JPH0246642A - Focused charged particle beam device - Google Patents

Focused charged particle beam device

Info

Publication number
JPH0246642A
JPH0246642A JP63196765A JP19676588A JPH0246642A JP H0246642 A JPH0246642 A JP H0246642A JP 63196765 A JP63196765 A JP 63196765A JP 19676588 A JP19676588 A JP 19676588A JP H0246642 A JPH0246642 A JP H0246642A
Authority
JP
Japan
Prior art keywords
sample
electrons
amount
insulator
focused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63196765A
Other languages
Japanese (ja)
Inventor
Hiroshi Onoda
小野田 宏
Hiroaki Morimoto
森本 博明
Shuichi Matsuda
修一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63196765A priority Critical patent/JPH0246642A/en
Publication of JPH0246642A publication Critical patent/JPH0246642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To make it possible to radiate a focused charge particle beam on a sample accurately without deviation of position and with no need for processing of the sample even when the sample is an insulator by detecting the amount of secondary electrons relating to the charged potential of the sample and supplying electrons corresponding to the detected result to the sample. CONSTITUTION:The amount of secondary electrons 3 when an insulator sample 1 is uncharged is measured previously, and the measured value is used as the reference value of a feedback circuit 7. During the actual operation, the detected result by a secondary electron detector 6 is always compared with the reference value, and the compared result is outputted to an electron supplier 5. The amount of electrons to be supplied from the electron supplier 5 is determined basing on the compared result. Therefore an amount of electrons 4 corresponding to the charged state of an irradiation area 1a of an insulator sample 1 is supplied to the said irradiation area 1a, and the electrical neutralization of the said area 1a can be carried out speedy and reliably. Thereby a focused charged particle beam can be irradiated on the sample accurately without deviation of position and with no need to process the insulator sample.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は集束荷電ビームを2次元に走査することで、
像観察、パターン検査等を行う集束荷電ビーム装置に関
するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention uses a focused charged beam to scan in two dimensions.
This invention relates to a focused charged beam device that performs image observation, pattern inspection, etc.

〔従来の技術〕[Conventional technology]

集束荷電ビームを用いた技術は、走査型電子顕微鏡(S
EM)、電子ビーム露光装置、X線マイクロアナライザ
(XMA)、オージェ電子分光等の分析装置、集束イオ
ンビーム(FIB)によるフォトマスクリペア装置等、
様々な分野で応用されている。集束荷電ビームは、 ■レンズによりμmオーダ以下に集束することが可能 ■電界、磁界による高速な偏向が可能 ■加3!電圧の変更によりビームエネルギーの変更が容
易に可能 等の利点を有しているが一方、 ■電荷ビーム使用時に高真空雰囲気にすることが必要 ■絶縁体試料に対して荷電ビームの使用困難等の欠点も
ある。以下欠点■について説明する。
A technique using a focused charged beam is a scanning electron microscope (S
EM), electron beam exposure equipment, X-ray microanalyzer (XMA), analysis equipment such as Auger electron spectroscopy, photomask repair equipment using focused ion beam (FIB), etc.
It is applied in various fields. The focused charged beam is: ■Can be focused to micrometer order or less using a lens.■Can be deflected at high speed by electric and magnetic fields.■Additional 3! It has the advantage that the beam energy can be easily changed by changing the voltage, but on the other hand, it requires a high vacuum atmosphere when using the charged beam.It is difficult to use the charged beam for insulating samples. There are also drawbacks. Defect (2) will be explained below.

絶縁体(非常に高抵抗な材料も含む、、)の試料に対し
、集束荷電ビームを照射すると、通常試料の被照射領域
に供給される電子の量と被照!)l領域から放出される
二次電子の量が異なるため、被照射領域には正又は負の
電荷が蓄積する(帯電現象)。
When a sample of an insulator (including materials with very high resistance) is irradiated with a focused charged beam, the amount of electrons supplied to the irradiated area of the sample and the amount of irradiation! ) Since the amount of secondary electrons emitted from the l region is different, positive or negative charges accumulate in the irradiated region (charging phenomenon).

