものを使用することが
特徴である。
That is, in the method of the present invention, when molding a film using synthetic resin, an expandable cylindrical stabilizer has an airtight structure and is fixed so that its central axis is coaxial with the inflation die. is,
Also, use a structure that allows the maximum outer diameter of the stabilizer to be varied by adjusting the air pressure inside the stabilizer through an air inlet installed along its axis. It is characterized by

さらに樹脂バブルと円筒形安定体の側壁外周部
と、バブルとの直接接触を避けるため、円筒形安
定体の側壁外周部が、コイルパネを円周に沿つ
て、多段にわたつて巻きつけられるように施工さ
れ、バブルの引取り支障のないように工夫されて
いることが第二の特徴である。
Furthermore, in order to avoid direct contact between the resin bubble and the outer periphery of the side wall of the cylindrical stabilizer, the outer periphery of the side wall of the cylindrical stabilizer is wrapped around the coil panel in multiple stages along the circumference. The second feature is that it has been constructed in such a way that there is no problem with the removal of bubbles.

次に図面に従つて、本発明を具体的に説明す
る。
Next, the present invention will be specifically explained with reference to the drawings.

第1図において、押出機1から押し出された溶
融樹脂をインフレーシヨンダイス2からダイスリ
ツプ2aを通つて管状に押し出し、空冷リング3
で側面から冷却するとともに、ブローアツプ用空
気供給管9より、空気を吹き込んで、バブル5を
膨張させる。このときバブル5のくびれ部4が接
触するように円筒形安定体7の最大外径を、円筒
形安定体用空気供給管8から供給する空気圧によ
り、伸縮させ、接触面積を調整しながら、バブル
5の揺れを防ぎ、安定した操業を維持する。
In FIG. 1, the molten resin extruded from an extruder 1 is extruded from an inflation die 2 into a tube shape through a die lip 2a, and an air cooling ring 3
While cooling from the side, air is blown from the blow-up air supply pipe 9 to expand the bubble 5. At this time, the maximum outer diameter of the cylindrical stabilizer 7 is expanded or contracted by the air pressure supplied from the air supply pipe 8 for the cylindrical stabilizer so that the constriction 4 of the bubble 5 comes into contact with the bubble 5 while adjusting the contact area. 5 to prevent shaking and maintain stable operations.

第2図において、円筒形安定体7は成形時の溶
融樹脂の温度に耐えうる材質から成つており、例
えば耐熱温度が230℃近辺の合成ゴムなどが適当
である。また、円筒形安定体7は半径方向に、一
様伸縮が可能であり、それは、内部の空気圧によ
つて自由に最大の外径を選ぶことができる。
In FIG. 2, the cylindrical stabilizer 7 is made of a material that can withstand the temperature of the molten resin during molding, and is suitably made of, for example, synthetic rubber, which has a heat resistance temperature of around 230°C. Further, the cylindrical stabilizer 7 can be uniformly expanded and contracted in the radial direction, and its maximum outer diameter can be freely selected depending on the internal air pressure.

第3図および第4図は、いずれもコイルバネを
示すものであつて、巻きつけるべき円筒体安定体
7の側壁外周部は、このバネが取付けられやすい
ようにかつ、外れにくいように溝が掘つてある。
コイルバネ10の寸法はそれぞれの目的に応じて
選択することが可能である。
3 and 4 both show coil springs, and the outer periphery of the side wall of the cylindrical body stabilizer 7 to be wound is grooved so that the spring can be easily attached and difficult to come off. It is attached.
The dimensions of the coil spring 10 can be selected depending on the purpose.

