JPH0247267Y2 - - Google Patents

Info

Publication number
JPH0247267Y2
JPH0247267Y2 JP1984059410U JP5941084U JPH0247267Y2 JP H0247267 Y2 JPH0247267 Y2 JP H0247267Y2 JP 1984059410 U JP1984059410 U JP 1984059410U JP 5941084 U JP5941084 U JP 5941084U JP H0247267 Y2 JPH0247267 Y2 JP H0247267Y2
Authority
JP
Japan
Prior art keywords
seal ring
liquid
shaft
liquid chamber
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984059410U
Other languages
Japanese (ja)
Other versions
JPS60185076U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5941084U priority Critical patent/JPS60185076U/en
Publication of JPS60185076U publication Critical patent/JPS60185076U/en
Application granted granted Critical
Publication of JPH0247267Y2 publication Critical patent/JPH0247267Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Compressor (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はガス圧縮機用の軸封装置に関するもの
である。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a shaft sealing device for a gas compressor.

(従来技術) 第1図に従来のガス圧縮機等で用いられている
液封式軸封装置の例を示す。図において1はケー
シング、2は軸、3は機内側シールリング、4は
機外側シールリングである。軸封液(以下液と略
す)は、高圧室11より高い圧力で供給口5から
軸封液室9に供給される。ここに供給された液
は、両シールリング間の流入路8を通り、軸2と
機内側シールリング3あるいは機外側シールリン
グ4との間隙を流れ、高圧室11内のガスが低圧
室10へ流入することを防止している。ここで機
外側シールリング4と軸2の間隙を流れた液は、
低圧室10へ流れ、流出口6から液出し回収され
て再利用されるが、機内側シールリング3と軸2
との間隙を流れた液は、高圧室11を通つて流出
口7より流出し、廃液として処理される。
(Prior Art) FIG. 1 shows an example of a liquid ring type shaft seal device used in a conventional gas compressor or the like. In the figure, 1 is a casing, 2 is a shaft, 3 is an inboard seal ring, and 4 is an outboard seal ring. The shaft sealing liquid (hereinafter abbreviated as liquid) is supplied from the supply port 5 to the shaft sealing liquid chamber 9 at a pressure higher than that of the high pressure chamber 11 . The liquid supplied here passes through the inflow path 8 between both seal rings, flows through the gap between the shaft 2 and the inside seal ring 3 or the outside seal ring 4, and the gas in the high pressure chamber 11 flows into the low pressure chamber 10. This prevents the inflow. Here, the liquid flowing through the gap between the outer side seal ring 4 and the shaft 2 is
The liquid flows into the low pressure chamber 10, drains out from the outlet 6, is collected and reused, but the inside seal ring 3 and shaft 2
The liquid flowing through the gap passes through the high pressure chamber 11, flows out from the outlet 7, and is treated as waste liquid.

このため、機内側シールリング3と軸2の間隙
を流れる液量を少なくする必要がある。ここで間
隙を流れる液量は、間隙の3乗に比例するため、
軸2とシールリング3との間隙は小さく設定され
る。また間隙内の液は軸2の回転にともない液の
粘性摩擦により発熱し、その発熱量は軸2の回転
数に比例し、間隙に反比例する。このため機外側
に比べて間隙の小さい軸2と機内側シールリング
3との間隙内において、軸2の回転数の上昇にと
もない、間隙内の液の発熱量が増加し、その熱量
の大半は軸2及びシールリング3へと伝わり、軸
2及びシールリング3の温度上昇による熱膨張を
招く。一方機内側シールリング3は、液流入路8
を流れる液により冷却されるため、シールリング
3と軸2との間隙は、軸2の熱膨張により小さく
なる。間隙が小さくなると、間隙内の発熱量が増
加し、更に間隙が小さくなり、シールリング3と
軸2との焼損を招くことになる。
Therefore, it is necessary to reduce the amount of liquid flowing through the gap between the inside seal ring 3 and the shaft 2. Here, the amount of liquid flowing through the gap is proportional to the cube of the gap, so
The gap between the shaft 2 and the seal ring 3 is set small. Further, the liquid in the gap generates heat due to viscous friction of the liquid as the shaft 2 rotates, and the amount of heat generated is proportional to the number of rotations of the shaft 2 and inversely proportional to the gap. Therefore, in the gap between the shaft 2 and the seal ring 3 on the inside of the machine, which has a smaller gap than the outside of the machine, as the rotational speed of the shaft 2 increases, the calorific value of the liquid in the gap increases, and most of the heat is This is transmitted to the shaft 2 and seal ring 3, causing thermal expansion due to the temperature rise of the shaft 2 and seal ring 3. On the other hand, the in-machine seal ring 3 is connected to the liquid inlet passage 8.
Since the seal ring 3 and the shaft 2 are cooled by the liquid flowing through them, the gap between the seal ring 3 and the shaft 2 becomes smaller due to thermal expansion of the shaft 2. When the gap becomes smaller, the amount of heat generated within the gap increases, and the gap becomes even smaller, resulting in burnout between the seal ring 3 and the shaft 2.