帯電すると、被照射領域の電位が変化し、試料周辺の電
界分布が変わる。その結果、集束荷電ビームは試料周辺
の電界分布の変化の影響を受は偏向してしまい、集束荷
電ビームの試料に対する照射位置の位置ズレが起こる。
When charged, the potential of the irradiated area changes and the electric field distribution around the sample changes. As a result, the focused charged beam is affected by changes in the electric field distribution around the sample and is deflected, causing a positional shift in the irradiation position of the focused charged beam on the sample.

上記した被照射領域に蓄積される電荷量が多くなり、そ
れにより生じる電位がある程度大きくなると放電現象が
起こり、電荷は試料中の通りやすいパスを通じてグラウ
ンドに逃げてしまう。このように被照射領域は帯電、放
電を繰返し、試料周辺の電界分布は絶えず変化している
When the amount of charge accumulated in the above-mentioned irradiated region increases and the resulting potential increases to a certain extent, a discharge phenomenon occurs, and the charge escapes to the ground through an easy-to-pass path in the sample. In this way, the irradiated area is repeatedly charged and discharged, and the electric field distribution around the sample is constantly changing.

このため、集束荷電ビームを絶縁体試料の所定位置に正
確に照射することは極めて困難であり、絶縁体試料への
集束荷電ビームの応用は極めて難しい。
For this reason, it is extremely difficult to accurately irradiate a focused charged beam to a predetermined position on an insulator sample, and it is extremely difficult to apply a focused charged beam to an insulator sample.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した帯電、放電現象の防止のための手段として以下
に述べるしのがある。
The following methods can be used to prevent the above-mentioned charging and discharging phenomena.

第1の方法は、絶縁体試料に金又は白金等の金属コーテ
ィングを施す方法で、SEMで絶縁体試料を観察すると
き等によく用いている。しかしながら、この方法では試
料は金属コーティングされてしまうため、再使用できな
いという問題点があった。
The first method is to coat an insulator sample with a metal such as gold or platinum, and is often used when observing an insulator sample with an SEM. However, this method has the problem that the sample is coated with metal and cannot be reused.

第2の方法は、集束荷電ビームの加速電圧を数KV以下
に下げることにより、ビーム被照射領域から放出される
二次電子量を減らし、供給される電子の口と放出される
電子の最との平衡を保ち、帯電現象を生じにくくさせる
方法である。この方法はSEMにおいて用いられている
。しかしながら、この方法は加速電圧を数KV以下に固
定するという制限が加わる問題点があった。
The second method is to reduce the amount of secondary electrons emitted from the beam irradiated area by lowering the accelerating voltage of the focused charged beam to a few kilovolts or less, and to reduce the amount of secondary electrons emitted from the beam irradiated area, and to This method maintains a balance between the two and makes it difficult for charging phenomena to occur. This method is used in SEM. However, this method has the problem of being restricted to fixing the accelerating voltage to several kilovolts or less.

第3の方法は、チャージニュートライザと呼ばれる簡単
な電子銃、すなわち電子供給器を試料近くに備えつけ、
集束荷電ビーム照射時あるいは照射後の短時間内に低エ
ネルギー(7500eV程度)の電子ビームを試料に照
射する方法である。
The third method is to install a simple electron gun called a charge neutralizer, that is, an electron supply device, near the sample.
This is a method in which a sample is irradiated with a low energy (about 7500 eV) electron beam during or within a short time after irradiation with a focused charged beam.

この方法では、試料の被照射領域に供給される電子の量
を増すことで、被照射領域から放出される二次電子の量
と平衡をとり、帯電が生じないようにしている。この方
法はFIB、フォトマスクリペア装置などで用いられる
In this method, by increasing the amount of electrons supplied to the irradiated area of the sample, the amount of secondary electrons emitted from the irradiated area is balanced with the amount of secondary electrons, so that charging does not occur. This method is used in FIB, photomask repair equipment, etc.

