JPH0246721A - Solid phase epitaxy method - Google Patents

Solid phase epitaxy method

Info

Publication number
JPH0246721A
JPH0246721A JP19840488A JP19840488A JPH0246721A JP H0246721 A JPH0246721 A JP H0246721A JP 19840488 A JP19840488 A JP 19840488A JP 19840488 A JP19840488 A JP 19840488A JP H0246721 A JPH0246721 A JP H0246721A
Authority
JP
Japan
Prior art keywords
laser beam
scattered light
detected
irradiated
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19840488A
Other languages
Japanese (ja)
Inventor
Kenji Fukase
健二 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19840488A priority Critical patent/JPH0246721A/en
Publication of JPH0246721A publication Critical patent/JPH0246721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent wasteful annealing hours from spending by a method wherein a part irradiating an energy beam is irradiated with a laser beam, scattered light subjected to Raman scattering is detected and when the scattered light to show a fact that an a-Si film is single-crystallized is detected, the irradiation range of the energy beam is changed. CONSTITUTION:A sample 1 is irradiated with a laser beam 3a and a laser beam 3b and light scattered on the surface of the sample passes through a lens 4 and beam splitters B3, B2 and B4 and is guided to an analyzer A. In the analyzer A, the scattered light only of the laser beam 3b polarized by a polarizer P passes through the analyzer A and detection of Roman scattered light is performed by a spectroscope 6 and a photomultiplier PM. If the scattered light having an acute peak is detected at a position shifted by 520.5cm<-1>, the movement of an X-Y stage 2 is controlled in a step width not exceeding the irradiation range of the laser beam 3a because the irradiation region at that time is regarded as region where an a-Si film 13 is single-crystallized by a solid phase growth, the laser beam 3a and the laser beam 3b are scanned relatively on the surface of the sample and the irradiation region is changed.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は、半導体膜、特にSi膜のエピタキシャル成長
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A) Field of Industrial Application The present invention relates to a method for epitaxial growth of semiconductor films, particularly Si films.

口)従来の技術 絶縁層〈絶縁物の基板も含む)上に単結晶Si屑を形成
したものは、So I (Silicon on 1o
sulator) llj造と称され、狭い領域で容易
に素子分離が行なえ、高集積化や高速化が可能なものと
して知られている。そして、従来のSi基板上に素子が
作製される半導体集積回路(IC)に比べて、特性向上
が図れることから盛んに研究開発が行なわれている。
Ex) Conventional technology A method in which single-crystal Si scrap is formed on an insulating layer (including an insulating substrate) is called SoI (Silicon on 1O).
It is known as a structure that allows easy isolation of elements in a narrow area and allows for high integration and high speed. Research and development are being actively conducted on semiconductor integrated circuits (ICs), which have improved characteristics compared to conventional semiconductor integrated circuits (ICs) in which elements are fabricated on a Si substrate.

絶縁層上に単結晶5illを形成させるものとして、同
相エピタキシャル成長方法があり、これは単結晶S1基
板上に、St基板面の一部をシードとして露出させて絶
縁膜を形成し、シードと絶縁股上に非晶質Si(以下a
−Siと称す)膜を堆積し、600℃程度の低温でアニ
ールすることで、横方向に固相成長させて、a−Si膜
を単結晶化させるものである。
There is an in-phase epitaxial growth method to form a single crystal 5ill on an insulating layer.This method involves forming an insulating film on a single crystal S1 substrate by exposing a part of the St substrate surface as a seed, and forming a layer between the seed and the insulating layer. to amorphous Si (hereinafter a)
-Si) is deposited and annealed at a low temperature of about 600° C. to cause solid-phase growth in the lateral direction, thereby converting the a-Si film into a single crystal.

固相エピタキシャル成長のアニールにレーザを用いるも
のがあるが、大面積を一度にレーザ照射してアニールす
ると、シードの結晶方位を継承しない粒界が発生して横
方向のエピタキシャル成長距離が伸びず、小面積のエピ
タキシャル領域しか得られなかった。
Some methods use laser for annealing in solid-phase epitaxial growth, but if a large area is irradiated and annealed at once, grain boundaries that do not inherit the crystal orientation of the seed are generated, and the lateral epitaxial growth distance does not increase, resulting in a small area. Only an epitaxial region of 100% was obtained.

