JPH0585032B2 - - Google Patents

Info

Publication number
JPH0585032B2
JPH0585032B2 JP63086914A JP8691488A JPH0585032B2 JP H0585032 B2 JPH0585032 B2 JP H0585032B2 JP 63086914 A JP63086914 A JP 63086914A JP 8691488 A JP8691488 A JP 8691488A JP H0585032 B2 JPH0585032 B2 JP H0585032B2
Authority
JP
Japan
Prior art keywords
voltage
limb
grounding
circuit breaker
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63086914A
Other languages
Japanese (ja)
Other versions
JPH01259273A (en
Inventor
Koji Washio
Osamu Ishida
Masahiro Oikawa
Tsuyoshi Takeda
Tadaharu Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kitanihon Electric Wire Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Kitanihon Electric Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kitanihon Electric Wire Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP63086914A priority Critical patent/JPH01259273A/en
Publication of JPH01259273A publication Critical patent/JPH01259273A/en
Publication of JPH0585032B2 publication Critical patent/JPH0585032B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 (イ) 利用分野 この発明は電力ケーブル等の活線下絶縁劣化診
断の目的をもつて交流高圧系統に直流信号電圧を
重畳送出するための直流電圧印加装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Application The present invention relates to a DC voltage application device for superimposing and sending a DC signal voltage to an AC high voltage system for the purpose of diagnosing deterioration of insulation under live wires of power cables and the like.

(ロ) 従来技術 交流高圧系統の任意の地点に設置して高圧母線
に直流信号電圧を重畳送出するための改良された
装置が、本出願人によつて特願昭62−053265号お
よび特願昭62−053266として提案されている。
(b) Prior Art An improved device installed at any point in an AC high-voltage system to send a DC signal voltage superimposed on a high-voltage bus has been proposed by the applicant in Japanese Patent Application No. 62-053265 and Japanese Patent Application No. It has been proposed as 1986-053266.

第2図は本出願人による前記装置2′を示し、
以下、この装置について簡単に説明する。高圧母
線1には高圧遮断器3を経由して三相星型結線の
主リアクトル4、インダクタンスを第一肢の要素
とし抵抗とキヤパシタンスの直列回路を第二肢の
要素として第一肢と第二肢で並列回路を構成した
地電流抑制回路6、出力緩衝用抵抗7と開閉器8
と可変直流電圧電源9からなる直流信号電源装置
31が順次直列に接続されて、第一の接地21に
導かれている。10は主リアクトルの接地交流電
流を測定する計器で電流変成器および電流計の組
み合わせからなり、電流計はメータリレー付とし
て設定限度を越える主リアクトル接地交流電流を
観測した時は高圧遮断器3を開放する機能を有す
る。前記主リアクトル4から第一の接地21に至
る系統と並列に、三相星型結線の副リアクトル1
1′、倍率器抵抗12、直流電圧計13とフイル
タ用コンデンサ14の並列回路が順次直列に接続
されて第二の接地22へ導かれている。第一と第
二の接地21,22の間には第一の接地21と第
二の接地22間の異常電圧発生の有無を知らせ、
電位差を限定するためのネオンランプ15が接続
されている。
FIG. 2 shows said device 2' according to the applicant,
This device will be briefly explained below. The high voltage bus 1 is connected via a high voltage circuit breaker 3 to a main reactor 4 in a three-phase star connection, with inductance as the first element and a series circuit of resistance and capacitance as the second element. An earth current suppression circuit 6, an output buffer resistor 7, and a switch 8, each of which has a parallel circuit configuration.
and a variable DC voltage power source 9 are successively connected in series and led to the first ground 21. Reference numeral 10 is an instrument for measuring the grounding alternating current of the main reactor, which consists of a combination of a current transformer and an ammeter. It has the function of opening. In parallel with the system from the main reactor 4 to the first ground 21, there is a three-phase star-connected sub-reactor 1.
1', a multiplier resistor 12, a DC voltmeter 13, and a filter capacitor 14 are successively connected in series and led to a second ground 22. Between the first and second grounds 21 and 22, the presence or absence of an abnormal voltage between the first ground 21 and the second ground 22 is notified;
A neon lamp 15 is connected to limit the potential difference.

配電用変電所には計器用変圧器23が接続さ
れ、その二次側開放三角結線の開放端には電流制
限抵抗24と該抵抗24の両端に生じた残留地絡
電圧(V0)を測定する交流電圧計25とが並列
に接続されている。測定された電圧は離隔した位
置にある給電所でスーパーピジヨンによりしきい
値の監視がされている。
A potential transformer 23 is connected to the distribution substation, and a current limiting resistor 24 is connected to the open end of the secondary open triangular connection, and the residual ground fault voltage (V 0 ) generated across the resistor 24 is measured. An AC voltmeter 25 is connected in parallel. The measured voltage is monitored at a threshold by a super pigeon at a remote power supply station.