第3図は上記した第3の方法における集束荷電ビーム装
置の絶縁体試料への照射例を示した構成図である。同図
に示すように、絶縁体試料1に集束荷電ビーム2を照射
すると絶縁体試料1の被照射領tiff11aより二次
電子3が放出される。このとき、集束荷電ビーム2が正
イオンの時は勿論正に帯電するが、電子の場合でも、通
常、放出される二次電子の電荷量は入射した集束荷電ビ
ーム1の電荷量を上回るため、被照射領域1aは正に帯
電する。そこで、加速エネルギーをほとんどもたない電
子4を電子供給器5から被照射領域1aに供給すること
で、被照射領域1aの電気的中和を行い、帯電を防止し
ている。
FIG. 3 is a block diagram showing an example of irradiation of an insulator sample by a focused charged beam device in the third method described above. As shown in the figure, when an insulator sample 1 is irradiated with a focused charged beam 2, secondary electrons 3 are emitted from an irradiated area tiff11a of the insulator sample 1. At this time, when the focused charged beam 2 is a positive ion, it is of course positively charged, but even in the case of electrons, the amount of charge of the emitted secondary electrons usually exceeds the amount of charge of the incident focused charged beam 1, so The irradiated area 1a is positively charged. Therefore, by supplying electrons 4 having almost no acceleration energy to the irradiated region 1a from the electron supply device 5, the irradiated region 1a is electrically neutralized and charging is prevented.

ところで、集束荷電ビーム装置はfIi観察に使用され
ることが多い。この像観察に使われる信号源は二次電子
3であることが多り、電子供給器5から供給される電子
4と二次電子3を明確に区別するため、第4図に示すよ
うに、集束荷電ビーム照射時間T1と電子供給器5によ
る電子供給時間T2とを時分割することが多い。
By the way, a focused charged beam device is often used for fIi observation. The signal source used for this image observation is often secondary electrons 3, and in order to clearly distinguish between the electrons 4 supplied from the electron supplier 5 and the secondary electrons 3, as shown in FIG. The focused charged beam irradiation time T1 and the electron supply time T2 by the electron supplier 5 are often time-divided.

ところで、上記した電子供給器5を備えた集束荷電ビー
ム装置では、絶縁体試料1の被照tJJ領域1aにおけ
る帯電の度合の変化は検知していない。
By the way, the focused charged beam device equipped with the electron supply device 5 described above does not detect a change in the degree of charging in the irradiated tJJ region 1a of the insulator sample 1.

このため、電子供給器5より供給する電子量は試行錯誤
で調整しなければならない。また、−度調整ができても
、被照t14w4域1aへの集束荷電ビーム2の照射等
により、絶縁体質料1の物性等が変化した場合には、電
子供給器5より供給する電子の量を再度調整しなければ
ならず、この変化が速すぎる場合は調整が不可能となる
Therefore, the amount of electrons supplied from the electron supply device 5 must be adjusted by trial and error. Furthermore, even if the -degree adjustment is possible, if the physical properties of the insulating material 1 change due to irradiation of the focused charged beam 2 to the irradiated region 1a, etc., the amount of electrons supplied from the electron supply device 5 must be readjusted, and if this change is too fast, adjustment is not possible.

、F記した理由から、試行錯誤的な電子供給器5による
電子供給では、絶縁体試料1の被照射領域1aの十分な
帯電防止ができず、正確なビーム照射ができないという
問題点があった。
For the reasons described in , F, the trial-and-error method of supplying electrons using the electron supply device 5 had the problem that it was not possible to sufficiently prevent the irradiated area 1a of the insulator sample 1 from being charged, and accurate beam irradiation could not be performed. .

この発明は上記のような問題点を解決するためになされ
たもので、集束荷電ビームを照射する際、試料が絶縁体
であっても、絶縁体試料を加工することなく、また集束
荷電ビームの加速電圧に制限を加えることなく、位置ズ
レなく正確に集束荷電ビームを照射できる集束荷電ビー
ム装置を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and when irradiating a focused charged beam, even if the sample is an insulator, it is possible to irradiate the focused charged beam without processing the insulating sample. It is an object of the present invention to provide a focused charged beam device that can accurately irradiate a focused charged beam without positional deviation without imposing any restrictions on accelerating voltage.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかる集束荷電ビーム装置は、試料に集束荷
電ビームを照射するビーム照射手段と、前記ビーム照射
手段による前記集束荷電ビーム照射時に前記試料より放
出される二次電子の吊を検出する二次電子検出手段と、
前記二次電子検出手段の検出結果に応じた量の電子を前
記試料に供給する電子供給手段とを備えている。
A focused charged beam device according to the present invention includes a beam irradiation unit that irradiates a sample with a focused charged beam, and a secondary electron beam that detects the suspension of secondary electrons emitted from the sample when the beam irradiation unit irradiates the focused charged beam. electronic detection means;
and electron supply means for supplying an amount of electrons to the sample according to the detection result of the secondary electron detection means.

〔作用〕[Effect]

この発明における二次゛重子検出手段は、試料の帯電電
位と相関関係がある二次電子のωを検出し、電子供給手
段は、二次電子検出手段の検出結果に応じた聞の電子を
試料に供給する。
The secondary electron detection means in this invention detects the ω of secondary electrons which has a correlation with the charged potential of the sample, and the electron supply means supplies electrons to the sample at a time corresponding to the detection result of the secondary electron detection means. supply to.

〔実施例〕〔Example〕

第1図はこの発明の一実施例である集束荷電ビーム装置
を示す構成図である。同図に示すように、新たに二次電
子検出器6が設けられ、この二次電子検出器6の検出結
果がフィードバック回路7に入力され、このフィードバ
ック回路7の出力に基づき、電子供給器5より絶縁体試
料1に供給される電子4のMを変化させている。他の構
成は従来と同じであるので説明は省略する。
FIG. 1 is a block diagram showing a focused charged beam device which is an embodiment of the present invention. As shown in the figure, a secondary electron detector 6 is newly provided, the detection result of this secondary electron detector 6 is inputted to a feedback circuit 7, and based on the output of this feedback circuit 7, an electron supplier 5 M of the electrons 4 supplied to the insulator sample 1 is changed accordingly. The other configurations are the same as the conventional one, so explanations will be omitted.

第2図は二次電子3のエネルギー分布を示すグラフであ
る。絶縁体試料1が帯電していない場合、全エネルギー
の二次電子3が被照射領域1aより放出され、二次電子
検出器6により検出される。
FIG. 2 is a graph showing the energy distribution of the secondary electrons 3. When the insulator sample 1 is not charged, secondary electrons 3 with full energy are emitted from the irradiated region 1a and detected by the secondary electron detector 6.

ところが、絶縁体試料1の被照射領域1aがXl (>
O)Vに帯電すると、第2図斜線で示すX1ev以下の
エネルギーの二次電子3は、接地レベルにある二次電子
検出器6に到達できず、検出されない。このため、二次
電子検出器6の検出電子量が被照射領域1aの無帯電時
よりも減少する。従って、この減少した電子量より被照
射領域1aの帯電状態が把握できる。
However, the irradiated area 1a of the insulator sample 1 is
O) When charged to V, the secondary electrons 3 having an energy of less than X1ev, shown by diagonal lines in FIG. 2, cannot reach the secondary electron detector 6 at the ground level and are not detected. Therefore, the amount of electrons detected by the secondary electron detector 6 is reduced compared to when the irradiated area 1a is not charged. Therefore, the charged state of the irradiated area 1a can be determined from this decreased amount of electrons.

第1図で示した集束荷電ビーム装置は、上記した点を利
用して構成されている。すなわら、絶縁体試料1の無帯
電時の二次電子3の吊を予め測定し、フィードバック回
路7の基準値をその値に設定する。そして、実際の動作
時には、絶えず二次電子検出器6による検出結果を基準
値と比較し、その比較結果を電子供給器5に出力する。
The focused charged beam device shown in FIG. 1 is constructed using the above points. That is, the suspension of the secondary electrons 3 when the insulator sample 1 is not charged is measured in advance, and the reference value of the feedback circuit 7 is set to that value. During actual operation, the detection result by the secondary electron detector 6 is constantly compared with a reference value, and the comparison result is output to the electron supply device 5.

この比較結果に基づき、電子供給器5より供給する゛電
子の量を決定することで、絶縁体試料1の被照射領域1
aの帯電具合に対応した串の電子4を被照射領域1aに
供給し、迅速かつ正確に絶縁体試料1の被照射領域1a
の電気的中和を図ることができる。
Based on this comparison result, by determining the amount of electrons to be supplied from the electron supply device 5, the irradiated area of the insulator sample 1 is
The skewer electrons 4 corresponding to the charging state of a are supplied to the irradiated area 1a, and the irradiated area 1a of the insulator sample 1 is quickly and accurately
Electrical neutralization can be achieved.

従って、絶縁体試料1に対し正確に集束荷電ビーム1の
照射が行え、高精度な像観察、パターン検査、パターン
修正、パターン描画及び微細加工を行うことができる。
Therefore, the insulator sample 1 can be accurately irradiated with the focused charged beam 1, and highly accurate image observation, pattern inspection, pattern correction, pattern drawing, and microfabrication can be performed.

また、絶縁体試料1を加工していないため、絶縁体試料
1の再使用も可能であり、集束荷電ビームの加速電圧が
制限されることもない。
Furthermore, since the insulator sample 1 is not processed, it is possible to reuse the insulator sample 1, and the acceleration voltage of the focused charged beam is not limited.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、二次電子検出
手段が試料の帯電電位と相関関係がある二次電子のωを
検出し、電子供給手段が二次電子検出手段の検出結果に
応じた母の電子を試料に供給するようにしたので、試料
が絶縁体であっても、常に被照射領域の電気的中和を保
つように電子供給手段により電子を供給することができ
る。
As explained above, according to the present invention, the secondary electron detection means detects ω of the secondary electrons which has a correlation with the charged potential of the sample, and the electron supply means responds to the detection result of the secondary electron detection means. Since the mother electrons are supplied to the sample, even if the sample is an insulator, the electron supply means can always supply electrons so as to maintain electrical neutralization of the irradiated region.

その結果、絶縁体試料を加工することなく、また集束荷
電ビームの加速電圧に制限を加えることなく、位置ズレ
なく正確に集束荷電ビームを試料に照射することができ
る効果がある。
As a result, it is possible to accurately irradiate a sample with a focused charged beam without positional deviation, without processing the insulator sample or limiting the accelerating voltage of the focused charged beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例である集束荷電ビーム装置
を示す構成図、第2図は集束荷電ビーム照射時に試料よ
り放出される二次電子のエネルギー分布を示すグラフ、
第3図は従来の集束荷電ビーム装置を示す構成図、第4
図は第3図で示した集束荷電ビーム装置の制御タイミン
グを示したタイミングチャートである。 図において、1は絶縁体試料、2は集束荷電ビーム、3
は二次電子、4は電子、5は電子供給器、6は二次電子
検出器、7はフィードバック回路である。 なお、 各図中同一符号は同一または相当部分を示す。 第 図
FIG. 1 is a configuration diagram showing a focused charged beam device which is an embodiment of the present invention, and FIG. 2 is a graph showing the energy distribution of secondary electrons emitted from a sample during focused charged beam irradiation.
Figure 3 is a configuration diagram showing a conventional focused charged beam device;
The figure is a timing chart showing the control timing of the focused charged beam device shown in FIG. 3. In the figure, 1 is an insulator sample, 2 is a focused charged beam, and 3 is a
4 is a secondary electron, 4 is an electron, 5 is an electron supplier, 6 is a secondary electron detector, and 7 is a feedback circuit. Note that the same symbols in each figure indicate the same or equivalent parts. Diagram

Claims (1)

【特許請求の範囲】[Claims] (1)試料に集束荷電ビームを照射するビーム照射手段
と、 前記ビーム照射手段による前記集束荷電ビーム照射時に
前記試料より放出される二次電子の量を検出する二次電
子検出手段と、 前記二次電子検出手段の検出結果に応じた量の電子を前
記試料に供給する電子供給手段とを備えた集束荷電ビー
ム装置。
(1) beam irradiation means for irradiating a sample with a focused charged electric beam; secondary electron detection means for detecting the amount of secondary electrons emitted from the sample when the beam irradiation means irradiates the focused charged electric beam; and electron supply means for supplying an amount of electrons to the sample according to the detection result of the secondary electron detection means.
JP63196765A 1988-08-05 1988-08-05 Focused charged particle beam device Pending JPH0246642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63196765A JPH0246642A (en) 1988-08-05 1988-08-05 Focused charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63196765A JPH0246642A (en) 1988-08-05 1988-08-05 Focused charged particle beam device

Publications (1)

Publication Number Publication Date
JPH0246642A true JPH0246642A (en) 1990-02-16

Family

ID=16363250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63196765A Pending JPH0246642A (en) 1988-08-05 1988-08-05 Focused charged particle beam device

Country Status (1)

Country Link
JP (1) JPH0246642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506724A (en) * 1999-08-11 2003-02-18 ケーエルエー−テンカー テクノロジィース コーポレイション Scanning electron microscope calibration
US7473469B2 (en) 2005-12-23 2009-01-06 Dowa Electronics Materials Co., Ltd. Ferromagnetic powder for a magnetic recording medium, method of producing the powder, and magnetic recording medium using the powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506724A (en) * 1999-08-11 2003-02-18 ケーエルエー−テンカー テクノロジィース コーポレイション Scanning electron microscope calibration
JP4726370B2 (en) * 1999-08-11 2011-07-20 ケーエルエー−テンカー コーポレイション Scanning electron microscope calibration
US7473469B2 (en) 2005-12-23 2009-01-06 Dowa Electronics Materials Co., Ltd. Ferromagnetic powder for a magnetic recording medium, method of producing the powder, and magnetic recording medium using the powder

Similar Documents

Publication Publication Date Title
JP5662992B2 (en) Sample surface inspection method and inspection apparatus
JP4905504B2 (en) Electron beam adjustment method, charged particle optical system controller, and scanning electron microscope
US8536540B2 (en) Charged particle beam apparatus and method for stably obtaining charged particle beam image
US7679056B2 (en) Metrology system of fine pattern for process control by charged particle beam
US6403972B1 (en) Methods and apparatus for alignment of ion beam systems using beam current sensors
WO2010035416A1 (en) Charged particle beam device
JPS6215745A (en) Charge density detector for beam injection
JP4305421B2 (en) Electron beam adjustment method, charged particle optical system controller, and scanning electron microscope
JP2009043936A (en) Electron microscope
JP4506588B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
KR101090639B1 (en) Electron beam dimension measuring device and electron beam dimension measuring method
JPH0246642A (en) Focused charged particle beam device
US7633303B2 (en) Semiconductor wafer inspection apparatus
US7608821B2 (en) Substrate inspection apparatus, substrate inspection method and semiconductor device manufacturing method
JP3711244B2 (en) Wafer inspection system
JPH0954130A (en) Measuring method for work potential
JP4238072B2 (en) Charged particle beam equipment
US20080067383A1 (en) Electron-beam size measuring apparatus and size measuring method with electron beams
JP2000208395A (en) Method and system for inspecting substrate
JP2007189238A (en) Semiconductor manufacturing apparatus and semiconductor testing apparatus
JPH03194916A (en) Method and apparatus for detecting alignment mark position
JPH0291507A (en) Measuring instrument for fine pattern
JPH04171649A (en) Ion implanting method and device
JPS58167775A (en) Ion beam processing method
JPH0620059B2 (en) Ion beam processing method