そこで、特開昭62−257718号公報では、レーザ
の照射領域を、まず、シーPを含む小領域にしてアニー
ルを行い、次にその小領域の周辺部分に照射領域を広げ
てアニールを行っている。即ち、シードから小領域ごと
にアニールを行ってエピタキシャル成長をさせ、大面積
のエピタキシャル領域を得てい゛る。
Therefore, in Japanese Patent Application Laid-open No. 62-257718, annealing is first performed on a small area including the sea P as the laser irradiation area, and then the irradiation area is expanded to the peripheral part of the small area and annealing is performed. There is. That is, epitaxial growth is performed by annealing each small region from a seed to obtain a large epitaxial region.

ハ)発明が解決しようとする課題 固相エピタキシャル成長におけるアニールはa−S 1
JIIIの膜質によって固相成長状態が異なるので、確
実に固相成長させるためにアニール時間に余裕をもたせ
て行われる。従って、上述の様にエピタキシャル成長さ
せる領域を小領域に区切り、順次レーザを照射してアニ
ール領域を広げていく方法では小領域のアニール毎に時
間的余裕をもたせなくてはならず、本来必要のない時間
を多く費すことになり、アニールに多大な時間が掛って
しまう。
C) Problem to be solved by the invention Annealing in solid phase epitaxial growth is a-S 1
Since the state of solid phase growth differs depending on the quality of the JIII film, the annealing is performed with a certain margin of time in order to ensure solid phase growth. Therefore, in the method described above, in which the region to be epitaxially grown is divided into small regions and the annealed region is enlarged by successive laser irradiation, it is necessary to allow time for each small region to be annealed, which is unnecessary. This requires a lot of time, and annealing takes a lot of time.

二)課題を解決するための手段 本発明は、単結晶Si基台上に開孔部を有する絶縁膜を
形成し、この開孔部から露出する単結晶のシード部分及
び前記絶縁膜上にa−Sillを形成し、シード部分か
らその周辺部分へと照射範囲を変化させてエネルギービ
ームを前記a−Siliに照射し、該a−S 1JIK
を単結晶化させる固相エピタキシャル成長方法において
、エネルギービームを照射している部分にレーザビーム
を照射し、照射したレーザビームの散乱光のうちラマン
散乱された散乱光を検出し、前記a−S 1JIl(が
単結晶化されたことを示す散乱光を検出したときに、エ
ネルギービームの照射範囲を変化させるものである。
2) Means for Solving the Problems The present invention forms an insulating film having an opening on a single crystal Si base, and a seed portion of the single crystal exposed from the opening and a -Sill, and irradiate the a-Sili with an energy beam while changing the irradiation range from the seed part to the surrounding part, and the a-S 1JIK
In a solid-phase epitaxial growth method for single crystallizing a-S 1 (The irradiation range of the energy beam is changed when scattered light indicating that the crystal has been made into a single crystal is detected.)

ホ)作 用 エネルギービームの照射範囲にレーザビームを照射して
、その散乱光からa−Sillが単結晶化されたことが
検出されると、エネルギービームの照射範囲を変えるの
で、同一部分に必要以上のエネルギービームを照射して
無駄なアニール時間を費やすことがなくなる。
e) When a laser beam is irradiated to the irradiation range of the working energy beam and it is detected from the scattered light that a-Sill has been monocrystallized, the irradiation range of the energy beam is changed. This eliminates the need to waste annealing time by irradiating energy beams with a higher energy beam.

へ)実施例 まず本発明方法に用いられるアニール装置を第2図に示
し説明する。
f) Example First, an annealing apparatus used in the method of the present invention is shown in FIG. 2 and will be described.

(1)は固相エピタキシャル成長を行う試料で、ヒータ
を備えX−Y方向に移動制御さtしるX−Yとしてのア
ルゴンイオンレーザで、2W程度の出力を持ち、488
0人や5145人の波長のレーザビームを放出する。レ
ーザ(3)から発せられたレーザビームは、ビームスプ
リッタB1、B2、B3および対物レンズ(4)を通っ
て試料(11に照射され、試料(1)上に形成されたa
−Siliiが昇温して、固相成長が起こる。
(1) is a sample to be subjected to solid phase epitaxial growth, using an argon ion laser as an X-Y that is equipped with a heater and whose movement is controlled in the X-Y direction, and has an output of about 2 W, and a 488
It emits a laser beam with a wavelength of 0 or 5145 people. The laser beam emitted from the laser (3) passes through the beam splitters B1, B2, B3 and the objective lens (4) and is irradiated onto the sample (11), forming an a.
-Silii is heated and solid phase growth occurs.