第5図において、円筒形安定体7の中心軸に沿
つて、安定体本体を垂直に固定し、かつ、安定体
内部に空気を供給するためのホルダー管6が貫通
している。このホルダー管6は、工作施工の容易
なようにその径を選べばよいので、特に制限はな
い。このホルダー管6は円筒形安定体用空気供給
管8に接続されている。安定体の最大外径は、安
定用調節弁13で加減しつつ、空気注入口11を
通して送入される空気圧によつて伸縮される。
In FIG. 5, a holder tube 6 passes through the cylindrical stabilizer 7 along its central axis to vertically fix the stabilizer body and to supply air into the stabilizer. There are no particular limitations on the diameter of the holder tube 6, as the diameter may be selected to facilitate construction. This holder tube 6 is connected to an air supply tube 8 for the cylindrical stabilizer. The maximum outer diameter of the stabilizer is adjusted by a stabilizing control valve 13 and expanded or contracted by air pressure fed through an air inlet 11.

バブルの膨張はブローアツプ用空気供給管9を
通し、ブローアツプ用調節弁12によつて調節さ
れる空気によつて行われる。空冷リング3は、バ
ブル5の周辺から上向きに、一様に空気が流出す
るように設置されている。ここで、バブルの膨張
のためのブローアツプ用空気、安定体伸縮のため
の空気、およびバブル冷却用の空気はそれぞれ供
給源を異にし、相互に独立に調整することができ
るのが特徴である。
The expansion of the bubble is carried out by air passed through a blow-up air supply pipe 9 and regulated by a blow-up control valve 12. The air cooling ring 3 is installed so that air uniformly flows upward from the periphery of the bubble 5. Here, the blow-up air for expanding the bubble, the air for expanding and contracting the stabilizer, and the air for bubble cooling are each supplied from different sources, and are characterized in that they can be adjusted independently of each other.

本発明の方法および装置を用いて、インフレー
シヨンフイルムの成形が行うことのできる樹脂に
はポリオレフイン樹脂、すなわち低密度、高密度
のポリエチレンあるいはポリプロピレン等があげ
られる。しかも、最高引取り速度80m/secでも
操作は極めて安定している。
Examples of resins that can be used to form blown films using the method and apparatus of the present invention include polyolefin resins, such as low density and high density polyethylene or polypropylene. Moreover, the operation is extremely stable even at a maximum take-up speed of 80 m/sec.

以下に、実施例を列挙し、本発明のより具体的
実施態様を説明する。
Examples are listed below to explain more specific embodiments of the present invention.

実施例 1 メルトフローレート0.05(JIS K6760、試験温
度190℃、試験荷重2.16Kg)の高密度ポリエチレ
ン(日産ポリエチレン〔登録商標〕3001)を、シ
リンダー内径50mmの(株)プラコー製押出機を用い、
その押出機の先端を取付けたダイスリツプ内径75
mm、リツプクリアランス1.0mmのスパイラル型ダ
イスから上方に向け、樹脂温度215℃、押出し量
25Kg/hにて溶融押出した。ダイスには、その中
心軸に同心させて、直径60mm、長さ300mmの合成
ゴム製の円筒形安定体を、ダイスの上面から安定
体底面までの間隔が250mmなるように固定した。
かつ、該安定体の周囲には下記のコイルバネを取
付けた。
Example 1 High-density polyethylene (Nissan Polyethylene (registered trademark) 3001) with a melt flow rate of 0.05 (JIS K6760, test temperature 190°C, test load 2.16 kg) was processed using an extruder made by Plako Co., Ltd. with a cylinder inner diameter of 50 mm.
The die slip with the tip of the extruder attached has an inner diameter of 75
mm, upward from a spiral die with a lip clearance of 1.0 mm, resin temperature 215℃, extrusion amount
It was melt extruded at 25 kg/h. A cylindrical stabilizer made of synthetic rubber with a diameter of 60 mm and a length of 300 mm was fixed to the die concentrically with its central axis such that the distance from the top surface of the die to the bottom surface of the stabilizer was 250 mm.
Additionally, the following coil spring was attached around the stabilizer.