前記地電流抑制回路6の採用により、電力ケー
ブルの活線下絶縁劣化診断を行う場合に、主リア
クトル4の対地インダクタンスと高圧系統の対地
静電容量との共振により主リアクトルの接地交流
電流が増大し、同時に配電用変電所の計器用接地
変圧器の二次開放電圧、すなわちV0値が増大し
て地絡警報を発したり、遮断器が働いて停電事故
になり、このため劣化診断が実施不能になる問題
は解消された。
By employing the ground current suppression circuit 6, when diagnosing the deterioration of insulation under live wires of power cables, the ground alternating current of the main reactor increases due to resonance between the ground inductance of the main reactor 4 and the ground capacitance of the high voltage system. At the same time, the secondary open circuit voltage, or V0 value, of the instrument grounding transformer at the distribution substation increased, causing a ground fault alarm to be issued, or the circuit breaker to trip, resulting in a power outage accident, and a deterioration diagnosis was conducted. The inability problem has been resolved.

また、副リアクトルの採用により、高圧母線と
大地間に実際に印加されている直流信号電圧値を
直流電圧計13の指示により得ることができる。
このため第二の接地22は第一の接地21に通じ
る電流による電圧降下の影響を避けるため、第一
の接地21から充分に離隔される。所期の印加電
圧値は直流電圧計13の指示で得られるように可
変直流電圧電源9の出力が調整される。
Furthermore, by employing the sub-reactor, the DC signal voltage value actually applied between the high-voltage bus and the ground can be obtained as indicated by the DC voltmeter 13.
For this reason, the second ground 22 is sufficiently spaced from the first ground 21 to avoid voltage drop effects due to currents passing through the first ground 21. The output of the variable DC voltage power supply 9 is adjusted so that the desired applied voltage value can be obtained as indicated by the DC voltmeter 13.

(ハ) この発明が解決しようとする問題点 直流信号電圧を高圧系統に重畳している時、発
生している高圧系統残留地絡電圧値を知るために
は、一般には無人の配電用変電所に測定計器を携
行入構し、計器用設地変圧器23が捕捉している
V0値を測定するか、給電所にスーパピジヨンの
異常の有無を電話を問い合わせる必要があり、直
流電圧を印加している装置側では容易に分からな
い問題があつた。
(c) Problems to be solved by this invention When DC signal voltage is superimposed on a high-voltage system, in order to know the value of the residual ground fault voltage in the high-voltage system, it is generally necessary to entered the campus carrying a measuring instrument, and the instrument ground transformer 23 captured the signal.
It was necessary to measure the V 0 value or call the power supply station to find out if there was an abnormality in the super pigeon, which created a problem that could not be easily detected by the equipment applying DC voltage.

上記装置を実系統で使用しても異常がなければ
問題はないものの、配電用変電所に設置されてい
る特定メーカの計器用接地変圧器が直流電圧印加
によつて大きい残留地絡電圧V0を発生させるこ
とがわかつた。
There is no problem if the above device is used in an actual system if there is no abnormality, but the instrument grounding transformer of a specific manufacturer installed in the distribution substation has a large residual ground fault voltage V 0 due to the application of DC voltage. It was found that it causes

第3図は重畳印加電圧に対する残留地絡電圧
V0の関係を示し、同図においてB社GPT(計器用
接地変圧器の略称)は前記特定メーカのGPT、
A社GPTはB社を除く大多数のメーカのGPTを
代表するものとして示したもので、各社間に大き
い違いは見られない。パラメータは高圧系統全体
(三相分)の対地静電容量値である。第3図から
分かるように、重畳直流電圧が零の時は残留地絡
電圧値はA社、B社のGPTとも大差無く小さい
が、所期の直流電圧、例えば25Vを印加すると系
統静電容量1μFではB社は500V以上のV0が発生
するのにたいしA社では120Vである。
Figure 3 shows residual ground fault voltage against superimposed applied voltage.
In the same figure , Company B GPT (abbreviation for instrument grounding transformer) is GPT of the specific manufacturer,
Company A's GPT is shown as representative of the GPTs of the majority of manufacturers, excluding Company B, and there are no major differences between the companies. The parameter is the ground capacitance value of the entire high voltage system (three phases). As can be seen from Figure 3, when the superimposed DC voltage is zero, the residual ground fault voltage value is small with no big difference between Company A and Company B's GPT, but when the desired DC voltage, for example 25V, is applied, the system capacitance increases. At 1 μF, Company B generates V 0 of 500V or more, while Company A generates 120V.