また、レーザ(3)から発せられたレーザビームのうち
数%のビームがビームスプリッタB1で取り出され、ミ
ラーMで前置分光器(5)に導かれ、該分光器(5)か
らラマン分光に用いる波長(本実施例では5145人と
する)だけを取り出す6分光器(5)から取り出された
5145人の波長の光はポラライザPで偏光され、ビー
ムスプリッタB3で反射され対物レンズ(4)を通って
試料(1)面に照射される。
In addition, several percent of the laser beam emitted from the laser (3) is taken out by the beam splitter B1, guided by the mirror M to the front spectrometer (5), and converted into Raman spectroscopy from the spectrometer (5). The light with the wavelength of 5145 people extracted from the 6 spectrometer (5) that extracts only the wavelength to be used (in this example, 5145 people) is polarized by the polarizer P, reflected by the beam splitter B3, and passed through the objective lens (4). The sample (1) surface is irradiated through the beam.

試料(1)の表面での散乱光はレンズ(4)、ビームス
プリッタB3、B2を通り、ビームスプリッタB4で反
射されアナライザAに導かれる。アナライザAではポラ
ライザPにより偏光された光だけが通過して分光器(6
)に入射する1分光器(6)で分光された光はフォトマ
ルチプライヤPMで検出され、検出信号が制御回路(7
)へと伝達される。
Scattered light on the surface of the sample (1) passes through a lens (4), beam splitters B3 and B2, is reflected by beam splitter B4, and is guided to analyzer A. In analyzer A, only the light polarized by polarizer P passes through and is sent to the spectrometer (6
) is detected by a photomultiplier PM, and the detection signal is sent to a control circuit (7).
).

制御回路(7)はレーザ(3)の出力やX−Yステージ
(2)のヒータや位置の制御を行う。
A control circuit (7) controls the output of the laser (3) and the heater and position of the X-Y stage (2).

(8)は監視モニタで、固相成長のためのレーザ(3)
からビームスプリッタB1、B2、B3及びレンズ(4
)を通って試料(1)に照射されるレーザビームの照射
領域を確認するためのものである。
(8) is a monitoring monitor, and the laser (3) for solid phase growth
to beam splitters B1, B2, B3 and lenses (4
) to confirm the irradiation area of the laser beam that is irradiated onto the sample (1).

さて、次に第1図に沿って本発明の一実施例を説明する
。尚、本実施例では単結晶Si基台として、単結晶Si
基板を用いているが、基板上に形成された単結晶Stw
Aを用いても良い。
Next, one embodiment of the present invention will be described with reference to FIG. In addition, in this example, single crystal Si is used as the single crystal Si base.
Although a substrate is used, single crystal Sw formed on the substrate
A may also be used.

(11)は(100)面を主面とする単結晶S1基台と
しての単結晶S1基板で、その表面に絶縁膜としてS 
i OJ! (12)を減圧CVD (化学気相成長)
法により堆積させる。そしてフォトリングラフィ技術に
より、5io2膜(12)の一部に開孔部(12a)を
形成し、単結晶St基板(りの表面を露出させる(第1
図A)。この開孔部(12a)から露出している単結晶
Si基板(11)表面がシード部(11a)となる。
(11) is a single-crystal S1 substrate with the (100) plane as the main surface, and an insulating film on the surface of the S1 substrate.
i OJ! (12) by low pressure CVD (chemical vapor deposition)
Deposit by method. Then, by photolithography technology, an opening (12a) is formed in a part of the 5io2 film (12) to expose the surface of the single crystal St substrate (first
Figure A). The surface of the single crystal Si substrate (11) exposed through this opening (12a) becomes a seed portion (11a).

