JPH0247175B2 - - Google Patents
Info
- Publication number
- JPH0247175B2 JPH0247175B2 JP56212444A JP21244481A JPH0247175B2 JP H0247175 B2 JPH0247175 B2 JP H0247175B2 JP 56212444 A JP56212444 A JP 56212444A JP 21244481 A JP21244481 A JP 21244481A JP H0247175 B2 JPH0247175 B2 JP H0247175B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- ground fault
- branch
- line
- fault
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000007257 malfunction Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 1
Landscapes
- Emergency Protection Circuit Devices (AREA)
- Cable Accessories (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Description
【発明の詳細な説明】
本発明は、非接地式高圧配電系統において、分
岐線路のいずれかの側に地絡事故が発生したかを
検出する装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting whether a ground fault has occurred on either side of a branch line in an ungrounded high voltage distribution system.
高圧配電線において、地絡事故が発生したと
き、例えば第1図示のように変電所1内の高圧母
線2よりしや断器3、零相変流器4を介して引き
出された高圧配電線5及び各分岐線6があり、事
故点Gがその分岐点より負荷側にある場合には、
保守技術者がその地点まで出向し、例えば、高圧
気中開閉器等柱上高圧開閉器S1,S2,…Snを交
互に開閉し、変電所1と連絡をとりながら再送電
し、再度事故を発生させて事故探査を行なつてい
る。 When a ground fault occurs in a high-voltage distribution line, for example, as shown in Figure 1, the high-voltage distribution line is pulled out via the high-voltage bus 2 in the substation 1, the disconnector 3, and the zero-phase current transformer 4. 5 and each branch line 6, and the accident point G is on the load side from the branch point,
A maintenance engineer will be dispatched to the location and, for example, alternately open and close the pole-mounted high voltage switches S 1 , S 2 ,...Sn, such as high pressure air switches, and retransmit power while communicating with substation 1. An accident is caused and an accident investigation is conducted.
しかし、例えば鳥獣や樹木の一時的な接触等で
短時間だけ地絡事故が発生し、事故探査に入つた
時は消滅してしまう、いわゆる幽霊事故の場合に
は、次の事故発生を待つ以外、巡視等ではなかな
か発見しがたい。 However, in the case of a so-called ghost accident, where a ground fault occurs for a short time due to temporary contact with a bird, animal, or tree, and disappears when the accident investigation begins, there is no other option than waiting for the next accident to occur. , it is difficult to detect during patrols, etc.
このため、本線ならびに各分岐線に零相変流
器、零相変圧器を柱上高圧開閉器等に組み込み、
それぞれのセンサーにより検出した事故電流と零
相電圧の位相比較を行なつて、どちらの側の分岐
線に事故が発生したかを表示するようにした検出
装置が考案されている。 For this reason, zero-phase current transformers and zero-phase transformers are installed in pole-mounted high-voltage switches, etc. on the main line and each branch line.
A detection device has been devised that compares the phases of the fault current and zero-sequence voltage detected by each sensor and displays which branch line the fault has occurred on.
しかしながら、この電流電圧位相比較方式には
次のような問題点がある。 However, this current-voltage phase comparison method has the following problems.