ところで、高圧系統の給電を遮断しなければな
らない地絡電圧値として6KV配電線に対して例
えば、都市部で173V(110Vベースで5V)、群部で
346V(110Vベースで10V)の値が示されている。
B社GPTでは上記値を越えるため地絡警報を発
して給電を遮断して停電に至る事故になる。事
実、直流電圧印加中に警報を発した例や、V0
異常上昇に気付き所期の電圧までの直流電圧上昇
を中止した例があり、それらはB社のGPT使用
の高圧系統であつた。
By the way, the ground fault voltage value at which the power supply to the high-voltage system must be cut off is, for example, 173V (5V based on 110V) in urban areas and 173V (5V based on 110V) in urban areas for a 6KV distribution line.
A value of 346V (10V based on 110V) is shown.
At Company B's GPT, if the above value is exceeded, a ground fault alarm is issued and the power supply is cut off, resulting in an accident resulting in a power outage. In fact, there were cases in which an alarm was issued while DC voltage was being applied, and cases in which the DC voltage increase to the desired voltage was stopped after noticing an abnormal rise in V 0 , and these were high-voltage systems using GPT of Company B. .

上述の現象の理由はGPTへの直流電圧印加に
伴いB社とのGPTの各相のインダクタンスの低
下に特に不平衝があり、見掛け上の一相インダク
タンス接地を起して残留地絡電圧V0が上昇する
ためである。この上昇特性を有するGPTはB社
以外に今後発見される可能性であり、また高圧需
要家で設置されているGPTは事前調査が困難で
ある。そこで、特定のGPTをあらかじめ排除す
ることは不可能である条件下で停電事故とならな
い範囲で絶縁劣化診断の目的を遂行する必要があ
る。さらに、配電用変電所は無人であり、構内に
立ち入ることは管轄違いの問題もあり容易でな
い。また給電所のスーパーピジヨンはしきい値突
破の結果を知らせるだけで、事前に事態を把握で
きない問題がある。
The reason for the above phenomenon is that as DC voltage is applied to the GPT, there is a particular imbalance in the drop in inductance of each phase of the GPT with Company B, causing an apparent one-phase inductance grounding, resulting in a residual ground fault voltage V 0 This is because There is a possibility that GPTs with this rising characteristic will be discovered in the future at companies other than Company B, and it is difficult to conduct a preliminary investigation of GPTs installed at high-voltage customers. Therefore, it is necessary to accomplish the purpose of insulation deterioration diagnosis under conditions where it is impossible to eliminate specific GPTs in advance and within a range that does not result in a power outage accident. Furthermore, distribution substations are unmanned, and it is not easy to enter the premises due to differences in jurisdiction. Additionally, the super pigeons at power supply stations only notify the results of threshold crossings, but there is a problem in that they cannot predict the situation in advance.

この発明の目的は高圧系統の残留地絡電圧を測
定し指示する機能を備えた直流電圧印加装置を提
供することである。
An object of the present invention is to provide a DC voltage application device having a function of measuring and indicating residual ground fault voltage in a high voltage system.

(ニ) 問題点を解決するための手段 この発明は、交流高圧母線と大地間に高圧遮断
器を経由して接続される三相星型結線の主リアク
トルと三相星型結線の副リアクトルの並列回路か
ら構成されるものであつて、 前記主リアクトルの中性点と第一の接地との間
には、低圧遮断器と、地電流抑制回路と、前記地
電流抑制回路と直列に接続された直流信号電源装
置とが順次直列接続され、 前記副リアクトルには開放三角結線を構成する
二次巻線回路を設けると共にその開放端の交流電
圧を測定する手段が接続され、 前記副リアクトルの中性点からは直流接地肢と
交流接地肢との2つの接地肢を分岐し、前記直流
接地肢は倍率器抵抗と直流電圧計とを経由して第
二の接地に接続し、前記交流接地肢は抵抗とコン
デンサとを経由して前記第一の接地に接続され、 前記開放三角結線開放端の電圧が設定限度に達
したときは前記高圧遮断器を開放すること、を特
徴としている。
(d) Means for Solving the Problems This invention provides a three-phase star connection main reactor and a three-phase star connection sub-reactor that are connected between an AC high voltage bus and the ground via a high voltage circuit breaker. It is composed of a parallel circuit, and between the neutral point of the main reactor and the first ground, a low voltage circuit breaker, an earth current suppression circuit, and a ground current suppression circuit are connected in series. A secondary winding circuit forming an open triangular connection is provided in the sub-reactor, and a means for measuring the AC voltage at the open end is connected to the sub-reactor. Two grounding limbs, a DC grounding limb and an AC grounding limb, are branched from the grounding point, and the DC grounding limb is connected to the second grounding via a multiplier resistor and a DC voltmeter, and the AC grounding limb is The high voltage circuit breaker is connected to the first ground via a resistor and a capacitor, and opens the high voltage circuit breaker when the voltage at the open end of the open triangular connection reaches a set limit.