次にS i O2JIi (12)やシード部(lla
)の表面上全面にa−Si膜(13)を減圧CVD法や
UHV蒸着法でおおよそ0.8μm堆積する〈第1図B
)。
Next, S i O2JIi (12) and the seed part (lla
) An a-Si film (13) of approximately 0.8 μm is deposited on the entire surface of the substrate (Fig. 1B) by low pressure CVD or UHV evaporation.
).

a−Si111(13)を堆積させた基板(11) (
試料(1))を第2図に示すアニール装置のX−Yステ
ージ(2)上に設置し、該ステージ(2)に備えられる
ヒータにより試料(1)を加熱昇温する。試料(1)を
昇温しておくことにより、固相成長のために照射するレ
ーザビームのエネルヘ密度を低くすることができ、熱的
ストレスが緩和される。ただし、試料(1)の温度が5
00℃以上になると、レーザビームを照射していない領
域からも固相成長が起こり多結晶化してしまうため、試
料温度は500℃に近い温度に設定維持される。
Substrate (11) on which a-Si111 (13) was deposited (
The sample (1)) is placed on the X-Y stage (2) of the annealing apparatus shown in FIG. 2, and the sample (1) is heated to raise its temperature by a heater provided on the stage (2). By heating the sample (1), the energy density of the laser beam irradiated for solid phase growth can be lowered, and thermal stress can be alleviated. However, the temperature of sample (1) is 5
If the temperature exceeds 00°C, solid phase growth will occur even in areas not irradiated with the laser beam, resulting in polycrystalline formation, so the sample temperature is set and maintained at a temperature close to 500°C.

そしてシード部(lla)を中心とする小領域(シード
部(11a)の幅を越えないか、越えてもシード部(l
la)から5μm以内のもの)に、レーザ(3)から発
せられビームスプリッタB1、B2、B3及びレンズ(
4)を通過してくる同相成長のためのレーザビーム(3
a)を照射する。このレーザビーム(3a)の照射によ
り、照射領域のa−SiMi(13)の温度が上昇して
(固相成長する範囲の温度となる様にレーザ(3)の出
力が制御回路(7)により制御されている)、a−Si
膜(13)が固相成長する。このときa−SiM(13
)はシード部(lla)の結晶方位を継承して固相成長
する。
Then, a small area centered around the seed part (lla) (does not exceed the width of the seed part (11a), or even if it exceeds the width of the seed part (lla)
beam splitters B1, B2, B3 and lenses (within 5 μm from laser (3)).
4) A laser beam for in-phase growth (3) passes through
a) Irradiate. By irradiating the laser beam (3a), the temperature of the a-SiMi (13) in the irradiation area rises (within the temperature range for solid phase growth), and the output of the laser (3) is controlled by the control circuit (7). controlled), a-Si
A film (13) is grown in solid phase. At this time, a-SiM (13
) inherits the crystal orientation of the seed portion (lla) and grows in a solid phase.

また、固相成長のためのレーザビーム(3a)と−緒に
、該レーザビーム(3a)の照射領域に対して、ビーム
スプリッタB1で取り出され前置分光器(5)で単色化
されたレーザ光(3b) (この光もレーザビームであ
るが、固相成長のためのレーザビーム(3a)と区別す
るためレーザ光と称す)も照射される(第1図C)。
In addition, along with the laser beam (3a) for solid phase growth, a laser beam extracted by the beam splitter B1 and made monochromatic by the pre-spectroscope (5) is applied to the irradiation area of the laser beam (3a). Light (3b) (this light is also a laser beam, but is called a laser beam to distinguish it from the laser beam (3a) for solid phase growth) is also irradiated (FIG. 1C).

そして、レーザビーム(3a)やレーザ光(3b)が試
料(+1に照射され、表面で散乱した光はレンズ(4)
及びビームスプリッタB3.B2.B4を通りアナライ
ザAに導かれる。アナライザAではポラライザPで偏光
されたレーザ光(3b)の散乱光だけが通過し、分光器
(6)及びフォトマルチプライヤPMでラマン散乱光の
検出が行われる。
Then, the laser beam (3a) or laser light (3b) is irradiated onto the sample (+1), and the light scattered on the surface is transmitted through the lens (4).
and beam splitter B3. B2. It passes through B4 and is guided to analyzer A. Only the scattered light of the laser light (3b) polarized by the polarizer P passes through the analyzer A, and the Raman scattered light is detected by the spectrometer (6) and photomultiplier PM.

ラマン散乱光は、入射(照射)光と試料の格子振動の相
互作用により入射光の波長と異なった波長の光が散乱さ
れたものである。
Raman scattered light is light with a wavelength different from the wavelength of the incident light that is scattered due to the interaction between the incident (irradiated) light and the lattice vibration of the sample.

ラマン散乱では、第3図に示す様に単結晶Siの(10
0)面に5145人の波長のレーザ光を照射すると、L
Oフォノンにエネルギーを与え、波数520.53−’
シフトした位置(波長ではおよそ5287人)に鋭いピ
ークを持った散乱光(実線)が検出され、a−Stに対
しては480C繭−1をピークとするブロードな散乱光
(破線)が検出される。
In Raman scattering, as shown in Figure 3, (10
0) When a laser beam with a wavelength of 5145 people is irradiated on the surface, L
Gives energy to O phonon, wave number 520.53-'
Scattered light (solid line) with a sharp peak was detected at the shifted position (approximately 5287 people in terms of wavelength), and for a-St, broad scattered light (broken line) with a peak at 480C cocoon-1 was detected. Ru.

従って、分光器(6)及びフォトマルチプライヤPMで
、第3図に実線で示す様な520.5cm−’シフトし
た位置に鋭いピークを持った散乱光が検出されれば、そ
のときのレーザビーム(h)を照射している領域はa−
SiJl!(13)が固相成長により単結晶化したこと
になる。
Therefore, if the spectrometer (6) and photomultiplier PM detect scattered light with a sharp peak at a position shifted by 520.5 cm as shown by the solid line in Figure 3, the laser beam at that time The area irradiated with (h) is a-
SiJl! This means that (13) has become a single crystal by solid phase growth.

ただし1本発明方法では、第3図の様なラマン分光スペ
クトルを検出する必要はなく、分光器(6)で分光され
る光を5145人から520.5C1l ”−’シフト
した位置の光に固定しておき、フォトマルチプライヤP
Mからの検出信号の変化をみていれば単結晶化したこと
が容易に検出される。
However, in the method of the present invention, there is no need to detect the Raman spectrum as shown in Figure 3, and the light separated by the spectrometer (6) is fixed at a position shifted from 5145 to 520.5C1l''-'. Keep it, photo multiplier P
By observing the change in the detection signal from M, single crystallization can be easily detected.

制御回路(7)はフォトマルチプライヤPMからの検出
信号により、レーザビーム(3a)の照射領域が単結晶
化したことを判断したら、レーザビーム(3a)の照射
範囲を越えないステップ幅でX−Yステージ(2)の移
動制御をし、相対的にレーザビーム(3a)及びレーザ
光(3h)を試料面上で走査して、照射領域を変える(
第1図D)。
When the control circuit (7) determines that the irradiation area of the laser beam (3a) has become single crystal based on the detection signal from the photomultiplier PM, the control circuit (7) adjusts the X- Control the movement of the Y stage (2) and relatively scan the laser beam (3a) and laser light (3h) on the sample surface to change the irradiation area (
Figure 1 D).

そして、上述と同様にレーザビーム(3a)の照射領域
において、レーザ光(3b)のラマン散乱光を検出して
単結晶SLの(100)面に対する散乱光が得られたら
、X−Yステージ(2)を制御して試料(11を移動し
、レーザビーム(3a)を走査する。
Then, when the Raman scattered light of the laser beam (3b) is detected in the irradiation area of the laser beam (3a) and the scattered light for the (100) plane of the single crystal SL is obtained in the same way as described above, the X-Y stage ( 2) to move the sample (11) and scan the laser beam (3a).

尚、同相成長に十分なアニールが行われた状態でも、検
出するラマン散乱光が単結晶Siの(100)面での散
乱光でないときはその位置でエピタキシャル成長のため
のアニール処理を中止してもよい。
Even if sufficient annealing has been performed for in-phase growth, if the Raman scattered light to be detected is not scattered light on the (100) plane of single crystal Si, the annealing process for epitaxial growth may be stopped at that position. good.

この様に、レーザビーム(3a)の照射領域が固相成長
して単結晶になったら順次レーザビーム(3a)を相対
的に移動させて、a−Sil!(13)全面にわたって
固相エピタキシャル成長を行う。
In this way, when the irradiated area of the laser beam (3a) undergoes solid phase growth and becomes a single crystal, the laser beam (3a) is sequentially moved relatively to a-Sil! (13) Perform solid phase epitaxial growth over the entire surface.