(考案が解決しようとする問題点) 本考案は前記従来の欠点を解消するために提案
されたもので、機内側シールリングの焼損防止を
図ることを目的とするものである。
(Problems to be Solved by the Invention) The present invention has been proposed in order to eliminate the above-mentioned conventional drawbacks, and its purpose is to prevent burnout of the seal ring inside the machine.

(問題点を解決するための手段) この目的を達成するために本考案は、ガス圧縮
機用軸封装置において、機内側シールリングと機
外側シールリングとの間に、同機内側シールリン
グを包み込む形状の部材を設け、同部材と機内側
シールリング外周面との間を半密閉構造の液室と
し、この液室に接するケーシングに吐出口を設
け、同吐出口と液タンクの間を介した管路で接続
してなる構成としたものである。
(Means for solving the problem) In order to achieve this objective, the present invention wraps the inside seal ring between the inside seal ring and the outside seal ring in a shaft sealing device for a gas compressor. A semi-sealed liquid chamber is formed between the member and the outer peripheral surface of the seal ring inside the machine, a discharge port is provided in the casing in contact with this liquid chamber, and a discharge port is provided between the discharge port and the liquid tank. It has a configuration in which it is connected by a conduit.

(作用) さて前記構成において、機内側シールリングの
外周面を半密閉構造の液室とし、この液室から弁
を介した管路を液タンクに導く構造としたので、
弁を閉にすると、液室の液は滞溜した状態にな
り、液温が上昇し機内側シールリングの熱膨張が
大となる。また弁を開にしていくと液室の液が流
れ、液温は低下し、機内側シールリングの熱膨張
は小さくなる。このように弁の開度を調整するこ
とで、ガス側シールリングの熱膨張量をコントロ
ールすることが可能となり、軸との隙間を運転中
に調整できる。
(Function) In the above configuration, the outer circumferential surface of the inside seal ring is made into a semi-sealed liquid chamber, and a structure is adopted in which a pipe line is led from this liquid chamber via a valve to a liquid tank.
When the valve is closed, the liquid in the liquid chamber becomes stagnant, the temperature of the liquid rises, and the thermal expansion of the seal ring inside the machine increases. Furthermore, as the valve is opened, the liquid in the liquid chamber flows, the temperature of the liquid decreases, and the thermal expansion of the seal ring inside the machine becomes smaller. By adjusting the opening degree of the valve in this way, it is possible to control the amount of thermal expansion of the gas side seal ring, and the gap with the shaft can be adjusted during operation.

(実施例) 以下本考案の実施例を図面について説明する
と、第2図は本考案の実施例を示し、図中第1図
と同じ機構を有するものは同一符合をつけてい
る。即ち、1はケーシング、2は軸、4は機外側
シールリング、6は流出口、7は流出口、9は軸
封液室、10は低圧室である。以下第1図と異な
る部分についてのみ説明すると、機内側シールリ
ング3を、その外周面が、流入路8と直接接しな
いように包み込む形状の部材12を設け、半密閉
構造の液室13を構成している。また液室13に
は吐出口14を設け、弁15を介する管路16を
接続し、他端を液タンク17に接続している。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows an embodiment of the present invention, and parts having the same mechanisms as in FIG. 1 are given the same reference numerals. That is, 1 is a casing, 2 is a shaft, 4 is an outside seal ring, 6 is an outlet, 7 is an outlet, 9 is a shaft sealing liquid chamber, and 10 is a low pressure chamber. Hereinafter, only the parts different from those in FIG. 1 will be explained. A member 12 having a shape that wraps around the in-machine seal ring 3 so that its outer circumferential surface does not come into direct contact with the inflow channel 8 is provided, and a liquid chamber 13 with a semi-sealed structure is constructed. are doing. Further, the liquid chamber 13 is provided with a discharge port 14, connected to a pipe line 16 via a valve 15, and the other end is connected to a liquid tank 17.