(ホ) 作用 低圧遮断器を開放したまま高圧遮断器を投入す
ると、副リアクトルの二次巻線回路を介して高圧
系統の残留地絡電圧値が交流電圧計により直読で
きる。さらに、異常が無いばあいに低圧遮断器を
投入し、直流信号電源装置により高圧系統に直流
電圧を印加していき、残留地絡電圧値の上昇を交
流電圧計により監視することにより、停電事故に
至ることなく絶縁劣化診断をおこなうことができ
る。
(e) Effect If the high voltage circuit breaker is closed while the low voltage circuit breaker is open, the residual ground fault voltage value of the high voltage system can be directly read with an AC voltmeter via the secondary winding circuit of the auxiliary reactor. Furthermore, if there is no abnormality, the low voltage circuit breaker is turned on, DC voltage is applied to the high voltage system using the DC signal power supply, and the rise in the residual ground fault voltage is monitored using an AC voltmeter. Insulation deterioration diagnosis can be performed without causing damage.

(ヘ) 実施例 第1図はこの発明の一実施例を示し、第2図と
同一部分は同一符号を付している。主リアクトル
4と地電流抑制回路6のあいだには低圧遮断器5
が接続されている。副リアクトル11には各相毎
に一次と絶縁した二次巻線16を有し開放三角結
線で接続されている。この二次巻線16の開放端
には電流制限抵抗17が安定負荷として接続さ
れ、その両端に発生する残留地絡電圧に比例する
電圧はメータリレー付きの交流電圧計18により
一次換算値で指示され、さらに設定値を越えた時
は高圧遮断器3は開放される。電流制限抵抗17
の一端は安全のために第一の接地21に導かれて
いる。
(F) Embodiment FIG. 1 shows an embodiment of the present invention, and the same parts as in FIG. 2 are given the same reference numerals. A low voltage circuit breaker 5 is installed between the main reactor 4 and the earth current suppression circuit 6.
is connected. The auxiliary reactor 11 has a secondary winding 16 insulated from the primary for each phase, and is connected in an open triangular connection. A current limiting resistor 17 is connected to the open end of this secondary winding 16 as a stable load, and the voltage proportional to the residual ground fault voltage generated across the resistor is indicated as a primary conversion value by an AC voltmeter 18 with a meter relay. When the set value is further exceeded, the high voltage circuit breaker 3 is opened. Current limiting resistor 17
One end of is led to the first ground 21 for safety.

副リアクトル11の中性点から大地に向けて2
つの接地肢が分岐され、一方は直流接地肢で倍率
器抵抗12、直流電圧計13、フイルタ用コンデ
ンサ14からなり第二の接地22に導かれてい
る。他方は抵抗19とコンデンサ20の直列から
なる交流接地肢で直流電流の通過を遮断すると共
に、交流零相電流の低インピーダンス通路を確保
する。
From the neutral point of sub-reactor 11 to the earth 2
Two grounding limbs are branched, and one is a DC grounding limb, which consists of a multiplier resistor 12, a DC voltmeter 13, and a filter capacitor 14, and is led to a second ground 22. On the other hand, an AC grounding leg consisting of a resistor 19 and a capacitor 20 in series blocks the passage of DC current and ensures a low impedance path for AC zero-sequence current.

副リアクトル11は上記の構成により直流印加
電圧測定の本来の目的の外に残留地絡電圧の測定
の機能を有する。上記構成に達するまでに以下の
検討がなされた。即ち、残留地絡電圧を直流電圧
印加装置自体で測定するためには、GPTを装置
内に内蔵することが考えられる。しかし、相当な
追加物を容積、重量に制限のある装置内に内蔵す
ることは不可能であること、GPT自体が新たな
攪乱発生原因となることから斥けられた。また、
主リアクトル4に二次巻線を施して残留地絡電圧
を指示させることが考えられる。しかし、主リア
クトル4は本来大きい直流電流を通過させること
を目的としたもので、この二次巻線は直流電流の
上昇、下降時に激しい磁束変化をおこすため安定
した残留地絡電圧の検出が不可能なこと、地電流
抑制回路6が零相電流を遮り、特に高圧系統地絡
事故時の残留地絡電圧検出感度が鈍ることから斥
けられた。従つて副リアクトル11に二次巻線1
6を施すことになつた。
Due to the above-described configuration, the sub reactor 11 has a function of measuring residual ground fault voltage in addition to its original purpose of measuring DC applied voltage. The following considerations were made before arriving at the above configuration. That is, in order to measure the residual ground fault voltage using the DC voltage application device itself, it is conceivable to incorporate the GPT into the device. However, it was rejected because it was impossible to incorporate a considerable amount of additional material into a device with limited volume and weight, and because GPT itself would become a new source of disturbance. Also,
It is conceivable to provide a secondary winding to the main reactor 4 to indicate the residual ground fault voltage. However, the main reactor 4 is originally intended to pass a large DC current, and this secondary winding causes severe magnetic flux changes when the DC current rises and falls, making it difficult to detect stable residual ground fault voltage. This was rejected because the ground current suppression circuit 6 would block the zero-sequence current, which would reduce the sensitivity for detecting residual ground fault voltage, especially in the event of a high-voltage system ground fault accident. Therefore, the secondary winding 1 is connected to the auxiliary reactor 11.
It was decided to administer 6.