まず、最近の高圧配電線(自家用電気工作物施
設の構内においても同じ)には、高圧ケーブルが
多く使用されるようになつており、このため対地
静電容量が大幅に増加している。このことは必然
的に、例えば抵抗地絡事故等において、同一抵抗
値により発生する零相電圧の低下を来し、検出し
うる事故が、地絡電流の大きな場合、つまり被害
程度が大きくなる方向にならざるを得ない。また
低い零相電圧を増幅して高感度にすることは可能
であるが、こうすると、今度は高圧配電線に通常
発生する、いわゆる残留電圧によつて誤動作する
おそれがあり、無制限に高感度にはできず、従つ
て検出可能地絡電流も比較的低感度に止めざるを
得ない。また、柱上高圧気中開閉器等の内部へ三
相一括零相変流器を収めると、電線の屈曲が大き
くなり、これを避けるため、大きな長円の零相変
流器を使うと、微少な地絡電流を検出できないな
どである。さらに零相電圧検出器も線路の弱点と
なるおそれがある。 First, high-voltage cables are increasingly being used in recent high-voltage power distribution lines (the same applies in the premises of private electrical facility facilities), and as a result, the ground capacitance has increased significantly. This inevitably results in a drop in the zero-sequence voltage caused by the same resistance value in a resistance ground fault accident, for example, and a detectable fault occurs when the ground fault current is large, in other words, the degree of damage increases. I have no choice but to become It is also possible to increase the sensitivity by amplifying the low zero-sequence voltage, but doing so may cause malfunctions due to the so-called residual voltage that normally occurs in high-voltage distribution lines, so it is not possible to increase the sensitivity without limit. Therefore, the detectable ground fault current has to be kept at a relatively low sensitivity. In addition, if a three-phase bulk zero-phase current transformer is placed inside a pole-mounted high-pressure air switch, etc., the wires will bend significantly, and to avoid this, if a large oval zero-phase current transformer is used, For example, it is impossible to detect minute ground fault currents. Furthermore, the zero-sequence voltage detector may also become a weak point in the line.
本発明は、これらの問題点を解決し、また零相
電圧検出器を使用しないより簡単な方式で確実に
事故側を判別できる検出装置を提供しようとする
ものである。 The present invention aims to solve these problems and provide a detection device that can reliably determine the accident side using a simpler method that does not use a zero-phase voltage detector.
先ず本発明の原理について説明すると、非接地
式高圧配電線の分岐点において第2図示のように
片側の線路に一線地絡事故が発生すると、この事
故点に向つて全線路から零相電流が流れ込む。分
岐点において考えると、健全線の線路から分岐点
を通つて事故点へ流れ込む電流も当然あるわけで
ある。第2図においてigは地絡電流の大きさを示
す。 First, to explain the principle of the present invention, when a single-line ground fault occurs on one line at a branch point of an ungrounded high-voltage distribution line as shown in Figure 2, zero-sequence current flows from all lines toward this fault point. Flow into. Considering the branch point, it is natural that some current flows from the intact line through the branch point to the fault point. In Fig. 2, i g indicates the magnitude of the ground fault current.
両側の検出器の地絡電流感度整定を、微少地絡
電流が検出できるよう高感度にしておくと、地絡
側の事故電流の大きさによつては片側の事故発生
の場合でも両方の検出器が動作表示をしてしまう
ことが相当に大きな確率で発生する。 If the ground fault current sensitivity settings of the detectors on both sides are set to high sensitivity so that minute ground fault currents can be detected, both detectors can be detected even if a fault occurs on one side, depending on the magnitude of the fault current on the ground fault side. There is a fairly high probability that the device will display an operating message.
これが非接地式地絡方向継電器が必要な理由で
あり、前記電圧電流の位相比較方式もこれを防ぐ
方法の1つにほかならない。 This is the reason why a non-grounding type earth fault directional relay is required, and the voltage/current phase comparison method is also one of the methods to prevent this.
本発明は、分岐線の片側に地絡事故が発生した
とき、他の分岐線からこの事故点に流れ込む零相
電流は、その絶対値の比率において大きな差があ
ることに着目し、これを利用して判別を行なうも
のである。 The present invention focuses on the fact that when a ground fault occurs on one side of a branch line, there is a large difference in the ratio of the absolute values of zero-sequence currents flowing from other branch lines to this fault point, and utilizes this fact. The determination is made by
即ち、配電線に流れる地絡零相電流を考える
と、第2図示のように変電所母線2から事故点A
に向つて流れる電流値は、この変電所母線2につ
ながる他のフイーダから対地静電容量を通して入
つてくる電流を集めたものであり、健全側分岐線
より事故点Aに向つて入る電流値の数倍以上大き
い値である。 That is, considering the ground fault zero-sequence current flowing in the distribution line, as shown in the second diagram, from the substation bus 2 to the fault point A
The current value flowing towards fault point A is the sum of the currents flowing in from other feeders connected to this substation bus 2 through the ground capacitance, and the current value flowing towards fault point A from the healthy branch line is the The value is several times larger.
ただし、これは比率上の対比であつて、絶対値
としては大きな幅がある。即ち、例えば事故側が
完全地絡に近い20A程度のとき健全側が500mA
(この値は変電所同一バンクの全体の対地静電容
量と、健全側分岐線の対地静電容量、地絡事故の
抵抗値等から決る。)とすれば、事故側が高抵抗
地絡で、事故電流が100mA程度のときは、健全
側は2.5mA程度にしかならない。 However, this is a comparison in terms of ratios, and there is a wide range in absolute values. In other words, for example, when the fault side is about 20A, which is close to a complete ground fault, the healthy side is 500mA.
(This value is determined from the overall ground capacitance of the same substation bank, the ground capacitance of the healthy branch line, the resistance value of the ground fault, etc.) If this is the case, then the fault side has a high resistance ground fault, When the fault current is about 100mA, the healthy side is only about 2.5mA.
このため、第3図示のように分岐線A、分岐線
Bにそれぞれ設けた高圧気中開閉器7,8に設置
された零相変流器9,10(いずれも3個のCT
より成る。)の出力をそれぞれの表示器11,1
2に本体側、比較側13,14及び15,16相
互に入力し、第5図示のような比較回路を作り、
大きい方の値によつて、その側を動作表示するよ
うにする。 For this reason, as shown in Figure 3, zero-phase current transformers 9 and 10 (both of which are connected to three CT
Consists of. ) output on each display 11, 1
2 to the main body side, comparison sides 13, 14 and 15, 16, and create a comparison circuit as shown in Figure 5.
Depending on the larger value, the operation of that side is displayed.
以下図面第4図及び第5図にもとずいて本発明
の実施例を説明すると、高圧配電線17の絶縁強
度をおとさないよう、例えば第4図示のように各
電柱18上に設置されている高圧柱上開閉器19
のプツシングの開閉器の内部側に高性能の貫通形
変流器を各相に1個組み込み(3個の組合せによ
り零相電流を検出する。またこのうち2個は短絡
電流の検出にも適用できる。)、各柱上18の地上
より見える高さの所に、2つの分岐線、あるいは
本線と分岐線にそれぞれ取付けた上記3個の変流
器からの出力を入力して、これを比較し、どちら
の側に事故があつたかを表示させる表示器20を
それぞれ取付ける。開閉器19が自動開閉器であ
れば、上記表示信号を継電して、開閉器19を開
放させる。なお、第4図において21は連絡線、
22は変電所側、23,24は負荷側を示す。 Embodiments of the present invention will be described below with reference to FIGS. 4 and 5. In order not to reduce the insulation strength of the high-voltage distribution line 17, for example, as shown in FIG. High voltage pole switch 19
One high-performance feed-through current transformer is built into each phase inside the pushing switch (a combination of three detects zero-sequence current. Two of these can also be used to detect short-circuit current). ), input the outputs from the above three current transformers installed on the two branch lines, or the main line and the branch line, at a height visible from the ground on each pillar 18, and compare them. Then, a display 20 is attached to each side to indicate which side the accident occurred. If the switch 19 is an automatic switch, the display signal is relayed to open the switch 19. In addition, in Fig. 4, 21 is a contact line,
22 indicates the substation side, and 23 and 24 indicate the load side.
表示器20の回路は第5図示のように構成す
る。即ち、2つの分岐線A,Bに設置された各零
相変流器ZCT―A、ZCT―Bからの入力がそれ
ぞれ過入力保護回路25A,25B、増幅回路2
6A,26B、AC/DC変換回路27A,27B
を経て第1レベル検出回路28ならびに比較回路
29へ入るように接続し、第1レベル検出回路2
8では、整定レベル以上の場合はそのまま出力回
路30へ入り、比較回路29ではA>B(A分岐
側の場合、B側では逆になる。)の場合のみ出力
し、第2レベル検出回路31を経て出力回路30
へ入るように接続して成る。出力は継電回路によ
りランプ表示,機械的ターゲツト表示等を行な
う。なお、上記回路は公知のハードウエア技術に
よつて容易に構成できるものである。 The circuit of the display 20 is constructed as shown in FIG. That is, the inputs from the zero-phase current transformers ZCT-A and ZCT-B installed on the two branch lines A and B are respectively transmitted to the over-input protection circuits 25A and 25B and the amplifier circuit 2.
6A, 26B, AC/DC conversion circuit 27A, 27B
is connected to the first level detection circuit 28 and the comparison circuit 29 through the first level detection circuit 28 and the comparison circuit 29.
8, if it is above the set level, it goes directly to the output circuit 30, and the comparator circuit 29 outputs it only when A>B (in the case of A branch, it is the opposite on the B side), and the second level detection circuit 31 Output circuit 30 via
It is connected so that it enters the The output uses a relay circuit to display lamps, mechanical targets, etc. Note that the above circuit can be easily constructed using known hardware technology.
上記の回路において、第1、第2レベル検出回
路28,31を設ける理由は次のとおりである。 The reason for providing the first and second level detection circuits 28 and 31 in the above circuit is as follows.
本発明の問題点として、分岐点より電源側に地
絡事故が発生した場合は、両分岐線とも、分岐点
より負荷側の対地静電容量に比例した零相電流が
電源側に向けて流れる。比較回路29はこの両者
の大小を比較して大きい方を出力することになる
が、これは誤動作である。 The problem with this invention is that if a ground fault occurs on the power supply side from the branch point, a zero-sequence current proportional to the ground capacitance on the load side from the branch point flows toward the power supply side in both branch lines. . The comparison circuit 29 compares the magnitude of the two and outputs the larger one, but this is a malfunction.
このため、いま電源側に完全地絡が発生した時
に逆流する事故電流の大きさをa〔mA〕(A側)、
b〔mA〕(B側)とすると、抵抗地絡が発生した
とき、A側とB側に流れる事故電流値を比較し、
その比率がa:bとなるときは、動作しないよう
に回路を構成する。 Therefore, when a complete ground fault occurs on the power supply side, the magnitude of the fault current that flows backward is a [mA] (A side),
If b [mA] (B side), when a resistance ground fault occurs, compare the fault current value flowing to the A side and B side,
When the ratio is a:b, the circuit is configured so that it does not operate.
A・Bいづれかの負荷側に地絡事故が発生した
時は、前述のようにa:bの比率よりはるかに大
きい比になるので、制止回路が働くことはない。 When a ground fault occurs on the load side of either A or B, the control circuit will not operate because the ratio of a:b is much larger than the ratio of a:b, as described above.
しかしこのようにすると、逆に両分岐線の負荷
側に同時にa:bとなるような1線地絡事故が発
生した時は、両者とも動作しないことになる。 However, if this is done, if a one-line ground fault such as a:b occurs simultaneously on the load side of both branch lines, both lines will not operate.
ここでa〔mA〕、b〔mA〕は完全地絡時の値で
あるから、電源側地絡であるかぎり、この値をこ
えることはない。よつてこの両者の値をそれぞれ
しきい値として、この値より大きい場合は両者同
時であつても出力するよう回路を構成する。この
しきい値がレベル1である。 Here, a [mA] and b [mA] are the values at the time of a complete ground fault, so as long as there is a ground fault on the power supply side, these values will not be exceeded. Therefore, the circuit is configured such that both values are set as threshold values, and if the values are larger than these values, the output is output even if both are at the same time. This threshold is level 1.
両者の対地静電容量を概算し、a:bの範囲を
可能なかぎりせまくすれば、両分岐線同時地絡の
場合の不動作領域をさらにせばめることが可能で
ある。 By estimating the ground capacitance of both branches and narrowing the range a:b as much as possible, it is possible to further narrow the inoperable region in the case of simultaneous ground faults in both branch lines.
a:bの範囲をいづれかが越えさえすれば、片
側が先ず動作し、続いて他の側も動作することに
なる。 As long as either side exceeds the a:b range, one side will operate first, followed by the other side.
両分岐線に同時に地絡事故の発生する確率はか
ない小さいものであり、かつ両者が高抵抗地絡で
しきい値(レベル1)より低く、かつa:bとな
る確率は非常に小さいものと考えられる。 The probability that a ground fault will occur in both branch lines at the same time is small, and the probability that both are high-resistance ground faults that are lower than the threshold (level 1) and that a: b is extremely small. It will be done.
さらに、以上の不動作領域は、配電用変電所が
動作する値(この場合は零相電圧に支配される)
よりは非常に低い領域であり、配電用変電所が動
作する時は必ず動作するといつてよい。即ち、最
悪の場合でも配電用変電所が動作するときは、直
列に動作表示を出すことが可能である。 Furthermore, the above non-operating region is the value at which the distribution substation operates (in this case, it is dominated by the zero-sequence voltage)
This is a very low range, and it can be said that it always operates whenever a distribution substation operates. That is, even in the worst case, when the distribution substation is in operation, it is possible to issue an operation indication in series.
本発明は、叙上のように構成したから、感度電
流整定値をいかに小さく整定しても誤動作するこ
とはなく、例えば感度電流整定値を60mA程度に
とれば、樹木接触等の微地絡でも十分検出できる
ものであり、既述従来の検出器に比し簡易な方式
で事故側を確実に、かつ高感度で判別できる検出
装置を提供することができる。 Since the present invention is configured as described above, it will not malfunction no matter how small the sensitivity current setting value is set. For example, if the sensitivity current setting value is set to about 60 mA, even a slight ground fault such as contact with a tree will not occur. It is possible to provide a detection device that can detect the accident side reliably and with high sensitivity using a simpler method than the conventional detectors described above.
第1図は高圧配電線の分岐線路のモデル図で、
1分岐線路において1線地絡事故が発生したとき
の線路各部に流れる電流値を比較の意味で示した
概念図、第2図は変電所の1バンク及びそおバン
クの中の1フイーダに流れる地絡電流の相対的な
大きさを示す概念図、第3図は分岐線地絡事故検
出装置の表示器への入力について本対側と比較側
がそれぞれ入力される説明図、第4図は本発明の
実施例を示す図、第5図は同実施例における表示
器の回路を説明するブロツク図である。
17…高圧配電線、18…電柱、19…貫通形
変流器を組込んだ高圧柱上開閉器、20…表示
器。
Figure 1 is a model diagram of a branch line of a high-voltage distribution line.
A conceptual diagram showing, for comparison, the current values flowing through each part of the line when a single-line ground fault occurs on a single branch line. A conceptual diagram showing the relative magnitude of short circuit currents. Figure 3 is an explanatory diagram of inputs to the display of the branch line ground fault fault detection device on the opposite side and comparison side, respectively. Figure 4 is an illustration of the present invention. FIG. 5 is a block diagram illustrating the circuit of the display device in the same embodiment. 17... High-voltage distribution line, 18... Utility pole, 19... High-voltage pole-mounted switch incorporating a through-type current transformer, 20... Display device.
Claims (1)
それぞれの分岐線に、各々の絶縁強度を低めない
ような高感度貫通形変流器を取付け、この変流器
によつて検出された微少地絡電流を相互に比較す
る比較回路を有する事故点表示器であつて、各変
流器からの入力がそれぞれ過入力保護回路、増幅
回路、AC/DC変換回路を経て第一レベル検出回
路ならびに比較回路へ入るように接続し、第一レ
ベル検出回路では、整定レベル以上の場合はその
まま出力回路へ入り、上記比較回路では、上記各
零相変流器からの入力に差がある場合のみ出力
し、第2レベル検出回路を経て上記出力回路へ入
るように接続してなる事故点表示器を設けてなる
高圧配電線・分岐線地絡事故検出装置。 2 事故点表示器が電柱の地上より見える高さの
所に取付けられた特許請求の範囲第1項記載の高
圧配電線・分岐線地絡事故検出装置。[Claims] 1. At a branch point of an ungrounded system high voltage distribution line,
A high-sensitivity feed-through current transformer that does not reduce the insulation strength of each branch line is installed, and a comparison circuit is installed to mutually compare the minute ground fault currents detected by this current transformer. The display is connected so that the input from each current transformer passes through an over-input protection circuit, an amplifier circuit, an AC/DC conversion circuit, and then enters a first level detection circuit and a comparison circuit. Then, if it is above the setting level, it goes directly to the output circuit, and the comparison circuit outputs it only when there is a difference between the inputs from each of the zero-phase current transformers, and goes through the second level detection circuit to the output circuit. A high-voltage distribution line/branch line ground fault detection device equipped with a fault point indicator that is connected in the following manner. 2. The high-voltage distribution line/branch line ground fault detection device according to claim 1, wherein the fault point indicator is attached to a utility pole at a height visible from the ground.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21244481A JPS58116021A (en) | 1981-12-29 | 1981-12-29 | High voltage distribution wire and branch wire ground-fault trouble detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21244481A JPS58116021A (en) | 1981-12-29 | 1981-12-29 | High voltage distribution wire and branch wire ground-fault trouble detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58116021A JPS58116021A (en) | 1983-07-11 |
JPH0247175B2 true JPH0247175B2 (en) | 1990-10-18 |
Family
ID=16622708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21244481A Granted JPS58116021A (en) | 1981-12-29 | 1981-12-29 | High voltage distribution wire and branch wire ground-fault trouble detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58116021A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0530647A (en) * | 1991-07-19 | 1993-02-05 | Mitsubishi Electric Corp | Power supply circuit |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56115130A (en) * | 1980-02-16 | 1981-09-10 | Takamatsu Electric Works Ltd | Grounddfault trouble discriminating and indicating device |
-
1981
- 1981-12-29 JP JP21244481A patent/JPS58116021A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56115130A (en) * | 1980-02-16 | 1981-09-10 | Takamatsu Electric Works Ltd | Grounddfault trouble discriminating and indicating device |
Also Published As
Publication number | Publication date |
---|---|
JPS58116021A (en) | 1983-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010300767B2 (en) | System and method for polyphase ground-fault circuit-interrupters | |
US6718271B1 (en) | Fault detection apparatus and method of detecting faults in an electrical distribution network | |
US7626791B2 (en) | Electrical fault detection | |
AU2012203278B2 (en) | Directional detection of a resistive earth fault and of breaking of a medium-voltage conductor | |
CN103852691A (en) | Directional detection of a fault in a network of a grounding system with compensated or insulated neutral point | |
EP0016038A1 (en) | Method and apparatus for detecting faults in an electric power distribution system | |
Aucoin et al. | Feeder protection and monitoring system, Part II: Staged fault test demonstration | |
Owen | The historical development of neutral grounding practices | |
JPH0247175B2 (en) | ||
JPH0343593B2 (en) | ||
JPH0237235Y2 (en) | ||
RU2788519C1 (en) | Method for disconnecting a damaged connection with a single-phase earth fault in networks with an isolated neutral | |
JP2717320B2 (en) | Predicted ground fault accident detection method for high voltage distribution line and predicted ground fault accident section detection method | |
WO2020255440A1 (en) | General-purpose leakage detection device | |
JPH0145224Y2 (en) | ||
JPH04236124A (en) | Method for detecting small ground fault of high-voltage distribution line | |
JPH0548139Y2 (en) | ||
JPH0638690B2 (en) | Ground fault relay | |
JPS6134833Y2 (en) | ||
JPH07218576A (en) | Fault locating apparatus | |
JPH043510B2 (en) | ||
JPS61236320A (en) | Ground-fault detection system for parallel multiple circuit | |
JPH0638095B2 (en) | Improvement of disconnection failure detection method | |
JPS59122318A (en) | Ground-fault protecting circuit | |
JPH0585032B2 (en) |