液タンク17の封液は、ポンプ18、調整弁1
9を介して供給口5に供給されると共に、調整弁
19と供給口5の間にヘツドタンク20よりの管
路が接続されている。ヘツドタンク20の上部に
は、高圧室11のガスが導入されており、ヘツド
タンク20には液面高さ検出器21を設けてい
る。また前述の調整弁19は、検出器21の信号
により、液面高さが一定値になるように作動す
る。なお、図中22はタンク、23はガス、24
は液、25は液面計である。
The sealing liquid in the liquid tank 17 is supplied by the pump 18 and the regulating valve 1.
The water is supplied to the supply port 5 via the control valve 19 and the supply port 5, and a pipe line from the head tank 20 is connected between the regulating valve 19 and the supply port 5. The gas in the high pressure chamber 11 is introduced into the upper part of the head tank 20, and the head tank 20 is provided with a liquid level height detector 21. Further, the above-mentioned regulating valve 19 is operated in response to a signal from the detector 21 so that the liquid level height becomes a constant value. In the figure, 22 is a tank, 23 is a gas, and 24 is a tank.
25 is a liquid level gauge.

次に前記の如く構成された実施例について作用
を説明すると、機内側シールリング3の外周面に
設けた液室13は、部材12により流入路8と仕
切られて半密閉構造となつているため、弁15を
閉にすると、液室13の液は滞溜状態となるた
め、流入路8より液温が上昇する。弁15を開に
していくと開度に応じて液室13の液は液タンク
17へ流出し、新たに流入路8より液室13へ液
が流れ込むため、液室13の液温は低下してい
く。以上のように弁15の開度を調整すること
で、液室13の液温を変えることが可能である。
これは機内側シールリング3の外周面の放熱条件
を変えることになり、機内側シールリング3の温
度を変えることになる。この結果、機内側シール
リング3の熱膨張をコントロールしていることに
なり、軸2との隙間Cを大きくしたり、小さくし
たりしていることにつながる。
Next, to explain the operation of the embodiment configured as described above, the liquid chamber 13 provided on the outer circumferential surface of the inside seal ring 3 is partitioned from the inlet passage 8 by the member 12 and has a semi-sealed structure. When the valve 15 is closed, the liquid in the liquid chamber 13 becomes stagnant, so that the temperature of the liquid increases from the inflow path 8. As the valve 15 is opened, the liquid in the liquid chamber 13 flows out to the liquid tank 17 according to the opening degree, and the liquid newly flows into the liquid chamber 13 from the inflow path 8, so the liquid temperature in the liquid chamber 13 decreases. To go. By adjusting the opening degree of the valve 15 as described above, it is possible to change the temperature of the liquid in the liquid chamber 13.
This changes the heat dissipation conditions of the outer peripheral surface of the inside seal ring 3 and changes the temperature of the inside seal ring 3. As a result, the thermal expansion of the in-machine seal ring 3 is controlled, which leads to increasing or decreasing the gap C with the shaft 2.