上記二次巻線の施しの具体化には以下の考慮が
なされた。二次巻線により動作させる計器は電圧
計1台であるから、電流制限抵抗による安定負荷
を50VAとし、これに電圧計2台まで稼働を許す
として10VAを加え、合計3×20VA容量とした。
これは通常のGPTの1/10の容量であり、副リア
クトルの容積は全く増加せずに済む。また、副リ
アクトル11は直流電圧測定と残留地絡電圧測定
の2機能を併備する必要がある。即ち、直流接地
肢として倍率器抵抗12、直流電圧計13を経由
して第一の接地21での電圧降下の影響を受けな
いように電圧計の一端は第二の接地22に接続さ
れる。このときの倍率器抵抗値は副リアクトルの
巻線抵抗値も加えて375KΩ、直流電圧計13の
フルスケール75V時の消費電流は200μAである。
一方、副リアクトルに施した二次巻線負荷を一次
に換算した値は約250KΩ、副リアクトル自身の
励磁インダクタンスを考慮した総合インピーダン
スは80KΩとなり、100%地絡時には50mAもの
交流電流を流す必要がある。このため、中性点の
対接地交流インダクタンスはできるだけ低くする
必要があり、このため交流接地肢として抵抗19
とコンデンサ20を通じて中性点は第一の接地2
1へと導き、第二の接地22に攪乱を与えないよ
うにした。コンデンサ20は直流遮断用であり、
その静電容量は20μFであり、抵抗19はコンデ
ンサ20の容量と励磁インダクタンスとの直列共
振を避けるための緩衝抵抗でその値は7500Ωであ
る。この交流接地肢のインピーダンスが零で無い
ため残留地絡電圧検出感度に及ぼす影響は僅か3
%であり、これは二次巻線ターン数を3%増加す
ることで補償している。
The following considerations were made in implementing the above-mentioned arrangement of the secondary winding. Since the only instrument operated by the secondary winding is a voltmeter, the stable load due to the current limiting resistor is set to 50 VA, and 10 VA is added to allow operation of up to two voltmeters, giving a total capacity of 3 x 20 VA.
This is 1/10 the capacity of a normal GPT, so the volume of the auxiliary reactor does not need to be increased at all. Further, the sub reactor 11 needs to have two functions: DC voltage measurement and residual ground fault voltage measurement. That is, one end of the voltmeter is connected to the second ground 22 via the multiplier resistor 12 and the DC voltmeter 13 as a DC grounding leg so as not to be affected by the voltage drop at the first ground 21. At this time, the multiplier resistance value including the winding resistance value of the auxiliary reactor is 375KΩ, and the current consumption when the DC voltmeter 13 has a full scale of 75V is 200μA.
On the other hand, the value of the secondary winding load applied to the auxiliary reactor converted to the primary is approximately 250KΩ, and the total impedance considering the excitation inductance of the auxiliary reactor itself is 80KΩ, and in the event of a 100% ground fault, it is necessary to flow an AC current of 50mA. be. Therefore, the AC inductance of the neutral point to the ground must be as low as possible, and for this reason, a resistor of 19 mm is used as the AC grounding leg.
and the neutral point through the capacitor 20 is connected to the first ground 2
1 so as not to disturb the second grounding 22. The capacitor 20 is for DC interruption,
Its capacitance is 20 μF, and the resistor 19 is a buffer resistor to avoid series resonance between the capacitance of the capacitor 20 and the excitation inductance, and its value is 7500Ω. Since the impedance of this AC grounding limb is not zero, the effect on residual ground fault voltage detection sensitivity is only 3.
%, and this is compensated for by increasing the number of turns in the secondary winding by 3%.