バネのコイル外径 7mm コイルの線径 1mm コイルのピツチ 2mm 安定体側壁の段間隔 10mm 段 数 28段 ブローアツプ用空気量と冷却空気量を調節し
て、くびれ部の位置がダイス上面から約400mmの
点に発生するように調整し、第1図に示す形状の
バブルを形成した。バブルは円筒形安定体に接触
し、揺れることなく、厚さ1.5μm、折り径450mm
のフイルムを、引取り速度36m/minで運転し
た。その際に得られた管状フイルムのダート衝撃
強度(ASTM D1709)は246gであつた。
Spring coil outer diameter 7 mm Coil wire diameter 1 mm Coil pitch 2 mm Stabilizer side wall step spacing 10 mm Number of steps 28 steps Adjust the blow-up air amount and cooling air amount so that the constriction position is approximately 400 mm from the top of the die. Adjustments were made so that the bubbles were generated at points, and bubbles having the shape shown in FIG. 1 were formed. The bubble is in contact with a cylindrical stabilizer, without shaking, with a thickness of 1.5 μm and a fold diameter of 450 mm.
The film was operated at a take-up speed of 36 m/min. The dart impact strength (ASTM D1709) of the tubular film obtained was 246 g.

実施例 2 実施例1の成形に引続き、操業の途中で成形を
中断せずに、フイルムの製品のサイズを厚さ20μ
m、折り径450mmに変更したところ、くびれ部の
径が、円筒形安定体の径よりも大きくなつたの
で、バブルが安定体に接触せず、成形が不安定と
なり、製品が得られなかつた。そこで、円筒形安
定体の内部空気圧を上げて、安定体の最大外径を
70mmに変更したところ、くびれ部が安定体に都合
よく接触し、操業をそのまゝ継続することができ
た。得られた管状フイルムのダート衝撃強度は
257gであつた。
Example 2 Following the molding in Example 1, the size of the film product was reduced to a thickness of 20μ without interrupting the molding in the middle of the operation.
When changing the fold diameter to 450 mm, the diameter of the constriction became larger than the diameter of the cylindrical stabilizer, so the bubbles did not come into contact with the stabilizer, making the molding unstable and making it impossible to obtain a product. . Therefore, the internal air pressure of the cylindrical stabilizer was increased to increase the maximum outer diameter of the stabilizer.
When the diameter was changed to 70 mm, the constriction was able to conveniently contact the stabilizer and the operation could be continued. The dart impact strength of the obtained tubular film is
It weighed 257g.

実施例 3 実施例2の成形に引続き、操業の途中で成形を
中断せずにフイルムの製品サイズを厚さ20μm、
折り径500mmに変更したところ、成形が不安定と
なり、製品が得られなかつた。
Example 3 Following the molding in Example 2, the product size of the film was changed to 20 μm in thickness without interrupting the molding in the middle of the operation.
When the folding diameter was changed to 500 mm, the molding became unstable and the product could not be obtained.

そこで円筒形安定体の内部空気圧を上げて安定
体の最大外径を78mmに変更したところ、くびれ部
が安定体に都合よく接触し操業をそのまま継続す
ることができた。得られた管状フイルムのダート
衝撃強度は282gであつた。
Therefore, by increasing the internal air pressure of the cylindrical stabilizer and changing the maximum outer diameter of the stabilizer to 78 mm, the constriction was able to conveniently contact the stabilizer, allowing operation to continue as is. The dart impact strength of the resulting tubular film was 282 g.

比較例 円筒形安定体の本体がフエルト製で外径が70mm
であること以外は、すべて上記実施例と同じ条件
下で次の3種のフイルムを成形した。
Comparative example: The main body of the cylindrical stabilizer is made of felt and the outer diameter is 70 mm.
The following three types of films were molded under the same conditions as in the above examples except that:

フイルム厚さ(μm) 折り径(mm) (イ) 20 500 (ロ) 20 450 (ハ) 15 450 (イ)の場合はバブルのくびれ部が円筒形安定体に
接触せず折り径が変動して製品は得れなかつた。
(ロ)の場合は操業は良好で、実施例2と同様な製品
が得られ、ダート衝撃強度は253gであつた。(ハ)
の場合は操業は可能であるが、得られたフイルム
のダート衝撃強度は132gで、実施例3に比較し
て著しく強度が低下した。
Film thickness (μm) Fold diameter (mm) (A) 20 500 (B) 20 450 (C) 15 450 In the case of (A), the neck of the bubble does not contact the cylindrical stabilizer and the fold diameter changes. I couldn't get the product.
In the case of (b), the operation was good and a product similar to that of Example 2 was obtained, with a dart impact strength of 253 g. (c)
Although operation was possible in the case of Example 3, the dart impact strength of the obtained film was 132 g, which was significantly lower than that of Example 3.

以上のごとく、バブルの安定性を維持しつつ製
品フイルムの強度を高めるには、それぞれの製品
サイズに適した円筒形安定体を選ばねばならな
い。しかし本発明の方法及び装置によれば、操業
を一切中断することがなく、単に空気供給管の調
節弁の操作だけで安定体のくびれ部の最大径を伸
縮できるので、何ら製品のロスがなく、良質の製
品を安定して生産しうることがわかる。
As described above, in order to increase the strength of the product film while maintaining the stability of the bubble, it is necessary to select a cylindrical stabilizer suitable for each product size. However, according to the method and apparatus of the present invention, the maximum diameter of the constriction of the stabilizer can be expanded or contracted simply by operating the control valve of the air supply pipe without interrupting the operation at all, so there is no product loss. It can be seen that high-quality products can be stably produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空冷インフレーシヨンフイルム成形法
の説明図を表わし、第2図は本発明の円筒形安定
体の外観図を表わし、第3図はスプリングコイル
の平面図を表わし、第4図は上記第3図のイ−イ
方向の断面図を表わし、第5図はインフレーシヨ
ンダイスと円筒形安定体を含む成形機の模式断面
図を表わす。 1……押出機、2……インフレーシヨンダイ
ス、2a……ダイスリツプ、3……空冷リング、
4……バブルのくびれ部、5……バブル、6……
ホルダー管、7……円筒形安定体、8……円筒形
安定体用空気供給管、9……ブローアツプ用空気
供給管、10……コイルバネ、11……空気注入
口、12……ブローアツプ用調節弁、13……安
定体用調節弁。
FIG. 1 shows an explanatory diagram of the air-cooled inflation film forming method, FIG. 2 shows an external view of the cylindrical stabilizer of the present invention, FIG. 3 shows a plan view of the spring coil, and FIG. This is a cross-sectional view taken in the A--A direction of FIG. 3, and FIG. 5 is a schematic cross-sectional view of a molding machine including an inflation die and a cylindrical stabilizer. 1... Extruder, 2... Inflation die, 2a... Die slip, 3... Air cooling ring,
4...Neck of bubble, 5...Bubble, 6...
Holder pipe, 7... Cylindrical stabilizer, 8... Air supply pipe for cylindrical stabilizer, 9... Air supply pipe for blow-up, 10... Coil spring, 11... Air inlet, 12... Adjustment for blow-up Valve, 13...Control valve for stabilizer.

Claims (1)

【特許請求の範囲】 1 合成樹脂を使用してインフレーシヨンフイル
ムを成形するに当たり、ダイスの中心上部に取り
つけられ、気密構造を有し、その外径を内部空気
圧によつて調整された伸縮自在な円筒形安定体の
側壁外周部の円周に沿つて多段に巻き付けられて
いるコイルバネの外周に沿つてインフレーシヨン
ダイスから押し出されたバブルのくびれ部を接触
せしめ、膨張させながら引き取ることを特徴とす
る、インフレーシヨンフイルム成形法。 2 伸縮自在な円筒形安定体が、その中心軸がイ
ンフレーシヨンダイスと同軸となるように固定さ
れ、かつその軸に沿つて設置された空気注入口を
通じて、安定体内部の空気圧を加減することによ
り、その最大外径が可変であるような構造を有し
ていることを特徴とする特許請求の範囲第1項記
載の方法。
[Claims] 1. When molding a blown film using synthetic resin, a telescopic device is attached to the upper center of a die, has an airtight structure, and has an outer diameter adjusted by internal air pressure. The narrow part of the bubble extruded from an inflation die is brought into contact with the outer periphery of a coil spring that is wound in multiple stages along the circumference of the side wall of a cylindrical stable body, and the bubble is taken out while being expanded. Inflation film molding method. 2. A telescopic cylindrical stabilizer is fixed so that its central axis is coaxial with the inflation die, and the air pressure inside the stabilizer is adjusted through an air inlet installed along the axis. The method according to claim 1, characterized in that the method has a structure such that its maximum outer diameter is variable.
JP57072620A 1982-04-30 1982-04-30 Forming of inflatable film Granted JPS58188626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57072620A JPS58188626A (en) 1982-04-30 1982-04-30 Forming of inflatable film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57072620A JPS58188626A (en) 1982-04-30 1982-04-30 Forming of inflatable film

Publications (2)

Publication Number Publication Date
JPS58188626A JPS58188626A (en) 1983-11-04
JPH0247338B2 true JPH0247338B2 (en) 1990-10-19

Family

ID=13494603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57072620A Granted JPS58188626A (en) 1982-04-30 1982-04-30 Forming of inflatable film

Country Status (1)

Country Link
JP (1) JPS58188626A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784597A (en) * 1985-08-10 1988-11-15 Super Bag Company, Ltd. Apparatus for producing blown film
DE3815415A1 (en) * 1988-05-06 1989-11-16 Kiefel Gmbh Paul HIGH-PERFORMANCE COOLING METHOD AND DEVICE FOR THE PRODUCTION OF BI-ORIENTED FILMS FROM HIGH AND MEDIUM MOLAR THERMOPLASTICS
CN101107115B (en) 2005-01-18 2011-09-14 住友电木株式会社 Mandrel and apparatus and process for resin film production with mandrel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529224A (en) * 1975-07-11 1977-01-24 Honda Motor Co Ltd Vehicle wheel suspension arrangement
JPS53101060A (en) * 1977-02-17 1978-09-04 Idemitsu Petrochemical Co Stable bubble containing resin
JPS55158935A (en) * 1979-05-28 1980-12-10 Idemitsu Petrochem Co Ltd Resin bubble stabilizer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721696Y2 (en) * 1979-05-28 1982-05-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529224A (en) * 1975-07-11 1977-01-24 Honda Motor Co Ltd Vehicle wheel suspension arrangement
JPS53101060A (en) * 1977-02-17 1978-09-04 Idemitsu Petrochemical Co Stable bubble containing resin
JPS55158935A (en) * 1979-05-28 1980-12-10 Idemitsu Petrochem Co Ltd Resin bubble stabilizer

Also Published As

Publication number Publication date
JPS58188626A (en) 1983-11-04

Similar Documents

Publication Publication Date Title
US4606879A (en) High stalk blown film extrusion apparatus and method
US4479766A (en) Apparatus for the production of plastic film
US4749346A (en) Apparatus for the production of plastic film
JPS60229733A (en) Inflating method
JPS5881128A (en) Manufacture of inflation film and apparatus therefor
US4174932A (en) Apparatus for extruding tubular thermoplastic film
JPH0247338B2 (en)
US4204819A (en) Shaping apparatus for tubular film
JPH0147286B2 (en)
JPH0247339B2 (en)
KR820001881B1 (en) Moulding process for pipe films
JPS5933094B2 (en) Molding method of tubular film
JPS5913967B2 (en) Molding method of tubular film
JPS6334119A (en) Manufacture of tubular film
JPH0154182B2 (en)
GB1568491A (en) Method and apparatus for the production of tubular film
JPS62149418A (en) Molding of inflation blown film
CA1099467A (en) Method and apparatus for shaping of tubular film
JPS6351124A (en) Method and device for manufacturing plastic film
JPS5850172B2 (en) Method for manufacturing tubular film
JPH0551452B2 (en)
JPH05301285A (en) Manufacture of inflation film made of high-density polyethylene resin
JPS6194740A (en) Chamber for producing inflation film
JPS61239932A (en) High discharge amount film molding method
JPH0513550Y2 (en)