(考案の効果) 以上詳細に説明した如く本考案は、ケーシング
に設けた吐出口と液タンクの間を弁を介した管路
で接続するようにしたので、弁の開度を調整する
ことにより機内側シールリングの冷却効果が変化
し、これの熱膨張量を変えることができるので、
軸と機内側シールリングとの間の隙間を運転中に
調整することができ、機内側シールリングと軸が
接触して焼損するなどのトラブルを未然に防止で
きる。
(Effects of the invention) As explained in detail above, in the present invention, the discharge port provided in the casing and the liquid tank are connected by a pipe line via a valve. The cooling effect of the inside seal ring changes, and the amount of thermal expansion can be changed.
The gap between the shaft and the inside seal ring can be adjusted during operation, and troubles such as burnout caused by contact between the inside seal ring and the shaft can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の軸封装置の上半分のみ示す側断
面図、第2図は本考案の実施例を示す軸封装置の
側断面である。 図の主要部分の説明、1……ケーシング、2…
…軸、3……機内側シールリング、4……機外側
シールリング、5……供給口、8……流入路、9
……軸封液室、10……低圧室、11……高圧
室、12……包み込む部材、13……液室、14
……吐出口、15……弁、16……管路、17…
…液タンク。
FIG. 1 is a side sectional view showing only the upper half of a conventional shaft sealing device, and FIG. 2 is a side sectional view of a shaft sealing device showing an embodiment of the present invention. Explanation of the main parts of the diagram, 1...Casing, 2...
...Shaft, 3... Seal ring inside the machine, 4... Seal ring outside the machine, 5... Supply port, 8... Inflow path, 9
... shaft sealing liquid chamber, 10 ... low pressure chamber, 11 ... high pressure chamber, 12 ... enclosing member, 13 ... liquid chamber, 14
...Discharge port, 15...Valve, 16...Pipe line, 17...
...liquid tank.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ガス圧縮機用軸封装置において、機内側シール
リングと供給口に連通した軸封液室内に設けられ
た機外側シールリングとの間に、同機内側シール
リングを包み込む形状の部材を設け、同部材と機
内側シールリング外周面との間を半密閉構造の液
室とし、この液室に接するケーシングに吐出口を
設け、同吐出口と液タンクの間を弁を介した管路
で接続してなることを特徴とする軸封装置。
In a shaft sealing device for a gas compressor, a member shaped to wrap around the inside seal ring is provided between the inside seal ring and the outside seal ring provided in the shaft sealing liquid chamber communicating with the supply port. A semi-sealed liquid chamber is formed between the inside of the machine and the outer peripheral surface of the seal ring, a discharge port is provided in the casing in contact with this liquid chamber, and the discharge port and the liquid tank are connected by a pipe line via a valve. A shaft sealing device characterized by:
JP5941084U 1984-04-24 1984-04-24 Shaft sealing device Granted JPS60185076U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5941084U JPS60185076U (en) 1984-04-24 1984-04-24 Shaft sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5941084U JPS60185076U (en) 1984-04-24 1984-04-24 Shaft sealing device

Publications (2)

Publication Number Publication Date
JPS60185076U JPS60185076U (en) 1985-12-07
JPH0247267Y2 true JPH0247267Y2 (en) 1990-12-12

Family

ID=30585814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5941084U Granted JPS60185076U (en) 1984-04-24 1984-04-24 Shaft sealing device

Country Status (1)

Country Link
JP (1) JPS60185076U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017176912A (en) * 2016-03-28 2017-10-05 三菱重工コンプレッサ株式会社 Heater-integral type filter and rotary machine system

Also Published As

Publication number Publication date
JPS60185076U (en) 1985-12-07

Similar Documents

Publication Publication Date Title
JP4288169B2 (en) Temperature adjustment method for screw vacuum pump
JPS57181920A (en) Cooling controller for water-cooled engine
JPS61152906A (en) Seal part gap regulating device for turbine
JPH0247267Y2 (en)
JP4209581B2 (en) Rotary piston compressor with axial direction of discharge
US3236215A (en) Internal combustion engine heat exchanger systems
JPS5857609B2 (en) Cooling system for liquid-cooled internal combustion engines
US4341093A (en) Device for leading cooling liquid out of rotary electric machine with liquid cooled rotor
JPS62251063A (en) Groove roller temperature control method for wire saw
JPH0140376Y2 (en)
US876613A (en) Shaft-packing.
JPH0215085Y2 (en)
JPS6324300Y2 (en)
JPH0138369Y2 (en)
JPS60230600A (en) Shaft sealing mechanism provided with mechanical seal
KR19990017215A (en) Water Pump Automatic Test Device for Engine Cooling
US2733864A (en) rivers
JPS5811973Y2 (en) Shaft sealing device for gas compressor
JPH04232398A (en) Cooling water pump for water-cooled engine
US965399A (en) Turbine-packing.
JPH07293708A (en) End-face type shaft seal device of hydraulic machinery
JPH0238136Y2 (en)
JPS6240213Y2 (en)
JPH0330592Y2 (en)
KR930004565B1 (en) Temperrature-sensitive type hydraulic fan coupling device