次に上述の本装置の操作および動作について説
明する。まず、交流高圧母線1と大地間にこの装
置を接続し、低圧遮断器5を開成した状態で高圧
遮断器3を投入する。すると、主リアクトル4は
その中性点がフロートした状態で高圧系統間に投
入されると共に、副リアクトル11はその2つの
接地肢により直流回路的にも交流回路的にも完全
に高圧母線1と大地間に接続される。このとき、
主リアクトル4の状態は各相のインダクタンス値
をY−△変換した値が三相の各線間に投入された
状態に等しい。そこで、高圧系統の対地インピー
ダンスはほとんど変動を受けない状態で高圧系統
の残留地絡電圧値V0は交流電圧計18により直
読できる。ここで低圧遮断器5を開成にするのは
主リアクトルの影響を除いた残留地絡電圧値の平
常値を知るためである。ところで、交流電圧計の
指示値は通常数十V以下であるから、もしこの値
が高すぎるなら高圧系統に異常が発生しているか
ら調査を要する。
Next, the operation and operation of the above-described apparatus will be explained. First, this device is connected between the AC high-voltage bus 1 and the ground, and the high-voltage circuit breaker 3 is turned on with the low-voltage circuit breaker 5 open. Then, the main reactor 4 is inserted between the high-voltage systems with its neutral point floating, and the sub-reactor 11 is completely connected to the high-voltage bus 1 in both the DC and AC circuits by its two grounding limbs. connected to the earth. At this time,
The state of the main reactor 4 is equivalent to the state in which the values obtained by Y-Δ conversion of the inductance values of each phase are applied between the lines of the three phases. Therefore, the residual ground fault voltage value V 0 of the high voltage system can be directly read by the AC voltmeter 18 while the ground impedance of the high voltage system is hardly changed. The reason why the low voltage circuit breaker 5 is opened is to know the normal value of the residual ground fault voltage value excluding the influence of the main reactor. By the way, since the indicated value of an AC voltmeter is usually several tens of volts or less, if this value is too high, an abnormality has occurred in the high voltage system and an investigation is required.

次に、低圧遮断器5を投入する。この段階で主
リアクトル4が完全に高圧母線1と大地間に投入
されたことになり、高圧系統の対地インピーダン
スの変化が起こつて残留地絡電圧値に若干の変化
が生じるが、地電流抑制回路6が高インピーダン
スのためその変化は大きくは無い。
Next, the low voltage circuit breaker 5 is turned on. At this stage, the main reactor 4 is completely inserted between the high voltage bus 1 and the ground, and the impedance to the ground of the high voltage system changes, causing a slight change in the residual ground fault voltage value, but the earth current suppression circuit 6 has a high impedance, so the change is not large.

次に開閉器8を閉じ、可変直流電圧電源9を操
作し、所期の直流電圧値が直流電圧計13で得ら
れるようにその出力電圧を上昇する。この上昇過
程で交流電圧計18の指示値に注目する。所期直
流電圧値に達するまでに残留地絡電圧値V0の上
昇が交流電圧計18により見られなければ、直流
印加は完成し、この状態で電力ケーブル等の活線
下劣化診断が行われる。もし、所期直流電圧に達
するまでに残留地絡電圧が危険領域に達しそうで
あると交流電圧計18の指示により判断されたな
ら、適当な直流電圧値で印加を停止し、その値を
絶縁劣化診断の現場に通報してその電圧下で劣化
診断作業を行わせる。
Next, the switch 8 is closed and the variable DC voltage power supply 9 is operated to increase its output voltage so that the desired DC voltage value is obtained by the DC voltmeter 13. Pay attention to the indicated value of the AC voltmeter 18 during this rising process. If no increase in the residual ground fault voltage value V 0 is observed by the AC voltmeter 18 before reaching the desired DC voltage value, the DC application is completed, and in this state, a diagnosis of deterioration under live wires of power cables, etc. is performed. . If the AC voltmeter 18 determines that the residual ground fault voltage is likely to reach the dangerous range before reaching the desired DC voltage, stop applying the DC voltage at an appropriate DC voltage value and insulate that value. Notify the deterioration diagnosis site and have them perform deterioration diagnosis work under that voltage.

なお、交流電圧計18の指示値を不注意で見逃
し印加直流電圧値を危険領域まで上昇させた場
合、または時間遅れを伴つて後から残留地絡電圧
値が上昇した場合には、交流電圧計18のメータ
リレーが働いて高圧遮断器3を開成する。このた
め本装置は高圧母線1への接続が断たれるので、
本装置の誤操作により停電事故へ至ることは無
い。次に、直流電圧断の要請が絶縁劣化診断の現
場からあれば、可変直流電圧電源9の出力電圧を
零に戻し、その後高圧遮断器3を開放する。次い
で低圧遮断器5を開放する。高圧遮断器3より先
に低圧遮断器5を開放することは危険であるか
ら、高圧遮断器3の開放後に低圧遮断器5が開放
するようにインターロツク機構を設ける。さらに
この機構は低圧遮断器5が投入された状態で高圧
遮断器3の投入ができないようにも構成される。
In addition, if you inadvertently overlook the indicated value of the AC voltmeter 18 and cause the applied DC voltage to rise to a dangerous range, or if the residual ground fault voltage increases later with a time delay, the AC voltmeter 18 meter relays operate to open the high voltage circuit breaker 3. For this reason, this device is disconnected from the high voltage bus 1, so
Misoperation of this device will not result in a power outage accident. Next, if a request for DC voltage disconnection is received from the field of insulation deterioration diagnosis, the output voltage of the variable DC voltage power supply 9 is returned to zero, and then the high voltage circuit breaker 3 is opened. Then, the low voltage circuit breaker 5 is opened. Since it is dangerous to open the low voltage circuit breaker 5 before the high voltage circuit breaker 3, an interlock mechanism is provided so that the low voltage circuit breaker 5 is opened after the high voltage circuit breaker 3 is opened. Furthermore, this mechanism is configured so that the high voltage circuit breaker 3 cannot be closed while the low voltage circuit breaker 5 is closed.