本実施例ではレーザビーム(31)の照射領域の大きさ
は一定で、固相成長が進むにつれてレーザビーム(3a
)を移動走査するものであるが、レーザビーム(3a)
の照射領域が単結晶化したら、その照射領域の大きさを
広げても良く、その場合、レーザの出力を制御しつつレ
ンズで照射領域を広げたり、また、照射領域をレチクル
で制限しておき、そのレチクルを変えて照射領域を広げ
る様にしても良い、このとき、レーザ光(3b)は広げ
た照射領域の端の方に移動され、散乱光の検出が行われ
る。
In this example, the size of the irradiation area of the laser beam (31) is constant, and as the solid phase growth progresses, the size of the irradiation area of the laser beam (31) is constant.
), the laser beam (3a)
Once the irradiation area has become a single crystal, the size of the irradiation area can be expanded.In that case, the irradiation area can be expanded with a lens while controlling the laser output, or the irradiation area can be limited with a reticle. The irradiation area may be expanded by changing the reticle. In this case, the laser beam (3b) is moved toward the edge of the expanded irradiation area, and scattered light is detected.

ト)発明の効果 本発明は以上の説明から明らかな如く町、固相成長のた
めのエネルギービームの照射領域のa=SiJIKが固
相成長により単結晶化したかをラマン散乱光を検出して
判断し、単結晶化されたら、その照射領域を変えている
。従って、シード部から順に固相成長をさせることがで
き、シード部の結晶方位を継承したエピタキシャル成長
が広い範囲にわたって可能となる。また、エネルギービ
ームの照射領域においては時間的に過不足のないアニー
ルがされるので、無駄にアニール時間を掛けることがな
くなり2効率的なアニール処理が行われる。
g) Effects of the Invention As is clear from the above description, the present invention detects Raman scattered light to determine whether a=SiJIK in the energy beam irradiation area for solid phase growth has become a single crystal due to solid phase growth. Once it has been determined and made into a single crystal, the irradiation area is changed. Therefore, solid-phase growth can be performed sequentially from the seed portion, and epitaxial growth that inherits the crystal orientation of the seed portion can be performed over a wide range. Furthermore, since the area irradiated with the energy beam is annealed for just the right amount of time, the annealing time is not wasted and an efficient annealing process is performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法一実施例の工程説明図、第2図は本
発明方法に係るアニール装置の概略構成図、第3図はラ
マン分光スペクトルを説明する図である。 (1)・・・試料、(11)・・・単結晶Si基板(単
結晶半導体基台) 、 (lla)−・・シード部、(
12h・S iO2膜(絶縁膜) 、(12a)−開孔
部、(13)・= a −S i WA(非晶質半導体
膜)、(21・・・X−Yステージ、(3)・・−アル
ゴンイオンレーザ、(4)・・・レンズ、(5)・・・
前置分光器、(6)・・・分光器、(7)・・・制御回
路、(8)・・・監視モニタ、B1.B2.B3.B4
・・・ビームスプリッタ、M・・・ミラー
FIG. 1 is a process explanatory diagram of an embodiment of the method of the present invention, FIG. 2 is a schematic diagram of an annealing apparatus according to the method of the present invention, and FIG. 3 is a diagram illustrating a Raman spectroscopic spectrum. (1)...Sample, (11)...Single crystal Si substrate (single crystal semiconductor base), (lla)...Seed part, (
12h・SiO2 film (insulating film), (12a)-opening part, (13)・= a −S i WA (amorphous semiconductor film), (21...X-Y stage, (3)・・-Argon ion laser, (4)...lens, (5)...
Front spectrometer, (6)...Spectrometer, (7)...Control circuit, (8)...Supervision monitor, B1. B2. B3. B4
...beam splitter, M...mirror

Claims (1)

【特許請求の範囲】 1)単結晶半導体基台上に開孔部を有する絶縁膜を形成
し、前記開孔部から露出する単結晶半導体基台部分及び
前記絶縁膜上に非晶質半導体膜を形成し、前記開孔部上
に形成された非晶質半導体膜部分からその周辺部分へと
照射範囲を変化させてエネルギービームを前記非晶質半
導体膜に照射し、該非晶質半導体膜を単結晶化させる固
相エピタキシャル成長方法において、 エネルギービームを照射している部分にレーザビームを
照射し、照射したレーザビームの散乱光のうちラマン散
乱された散乱光を検出し、前記非晶質半導体膜が単結晶
化されたことを示す散乱光を検出したときに、エネルギ
ービームの照射範囲を変化させることを特徴とする固相
エピタキシャル成長方法。
[Scope of Claims] 1) An insulating film having an opening is formed on a single crystal semiconductor base, and an amorphous semiconductor film is formed on the single crystal semiconductor base portion exposed from the opening and on the insulating film. , and irradiates the amorphous semiconductor film with an energy beam while changing the irradiation range from the amorphous semiconductor film portion formed on the opening to the peripheral portion thereof, and irradiates the amorphous semiconductor film with the energy beam. In a solid-phase epitaxial growth method for single crystallization, a laser beam is irradiated onto a portion irradiated with an energy beam, and Raman-scattered scattered light of the scattered light of the irradiated laser beam is detected, and the amorphous semiconductor film is A solid-phase epitaxial growth method characterized by changing the irradiation range of an energy beam when scattered light indicating that has been made into a single crystal is detected.
JP19840488A 1988-08-09 1988-08-09 Solid phase epitaxy method Pending JPH0246721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19840488A JPH0246721A (en) 1988-08-09 1988-08-09 Solid phase epitaxy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19840488A JPH0246721A (en) 1988-08-09 1988-08-09 Solid phase epitaxy method

Publications (1)

Publication Number Publication Date
JPH0246721A true JPH0246721A (en) 1990-02-16

Family

ID=16390566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19840488A Pending JPH0246721A (en) 1988-08-09 1988-08-09 Solid phase epitaxy method

Country Status (1)

Country Link
JP (1) JPH0246721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152640A (en) * 1990-10-17 1992-05-26 Semiconductor Energy Lab Co Ltd Manufacture of insulated-gate type semiconductor device
JPH04296015A (en) * 1991-03-25 1992-10-20 G T C:Kk Manufacture of semiconductor device
US6713783B1 (en) 1991-03-15 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Compensating electro-optical device including thin film transistors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152640A (en) * 1990-10-17 1992-05-26 Semiconductor Energy Lab Co Ltd Manufacture of insulated-gate type semiconductor device
US6713783B1 (en) 1991-03-15 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Compensating electro-optical device including thin film transistors
JPH04296015A (en) * 1991-03-25 1992-10-20 G T C:Kk Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US7113276B1 (en) Micro defects in semi-conductors
US6963630B2 (en) Method for evaluating an SOI substrate, evaluation processor, and method for manufacturing a semiconductor device
EP0511777A1 (en) Method and apparatus for the production of an extremely thin film layer of single crystalline silicon in a SOI substrate by an etching method controlled by interferometry
JPH08236443A (en) Semiconductor crystal growing method and semiconductor manufacturing device
Hawkins et al. Growth of single‐crystal silicon islands on bulk fused silica by CO2 laser annealing
JPH09235172A (en) Production of recrystallized material, production unit therefor and heating
Martinuzzi et al. Mapping of defects and their recombination strenght by a light-beam-induced current in silicon wafers
JPH0246721A (en) Solid phase epitaxy method
US4737233A (en) Method for making semiconductor crystal films
US7732353B2 (en) Methods of forming a denuded zone in a semiconductor wafer using rapid laser annealing
JP2002008976A (en) Method and equipment of manufacturing semiconductor device
JP2006102896A (en) Molecular structure control method and molecular structure controlling apparatus
JPH01246829A (en) Beam annealing device
Nakashima et al. Raman image measurements of laser-recrystallized polycrystalline Si films by a scanning Raman microprobe
JPH05102267A (en) Evaluation method and growth control method of crystal thin film
JPH0855770A (en) Semiconductor manufacturing device
JPS59125612A (en) Device for forming single crystal thin-film
JPH01182739A (en) Measurement of strain in compound semiconductor crystal
Fauchet Mapping solid surfaces with a Raman microprobe
JPS5940526A (en) Laser process and device thereof
Mulato et al. Optical diffraction gratings produced by laser interference structuring of amorphous germanium–nitrogen alloys
JPH05256779A (en) Monitoring method of state of surface layer of crystal
Rozgonyi Semiconductor materials engineering via defect diagnostics
Dutartre et al. Growth-front modulation in lamp zone melting of Si on SiO2
SU1749953A1 (en) Method of determining impurity contents in silicon