また、直流電圧印加の有無を問わず、高圧遮断
器3の投入状態で高圧系統に地絡事故が発生した
時は、交流電圧計18のメータリレーが動作し、
配電用変電所の遮断動作により前に本装置は遮断
されるので、配電用変電所の遮断器は常に本装置
が接続されて無い条件で動作される。
In addition, regardless of whether DC voltage is applied or not, when a ground fault occurs in the high voltage system with the high voltage circuit breaker 3 closed, the meter relay of the AC voltmeter 18 operates.
Since this device is cut off before the interruption operation of the distribution substation, the circuit breaker of the distribution substation is always operated under the condition that this device is not connected.

(ト) 効果 この発明の直流電圧印加装置は装置自体にその
接続された高圧系統の残留地絡電圧値を測定する
機能を備えている。従つて、高圧系統に接続され
たGPTの特性を考慮せず、しかも事前の調査を
行わず、不慮の停電事故の心配なしに直流電圧の
印加を行うことができる。
(g) Effects The DC voltage application device of the present invention has a function to measure the residual ground fault voltage value of the high voltage system connected to the device itself. Therefore, DC voltage can be applied without considering the characteristics of the GPT connected to the high voltage system, without conducting any prior investigation, and without worrying about unexpected power outages.

また、本装置は残留地絡電圧が本装置の誤操作
のためかあるいは他の地点での地絡事故のために
上昇した場合、配電用変電所の遮断器の動作より
前に自動的に本装置を高圧系統から切り離す機能
を有するので、高圧系統の地絡時の条件を乱さ
ず、配電用変電所の保護リレー類の設定条件を変
更する必要はない。
In addition, if the residual ground fault voltage increases due to incorrect operation of the device or due to a ground fault accident at another location, this device will automatically automatically activate the device before the circuit breakers in the distribution substation operate. Since it has the function of disconnecting the high voltage system from the high voltage system, it does not disturb the conditions at the time of a ground fault in the high voltage system, and there is no need to change the setting conditions of the protective relays in the distribution substation.

また本装置は高圧遮断器と低圧遮断器の二段構
成で主リアクトル、高圧母線、大地間への接続を
行うので、高圧遮断器のみを投入した状態で高圧
系統の残留地絡電圧の原値を知ることができ、高
圧系統自体の異常の有無を確認して直流電圧印加
作業実施の可否を決定することができる。
In addition, this device has a two-stage configuration of a high-voltage circuit breaker and a low-voltage circuit breaker to connect the main reactor, high-voltage bus, and earth. It is possible to check whether there is an abnormality in the high voltage system itself and decide whether or not to carry out the DC voltage application work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す回路構成
図、第2図は従来の直流信号印加装置を示す回路
構成図、第3図は特性の異なる計器用接地変圧器
が接続された高圧系統への重畳直流電圧に対する
残留地絡電圧の関係を示す図である。 1…高圧母線、2…直流電圧印加装置、3…高
圧遮断器、4…高圧リアクトル、5…低圧遮断
器、6…地電流抑制回路、11…副リアクトル、
16…二次巻線、18…交流電圧計、21…第一
の接地、22…第二の接地、31…直流信号電源
装置。
Fig. 1 is a circuit configuration diagram showing an embodiment of the present invention, Fig. 2 is a circuit configuration diagram showing a conventional DC signal application device, and Fig. 3 is a high voltage system to which instrument grounding transformers with different characteristics are connected. It is a figure which shows the relationship of the residual ground fault voltage with respect to the DC voltage superimposed on. 1... High voltage bus bar, 2... DC voltage application device, 3... High voltage circuit breaker, 4... High voltage reactor, 5... Low voltage circuit breaker, 6... Earth current suppression circuit, 11... Sub reactor,
16... Secondary winding, 18... AC voltmeter, 21... First ground, 22... Second ground, 31... DC signal power supply device.

Claims (1)

【特許請求の範囲】 1 交流高圧母線と大地間に高圧遮断器を経由し
て接続される三相星型結線の主リアクトルと三相
星型結線の副リアクトルの並列回路から構成され
るものであつて、 (イ) 前記主リアクトルの中性点と第一の接地との
間には、低圧遮断器と、インダクタンスを第一
肢の要素とし抵抗とキヤパシタンスの直列回路
を第二肢の要素として第一肢と第二肢で並列回
路を構成した地電流抑制回路と、前記地電流抑
制回路と直列に接続された直流信号電源装置と
が順次直列接続され、 (ロ) 前記副リアクトルには開放三角結線を構成す
る二次巻線回路を設けると共にその開放端の交
流電圧を測定する手段が接続され、 (ハ) 前記副リアクトルの中性点からは直流接地肢
と交流接地肢との2つの接地肢を分岐し、前記
直流接地肢は倍率器抵抗と直流電圧計とを経由
して第二の接地に接続し、前記交流接地肢は抵
抗とコンデンサとを経由して前記第一の接地に
接続され、 (ニ) 前記開放三角結線開放端の電圧が設定限度に
達したときは前記高圧遮断器を開放することを
特徴とする、高圧系統への直流電圧印加装置。
[Scope of Claims] 1. Consists of a parallel circuit of a three-phase star-connected main reactor and a three-phase star-connected auxiliary reactor connected between an AC high-voltage bus and the ground via a high-voltage circuit breaker. (a) Between the neutral point of the main reactor and the first ground, there is a low-voltage circuit breaker, an inductance as an element of the first limb, and a series circuit of resistance and capacitance as an element of the second limb. An earth current suppression circuit in which a first limb and a second limb constitute a parallel circuit, and a DC signal power supply device connected in series with the earth current suppression circuit are sequentially connected in series, and (b) the sub reactor is open. A secondary winding circuit constituting a triangular connection is provided, and a means for measuring the AC voltage at its open end is connected; Branching the grounding limb, the DC grounding limb is connected to the second grounding via a multiplier resistor and a DC voltmeter, and the AC grounding limb is connected to the first grounding via a resistor and a capacitor. (d) A device for applying DC voltage to a high voltage system, characterized in that the high voltage circuit breaker is opened when the voltage at the open end of the open triangular connection reaches a set limit.
JP63086914A 1988-04-08 1988-04-08 Dc voltage impressing device to high voltage system Granted JPH01259273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086914A JPH01259273A (en) 1988-04-08 1988-04-08 Dc voltage impressing device to high voltage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086914A JPH01259273A (en) 1988-04-08 1988-04-08 Dc voltage impressing device to high voltage system

Publications (2)

Publication Number Publication Date
JPH01259273A JPH01259273A (en) 1989-10-16
JPH0585032B2 true JPH0585032B2 (en) 1993-12-06

Family

ID=13900115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086914A Granted JPH01259273A (en) 1988-04-08 1988-04-08 Dc voltage impressing device to high voltage system

Country Status (1)

Country Link
JP (1) JPH01259273A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971649A (en) 2018-03-30 2020-11-20 国立研究开发法人理化学研究所 Arithmetic device and arithmetic system

Also Published As

Publication number Publication date
JPH01259273A (en) 1989-10-16

Similar Documents

Publication Publication Date Title
US10522998B2 (en) Method for detecting an open-phase condition of a transformer
US10910812B2 (en) Method for testing open phase detection system
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
JP4871511B2 (en) Interrupt insulation measuring device
JP2006200898A5 (en)
JPH11304870A (en) Method for confirming polarity of tertiary winding of meter current transformer, and testing method for ground protective relay using the same
Das et al. 13.8-kV selective high-resistance grounding system for a geothermal generating plant—A case study
Shen et al. Grounding transformer application, modeling, and simulation
JPH0585032B2 (en)
CN103018631A (en) System for 10kV fault line detection
JP2004125688A (en) Field test method for differential relay using excitation inrush current
EP1134865B1 (en) Detecting wire break in electrical network
RU2788519C1 (en) Method for disconnecting a damaged connection with a single-phase earth fault in networks with an isolated neutral
KR102673944B1 (en) Vibration isolation switchboard havng a function of leakage current detection and monitoring
Sattari et al. High-Resistance Grounding Design for Industrial Facilities: Providing Continuity of Service in Complex Distribution Systems
JP2817253B2 (en) Bypass circuit of load switch with ground fault trip
JP3074695B2 (en) Circulating zero-phase current suppression circuit
JP2024066022A (en) Testing device
Sattari et al. High-Resistance Grounding Design for Industrial Facilities
Wahlroos et al. IMPROVING EARTH-FAULT DETECTION PERFORMANCE AND SUPPLY SECURITY OF CABLED RURAL MV-NETWORKS WITH FAULT ISOLATION
JPS6243142B2 (en)
Gajic et al. Capabilities of modern numerical differential protections
JP2607623B2 (en) Light ground fault occurrence cable identification method
JPH0739251U (en) Artificial ground fault test equipment
JPH0548139Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees