JPH0246636A - Image display device and its manufacture - Google Patents

Image display device and its manufacture

Info

Publication number
JPH0246636A
JPH0246636A JP19741188A JP19741188A JPH0246636A JP H0246636 A JPH0246636 A JP H0246636A JP 19741188 A JP19741188 A JP 19741188A JP 19741188 A JP19741188 A JP 19741188A JP H0246636 A JPH0246636 A JP H0246636A
Authority
JP
Japan
Prior art keywords
electrode
image display
cold cathode
display device
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19741188A
Other languages
Japanese (ja)
Other versions
JP2623738B2 (en
Inventor
Masanori Watanabe
正則 渡辺
Michio Okajima
道生 岡嶋
Kazuyuki Sakiyama
一幸 崎山
Kinzo Nonomura
欽造 野々村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63197411A priority Critical patent/JP2623738B2/en
Priority to DE1989616875 priority patent/DE68916875T2/en
Priority to EP19890308020 priority patent/EP0354750B1/en
Priority to CA000607771A priority patent/CA1323901C/en
Publication of JPH0246636A publication Critical patent/JPH0246636A/en
Application granted granted Critical
Publication of JP2623738B2 publication Critical patent/JP2623738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

PURPOSE:To reduce the unevenness of individual minute electron sources in the performance and to obtain an image display device of a long service life by composing electron sources provided at crossing points of X-Y matrix electrodes with electrodes (cold cathode) connected to an X-array cathode and a Y-array electrode (gate electrode) opposing to the X-array electrode on the same plane. CONSTITUTION:An image display device is composed by opposing a glass base 1 made by providing electric field discharge electron source at the crossing points of X-Y matrix electrodes, and a face plate 2 to which a phosphor is spread. The electric field discharge electron source is composed of a cold cathode 7 and a gate electrode 5 opposing each other on the surface of an insulating layer 4 which covers the surface of the X electrode 3. The cold cathode 7 is connected to the X electrode through a through hole 6 furnished to the insulating layer 4. At the end surface of the cold cathode 7 opposing to the gate electrode 5, numerous projections 12 are formed. As a result, an image display device of a good evenness and a long service life can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷陰極を用いた薄型画表示装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin image display device using a cold cathode.

従来の技術 従来から冷陰極を2次元に配列し、x−yマトリックス
電極を用いて制御し画像表示を行なう薄型表示装置は数
多く報告されている。その中でも薄膜電界放出型冷陰極
を用いた薄型表示装置が注目される。この薄型表示装置
は第6図に示すように基板表面に106〜107個/C
2fの高密度に形成したミクロンサイズの薄膜電界放出
型冷陰極を用いるものである。
2. Description of the Related Art Many thin display devices have been reported in which cold cathodes are arranged two-dimensionally and controlled using xy matrix electrodes to display images. Among these, thin display devices using thin film field emission cold cathodes are attracting attention. As shown in Figure 6, this thin display device has 106 to 107 cells/C on the substrate surface.
A micron-sized thin film field emission type cold cathode formed at a high density of 2f is used.

この冷陰極は図に示すように基板21の表面にマトリッ
クス電極の一方のX電極22を形成し、その表面に絶縁
層23ともう一方のY電極24を形成し、X−Y電極の
各交点の部分のY電極に16〜2μmの微小な孔26を
ホトエツチング技術によって1ooO個以上設け、更に
絶縁層23をエツチングする。こうして形成した基板を
回転させながらタングステン、モリブデンなどの高隔点
金属を斜蒸着して円錐状の冷陰極チップ26を形成する
。冷陰極形成後、表面の不要金属層を除去して薄膜電界
放出型冷陰極電子源が作られる。
As shown in the figure, in this cold cathode, one X electrode 22 of the matrix electrode is formed on the surface of a substrate 21, an insulating layer 23 and the other Y electrode 24 are formed on the surface, and each intersection of the X-Y electrodes is formed. At least 100 minute holes 26 of 16 to 2 .mu.m are formed in the Y electrode at the portion by photo-etching, and the insulating layer 23 is further etched. While rotating the thus formed substrate, a high separation point metal such as tungsten or molybdenum is obliquely deposited to form a conical cold cathode chip 26. After forming the cold cathode, unnecessary metal layers on the surface are removed to create a thin film field emission type cold cathode electron source.

このX−Yマトリックス電子源と蛍光体を塗布したフェ
ースプレートとを対向させて画像表示装置が構成されて
いる。この画像表示装置は各画素に1ooO個以上もの
微小電子源を有する持っているため、個々の微小電子源
に特性上のバラツキがあっても全体としては平均化され
た特性となり画面全体にわたって比較的均一な明るさが
得られる特長を持っている。
An image display device is constructed by making this XY matrix electron source and a face plate coated with phosphor face each other. This image display device has 100 or more microelectron sources in each pixel, so even if there are variations in the characteristics of individual microelectron sources, the characteristics as a whole are averaged, and the characteristics are relatively uniform over the entire screen. It has the feature of providing uniform brightness.

発明が解決しようとする課題 前記の画像表示装置は前述のように良い特長を持ってい
るにもかかわらず実用化に至っていない。
Problems to be Solved by the Invention Although the above-mentioned image display device has good features as described above, it has not been put into practical use.

その理由の1つは製造工程が複雑でコストが高くなるこ
とと表示装置として必要な面積に−様な電界放出型冷陰
極が作れないことにある。また他の理由は電子ビームに
よって残留ガスがイオン化され、陰極と蛍光体面間に印
加される陽極電圧によって加速された高エネルギのイオ
ンが円錐形状の冷陰極に衝突し、スパッタするため寿命
が短かく、動作が不安定となることである。
One of the reasons for this is that the manufacturing process is complicated and the cost is high, and that a field emission type cold cathode cannot be made in the area required for a display device. Another reason is that the residual gas is ionized by the electron beam, and high-energy ions accelerated by the anode voltage applied between the cathode and the phosphor surface collide with the conical cold cathode and cause sputtering, resulting in a short lifetime. , the operation becomes unstable.

課題を解決するための手段 X−Yマトリックス電極によって制御する電子源を備え
た絶縁性背面板と蛍光体を塗着したフェースプレートを
対向させた画像表示装置において、X−Yマトリックス
電極の各交点に設ける電子源を、Xアレー電極に接続し
た電極(以後冷陰極と呼ぶ)と、これに同一平面上で対
向するYアレー電極(以後冷陰極と対向する部分をゲー
ト電極と呼ぶ)とで構成する。
Means for Solving the Problem In an image display device in which an insulating back plate equipped with an electron source controlled by an X-Y matrix electrode and a face plate coated with a phosphor face each other, each intersection of the X-Y matrix electrodes is The electron source provided in do.

作用 このように同一平面上に対向して配置した冷陰極(Xア
レー電極)とゲート電極(Yアレー電極)との間に電圧
を印加すると、冷陰極とゲート電極間に高電界が発生し
、電子放出が起る。放出された電子の一部は対向するゲ
ート電極に衝突するが、ゲート電極の表面で2次電子を
発生する。発生した2次電子は対向するフェースプレー
トの蛍光面に印加する正の電圧(以後陽極電圧と呼ぶ)
によって加速され蛍光体に衝突して、蛍光体を発光させ
る。
Effect When a voltage is applied between the cold cathode (X array electrode) and the gate electrode (Y array electrode) that are arranged facing each other on the same plane, a high electric field is generated between the cold cathode and the gate electrode. Electron emission occurs. Some of the emitted electrons collide with the opposing gate electrode, generating secondary electrons on the surface of the gate electrode. The generated secondary electrons apply a positive voltage (hereinafter referred to as anode voltage) to the fluorescent screen of the facing face plate.
is accelerated and collides with the phosphor, causing it to emit light.

上記構成のように同一平面内に冷陰極とゲート電極を構
成すると、冷陰極とゲート電極との間隔は1μm程度で
あって、この間で残留ガスがイオン化されて陰極尖端部
に衝突するイオンの量は従来の構成のものに比較して数
百分の1となり、陰極尖端部のイオン衝突によるスバタ
ーされる量も若木発明の画像表示装置の断面の一部を第
1図に示す。画像表示装置はX−Yマトリックス電極の
各交点に電界放出電子源を設けたガラス基板1と蛍光体
を塗着したフェースプレート2を対向させて構成する。
When the cold cathode and the gate electrode are configured in the same plane as in the above configuration, the distance between the cold cathode and the gate electrode is about 1 μm, and the residual gas is ionized during this interval, and the amount of ions collides with the cathode tip. FIG. 1 shows a part of the cross section of the image display device of Wakagi's invention. The image display device consists of a glass substrate 1 provided with field emission electron sources at each intersection of XY matrix electrodes and a face plate 2 coated with phosphor, which are opposed to each other.

前記電界放出電子源は、X電極30表面を被覆する絶縁
層4の表面にお互いに対向した冷陰極7とゲート電極6
とで構成されている。
The field emission electron source includes a cold cathode 7 and a gate electrode 6 facing each other on the surface of the insulating layer 4 covering the surface of the X electrode 30.
It is made up of.

冷陰極7は絶縁層4に設けたスルーホール6を通してX
電極3に接続されている。第2図はこの電子源を上面か
ら見た時の電極の構成を単純化して示しである。ゲート
電極5に対向する冷陰極7の端面には多数の凸状部12
が形成されている。冷陰極7に設けた凸状部の尖端とゲ
ート電極6の間隔は0.5〜2μmである。一方、フェ
ースプレート2は透明なガラス基板で、その表面に透明
電極8、例えばITO膜(酸化インシーム・錫膜、また
は5n02膜を設け、その表面に低速電子線用蛍光体、
例えばZnO:Znからなる蛍光体9が塗布されている
The cold cathode 7 is connected to X through a through hole 6 provided in the insulating layer 4.
Connected to electrode 3. FIG. 2 shows a simplified structure of the electrodes when this electron source is viewed from above. A large number of convex portions 12 are formed on the end surface of the cold cathode 7 facing the gate electrode 5.
is formed. The distance between the tip of the convex portion provided on the cold cathode 7 and the gate electrode 6 is 0.5 to 2 μm. On the other hand, the face plate 2 is a transparent glass substrate, on the surface of which a transparent electrode 8, for example, an ITO film (oxide inseam/tin film, or 5n02 film) is provided, and a phosphor for low-speed electron beam,
For example, a phosphor 9 made of ZnO:Zn is coated.

このように構成したX電極(冷陰極)とY電極(ゲート
電)間に100V〜150Vの電圧を印加すると冷陰極
の凸状部の尖端には〜1o V/cmの強電界が発生し
、尖端部から電子放出が起る。
When a voltage of 100V to 150V is applied between the X electrode (cold cathode) and Y electrode (gate electrode) configured in this way, a strong electric field of ~1o V/cm is generated at the tip of the convex part of the cold cathode. Electron emission occurs from the tip.

この電子は10o〜150eVに加速されてゲート電極
に衝突し2次電子10を放出する。発生した2次電子は
対向するフェースプレートの透明電極8に印加する陽極
電圧(02〜1KV )によって加速され、蛍光体に衝
突して蛍光体を発光させる。この時、冷陰極の凸状部1
2の尖端部分下層の絶縁層11の一部または全部を除去
すると尖端部により強い電界が発生し、電子放出が起り
易くなり、駆動電圧を下げる効果がある。
These electrons are accelerated to 100 to 150 eV, collide with the gate electrode, and emit secondary electrons 10. The generated secondary electrons are accelerated by an anode voltage (02 to 1 KV) applied to the transparent electrode 8 of the facing face plate, and collide with the phosphor, causing the phosphor to emit light. At this time, the convex portion 1 of the cold cathode
If part or all of the insulating layer 11 under the tip portion 2 is removed, a stronger electric field is generated at the tip portion, making it easier to emit electrons, which has the effect of lowering the driving voltage.

また、実施したより具体的な電極構成の斜視図を第3図
に示す。冷陰極7とゲート電極6は櫛の歯状に形成され
、お互いに噛合った状態に形成した。これは冷陰極に設
けた凸状部12を出来るだけ多くして電子放出電流を多
くするためとエツチング誤差による各冷陰極尖端部から
の放出電流のバラツキによる画素間のバラツキを小さく
するためである。また、冷陰極とゲート電極の対向面が
Y電極の長手方向に垂直(X電極の長手方向)となるよ
うに構成した。これは冷陰極の尖端部から放射した電子
の一部はゲート電極に衝突して2次電子を発生するが、
一部の電子はゲート電極に衝突せず隣の画素まで発散し
、クロストークの原因となるのを防止するためである。
Further, a perspective view of a more specific electrode configuration that was implemented is shown in FIG. The cold cathode 7 and the gate electrode 6 were formed in the shape of comb teeth, and were formed in a state in which they were engaged with each other. This is to increase the electron emission current by increasing the number of convex portions 12 provided on the cold cathode as much as possible, and to reduce the variation between pixels due to variation in the emission current from each cold cathode tip due to etching error. . Further, the opposing surfaces of the cold cathode and the gate electrode were configured to be perpendicular to the longitudinal direction of the Y electrode (the longitudinal direction of the X electrode). This is because some of the electrons emitted from the tip of the cold cathode collide with the gate electrode and generate secondary electrons.
This is to prevent some of the electrons from colliding with the gate electrode and spreading to neighboring pixels, causing crosstalk.

第4図はY電極の長手方向に(A−A’線に沿って)切
断した断面の電子ビームの軌道を示す。第4図かられか
るように、ゲート電極に衝突しない電子ビームは次の冷
陰極が作る減速電界によって減速され、陽極電圧によっ
て加速されて蛍光体面に向って曲げられ、隣接する画素
まで発散しない。従って、一つの画素に対応する電子源
から発射した電子は一つの画素内の蛍光体に衝突し、ク
ロストークを防止することができる。
FIG. 4 shows the trajectory of the electron beam in a cross section cut in the longitudinal direction of the Y electrode (along the line AA'). As can be seen from FIG. 4, the electron beam that does not collide with the gate electrode is decelerated by the deceleration electric field created by the next cold cathode, accelerated by the anode voltage, and bent toward the phosphor surface, so that it does not diverge to adjacent pixels. Therefore, electrons emitted from an electron source corresponding to one pixel collide with the phosphor within one pixel, and crosstalk can be prevented.

冷陰極のイオンスパタリングによる劣化の速さはパネル
内の残留ガス圧Pと電極間隔dの積Pd(イオンの発生
量はPdに比例する)に比例する。
The speed of deterioration of the cold cathode due to ion sputtering is proportional to the product Pd of the residual gas pressure P in the panel and the electrode spacing d (the amount of ions generated is proportional to Pd).

従来型の冷陰極ではdは冷陰極と陽極であって、はぼ2
00〜300μmである。一方、本発明の場合は冷陰極
とゲート電極の間隔05〜1μmとすることができるか
ら、この間で発生するイオンの量は従来例に比べて1/
200〜1/6ooとなり、陰極の寿命は同じ残留ガス
圧の場合200〜300倍長くなる。
In the conventional cold cathode, d is the cold cathode and the anode, and is approximately 2
00 to 300 μm. On the other hand, in the case of the present invention, the distance between the cold cathode and the gate electrode can be set to 05 to 1 μm, so the amount of ions generated between them is 1/1 compared to the conventional example.
200 to 1/6oo, and the life of the cathode is 200 to 300 times longer for the same residual gas pressure.

実施例2 第5図に実施例2の電極構成の要部を示す。XアレーN
’FM L * x2 r xs・・・・・・xnおよ
びYア゛レー電極L I Y21 Y5・・・・・・Y
mでマトリックス電極を構成し、これらのXアレー電極
に接続した櫛状冷陰極とYアレー電極に接続した櫛状ゲ
ート電極の噛み合った電子部15をXアレー電極とYア
レー電極が囲む基板表面に形成した。
Example 2 FIG. 5 shows the main part of the electrode structure of Example 2. X array N
'FM L * x2 r xs...xn and Y array electrode L I Y21 Y5...Y
m to form a matrix electrode, and an electronic part 15 in which a comb-shaped cold cathode connected to the X array electrode and a comb-shaped gate electrode connected to the Y array electrode are meshed is placed on the substrate surface surrounded by the X array electrode and the Y array electrode. Formed.

即ち、2次電子放出部の電極がXアレー電極およびYア
レー電極表面上に重畳しない構成とした。
That is, the electrode of the secondary electron emitting section was configured not to overlap the surfaces of the X array electrode and the Y array electrode.

これは絶縁層に発生するピンホールによる画電極のショ
ートの発生をなくすることと、XおよびYアレー電極間
の電気容量を小さくする効果がある。
This has the effect of eliminating the occurrence of short circuits in the picture electrodes due to pinholes generated in the insulating layer, and of reducing the capacitance between the X and Y array electrodes.

Xアレー電極幅を50μm、Yアレー電極幅を20μm
、画素の大きさを300X30011mとしたとき、ピ
ンホールの発生割合、および電気容量共に1/20〜1
15oに低減することができた。
X array electrode width is 50 μm, Y array electrode width is 20 μm.
, when the pixel size is 300 x 30011 m, both the pinhole generation rate and the electric capacitance are 1/20 to 1.
It was possible to reduce the temperature to 15o.

次にこの冷陰極の製造方法について説明する。Next, a method for manufacturing this cold cathode will be explained.

ガラス基板の表面にXアレー電極を形成するだめの金属
、例えばニッケルを厚さ0.2μm全面に蒸着し1.ホ
トエツチング技術によってストライプ状に分離する。電
極幅はQ、3mmとした0次に、絶縁層として5i02
膜をCVD法によって厚さ1μm形成し、Xアレー電極
上の一部にホトエツチングによってスルーホールを形成
した。更に、その上に厚さ02μmのタングステン金属
膜を蒸着し、同じくホトエツチング技術によってゲート
電極(Yアレー電極)5と冷陰極7を同時に形成した。
1. A metal for forming the X array electrode, such as nickel, is deposited on the entire surface of the glass substrate to a thickness of 0.2 μm.1. Separate into stripes using photoetching technology. The electrode width was Q, 3 mm, 0th order, and the insulating layer was 5i02.
A film was formed to a thickness of 1 μm by CVD, and a through hole was formed in a portion of the X array electrode by photoetching. Furthermore, a tungsten metal film with a thickness of 02 μm was deposited thereon, and a gate electrode (Y array electrode) 5 and a cold cathode 7 were simultaneously formed using the same photoetching technique.

冷陰極の凸状部は1画素当り約600個形成し、ゲート
電極との間隔は1μmとした。次に、こうして製作した
基板全体を5i02膜エツチング液に浸漬して第2図に
示す冷陰極尖端部の凹部11を形成した。
Approximately 600 convex portions of the cold cathode were formed per pixel, and the distance from the gate electrode was 1 μm. Next, the entire substrate thus manufactured was immersed in a 5i02 film etching solution to form a recess 11 at the tip of the cold cathode shown in FIG.

Xアレー電極を形成する金属はニッケルに限られるもの
ではなく、アルミニウム、チタン、金クロム合金などガ
ラス基板と密着性が良く、比抵抗の低い金属が望ましい
。絶縁層としては5102膜に限られるものではなく、
SiN 、 BN 、 3i0など絶縁性の良い材料で
あれば良い。冷陰極材料としてはタングステン以外にモ
リブデン、タンタル、チタンなど高隔点金属が望ましい
The metal forming the X array electrode is not limited to nickel, but metals such as aluminum, titanium, and gold-chromium alloys that have good adhesion to the glass substrate and have low specific resistance are desirable. The insulating layer is not limited to the 5102 film,
Any material with good insulation properties, such as SiN, BN, or 3i0, may be used. In addition to tungsten, high-temperature metals such as molybdenum, tantalum, and titanium are desirable as cold cathode materials.

このようにして480X660個のマトリックス電子源
を形成したガラス基板と厚さ0.2μmのITOを蒸着
しZnO: Zn蛍光体を塗着したフェースプレートと
をo、 s mmの間隔を保って対向させ、周囲を低融
点ガラス7リツトでシールし、真空排気して画面サイズ
10インチの画像表示装置を作ったO 冷陰極(垂直走査電極)をアース電位とし、ゲート電極
(ビデオ信号変調電極)に1 sow印加すると、1画
素当り約10μ人の電子放出電流を得た。蛍光体面に5
00V印加し、フィールド周波数60Hzで線順次駆動
を行なうと約5Of’Lの面輝度を得た。電界放出型冷
陰極の電子放出はゲート電圧に対して指数関数的に変化
する。ゲート電極に100v印加しても電子放出は殆ん
ど起らず、カットオフ状態にある。従って、ゲート電極
には約1oovのバイアス電圧を印加しておき、ビデオ
変調信号電圧はsoyとした。また、電子放出特性は信
号電圧に敏感であシ、パルス波高変調よりもパルス幅変
調が望ましく128階調のパルス幅変調を行った。
The glass substrate on which 480 x 660 matrix electron sources were formed in this way and the face plate on which ITO with a thickness of 0.2 μm was vapor-deposited and ZnO:Zn phosphor was coated were placed facing each other with an interval of o, s mm maintained. The surrounding area was sealed with 7 liters of low-melting point glass and evacuated to create an image display device with a screen size of 10 inches.The cold cathode (vertical scanning electrode) was set to ground potential, and the gate electrode (video signal modulation electrode) was When sow was applied, an electron emission current of about 10 μm per pixel was obtained. 5 on the phosphor surface
When 00V was applied and line sequential driving was performed at a field frequency of 60Hz, a surface brightness of about 5Of'L was obtained. Electron emission of a field emission cold cathode changes exponentially with gate voltage. Even when 100V is applied to the gate electrode, almost no electron emission occurs and the gate electrode is in a cut-off state. Therefore, a bias voltage of about 1 oov was applied to the gate electrode, and the video modulation signal voltage was set to soy. Furthermore, since the electron emission characteristics are sensitive to signal voltage, pulse width modulation is more desirable than pulse height modulation, and 128-gradation pulse width modulation was performed.

この実施例ではZnO: Zn蛍光体を用いたが、赤、
緑、青の3原色をストライプ状に塗着すればカラー表示
ができることは言うまでもない。
In this example, ZnO: Zn phosphor was used, but red,
It goes without saying that color display can be achieved by painting the three primary colors of green and blue in stripes.

発明の効果 本発明によれば、Xアレー電極表面に被覆した絶縁層表
面に蒸着した高融点金属薄膜のエツチングによって多数
の冷陰極とゲート電極を同時に形成できるため均一性が
良く、かつ安価に製造できる。
Effects of the Invention According to the present invention, a large number of cold cathodes and gate electrodes can be formed simultaneously by etching a high melting point metal thin film deposited on the surface of an insulating layer coated on the surface of the X array electrode, resulting in good uniformity and low manufacturing cost. can.

また冷陰極とゲート電極の対向面をゲートアレー電極の
長手方向に垂直となるように配置することによってクロ
ストークを防止することができる0
In addition, crosstalk can be prevented by arranging the opposing surfaces of the cold cathode and the gate electrode perpendicular to the longitudinal direction of the gate array electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における画像表示装置の部分
断面図、第2図は第1図の実施を例における電子源部の
要部平面図、第3図は同実施例における電子源部の斜視
図、第4図は、第3図人−人′線における断面図、第5
図は、本発明の他の実施例における電極配置の概念を示
す平面図、第6図aおよびbは、各々従来の電界放射型
マトリックス表示装置の斜視図および要部拡大斜視図で
ある。 1・・・・・・絶縁基板、2・・・・・・フェースプレ
ート、3・・・・・・Xアレー電極、4・・・・・・絶
縁層、5・・・・・・Yアレー電極(ゲート電極)、6
・・・・・・スルーホール、7・・・・・・冷陰極、8
・・・・・・透明電極、9・・・・・・蛍光体、10・
・・・・・2次電子、11・・・・・・絶縁層除去部。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第 図 纂 第 図 第 図 図 ? 第 図
FIG. 1 is a partial cross-sectional view of an image display device according to an embodiment of the present invention, FIG. 2 is a plan view of a main part of an electron source in the implementation of FIG. 1, and FIG. 3 is a partial sectional view of an electron source in the same embodiment. FIG. 4 is a perspective view of the section, and FIG.
6 is a plan view showing the concept of electrode arrangement in another embodiment of the present invention, and FIGS. 6a and 6b are a perspective view and an enlarged perspective view of essential parts of a conventional field emission type matrix display device, respectively. DESCRIPTION OF SYMBOLS 1...Insulating substrate, 2...Face plate, 3...X array electrode, 4...Insulating layer, 5...Y array Electrode (gate electrode), 6
...Through hole, 7...Cold cathode, 8
...Transparent electrode, 9 ... Phosphor, 10.
...Secondary electron, 11...Insulating layer removed part. Name of agent: Patent attorney Shigetaka Awano and one other person Diagram

Claims (8)

【特許請求の範囲】[Claims] (1)X−Yマトリックス電極によって制御する2次元
電子源を備えた絶縁性背面板と蛍光体を塗着したフェー
スプレートを対向させた画像表示装置において、前記X
−Yマトリックス電極の各交点に構成される電子源が、
同一平面上に形成された冷陰極とゲート電極とから成る
プレーナー型電界放出電子源であることを特徴とする画
像表示装置。
(1) In an image display device in which an insulating back plate equipped with a two-dimensional electron source controlled by an X-Y matrix electrode and a face plate coated with phosphor face each other, the
- An electron source configured at each intersection of the Y matrix electrode,
An image display device characterized in that it is a planar field emission electron source comprising a cold cathode and a gate electrode formed on the same plane.
(2)X−Yマトリックス電極の各交点に構成される電
子源が、Xアレー電極表面に被覆した絶縁層の一部に設
けたスルーホールを通して接続された冷陰極と、これに
対向するYアレー電極に接続されたゲート電極とで構成
されていることを特徴とする特許請求の範囲第1項に記
載の画像表示装置。
(2) An electron source configured at each intersection of the X-Y matrix electrode is connected to a cold cathode through a through hole provided in a part of the insulating layer coated on the surface of the X-array electrode, and a Y-array facing the cold cathode. The image display device according to claim 1, further comprising a gate electrode connected to the electrode.
(3)冷陰極のゲート電極に対向する部分に多数の凸状
部を設けたことを特徴とする特許請求の範囲第1項また
は第2項に記載の画像表示装置。
(3) The image display device according to claim 1 or 2, characterized in that a large number of convex portions are provided in a portion of the cold cathode facing the gate electrode.
(4)冷陰極に設けた凸状部の少くとも尖端部下部の絶
縁層の一部が除去されていることを特徴とする特許請求
の範囲第3項に記載の画像表示装置。
(4) The image display device according to claim 3, wherein at least a portion of the insulating layer below the tip of the convex portion provided on the cold cathode is removed.
(5)X−Yマトリックス電極を構成する対向する両電
極が櫛状に形成され、お互に噛み合った形状に構成され
ていることを特徴とする特許請求の範囲第1項に記載の
画像表示装置。
(5) Image display according to claim 1, characterized in that both opposing electrodes constituting the X-Y matrix electrode are formed in a comb shape and are configured in a mutually interlocking shape. Device.
(6)対向する両電極の対向面がYアレー電極の長手方
向に垂直(Xアレー電極の長手方向)であることを特徴
とする特許請求の範囲第5項に記載の画像表示装置。
(6) The image display device according to claim 5, wherein the opposing surfaces of the two opposing electrodes are perpendicular to the longitudinal direction of the Y array electrode (the longitudinal direction of the X array electrode).
(7)冷陰極とゲート電極が櫛状に噛み合った電子源部
がXアレー電極およびYアレー電極の少なくとも一方の
アレー電極上を除く部分に形成されていることを特徴と
する特許請求の範囲第1項に記載の画像表示装置。
(7) The electron source section in which the cold cathode and the gate electrode are interlocked in a comb shape is formed in a portion of at least one of the X array electrode and the Y array electrode except for the area above the array electrode. The image display device according to item 1.
(8)特許請求の範囲第2項に記載の画像表示装置の製
造法であって、絶縁基板表面にXアレー電極を形成し、
全面に絶縁層を被覆し、前記Xアレー電極上の絶縁層の
一部にスルーホールを設け、全面に電極用金属薄膜を被
覆し、エッチング法によって同時に冷陰極とYアレー電
極を形成することを特徴とする画像表示装置の製造法。
(8) A method for manufacturing an image display device according to claim 2, which comprises forming an X array electrode on the surface of an insulating substrate,
The entire surface is coated with an insulating layer, a through hole is provided in a part of the insulating layer on the X array electrode, the entire surface is coated with a metal thin film for electrodes, and a cold cathode and a Y array electrode are simultaneously formed by an etching method. A method for manufacturing a featured image display device.
JP63197411A 1988-08-08 1988-08-08 Image display device Expired - Fee Related JP2623738B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63197411A JP2623738B2 (en) 1988-08-08 1988-08-08 Image display device
DE1989616875 DE68916875T2 (en) 1988-08-08 1989-08-07 Image display device and method of manufacturing the same.
EP19890308020 EP0354750B1 (en) 1988-08-08 1989-08-07 Image display apparatus and method of fabrication thereof
CA000607771A CA1323901C (en) 1988-08-08 1989-08-08 Image display apparatus and method of fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197411A JP2623738B2 (en) 1988-08-08 1988-08-08 Image display device

Publications (2)

Publication Number Publication Date
JPH0246636A true JPH0246636A (en) 1990-02-16
JP2623738B2 JP2623738B2 (en) 1997-06-25

Family

ID=16374070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197411A Expired - Fee Related JP2623738B2 (en) 1988-08-08 1988-08-08 Image display device

Country Status (4)

Country Link
EP (1) EP0354750B1 (en)
JP (1) JP2623738B2 (en)
CA (1) CA1323901C (en)
DE (1) DE68916875T2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048246U (en) * 1990-05-01 1992-01-24
JPH04137343A (en) * 1990-09-27 1992-05-12 Agency Of Ind Science & Technol Picture display device
JPH04308626A (en) * 1991-01-24 1992-10-30 Motorola Inc Controlled apparatus for emitting electron induced by electric field from cold cathode
JPH052985A (en) * 1990-11-28 1993-01-08 Matsushita Electric Ind Co Ltd Functional electron emitting element and its manufacture
JPH0574327A (en) * 1991-02-22 1993-03-26 Matsushita Electric Ind Co Ltd Electron emitter
US6593950B2 (en) 1991-10-08 2003-07-15 Canon Kabushiki Kaisha Electron-emitting device, and electron beam-generating apparatus and image-forming apparatus employing the device
EP2251891A2 (en) 2009-05-11 2010-11-17 Canon Kabushiki Kaisha Electron beam apparatus and image display apparatus

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2981751B2 (en) * 1989-03-23 1999-11-22 キヤノン株式会社 Electron beam generator, image forming apparatus using the same, and method of manufacturing electron beam generator
US5217401A (en) * 1989-07-07 1993-06-08 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a field-emission type switching device
JP2745814B2 (en) * 1989-09-29 1998-04-28 モトローラ・インコーポレイテッド Flat panel display using field emission device
JP2968014B2 (en) * 1990-01-29 1999-10-25 三菱電機株式会社 Micro vacuum tube and manufacturing method thereof
US5267884A (en) * 1990-01-29 1993-12-07 Mitsubishi Denki Kabushiki Kaisha Microminiature vacuum tube and production method
JP2656843B2 (en) * 1990-04-12 1997-09-24 双葉電子工業株式会社 Display device
JP2634295B2 (en) * 1990-05-17 1997-07-23 双葉電子工業株式会社 Electron-emitting device
US5140219A (en) * 1991-02-28 1992-08-18 Motorola, Inc. Field emission display device employing an integral planar field emission control device
GB2259184B (en) * 1991-03-06 1995-01-18 Sony Corp Flat image-display apparatus
US5382867A (en) * 1991-10-02 1995-01-17 Sharp Kabushiki Kaisha Field-emission type electronic device
JP2669749B2 (en) * 1992-03-27 1997-10-29 工業技術院長 Field emission device
CA2112431C (en) * 1992-12-29 2000-05-09 Masato Yamanobe Electron source, and image-forming apparatus and method of driving the same
US5455597A (en) * 1992-12-29 1995-10-03 Canon Kabushiki Kaisha Image-forming apparatus, and designation of electron beam diameter at image-forming member in image-forming apparatus
CA2112733C (en) * 1993-01-07 1999-03-30 Naoto Nakamura Electron beam-generating apparatus, image-forming apparatus, and driving methods thereof
JP3599765B2 (en) * 1993-04-20 2004-12-08 株式会社東芝 Cathode ray tube device
US6121942A (en) * 1993-12-22 2000-09-19 Canon Kabushiki Kaisha Image-forming apparatus with correction in accordance with positional deviations between electron-emitting devices and image-forming members
JPH07254354A (en) * 1994-01-28 1995-10-03 Toshiba Corp Field electron emission element, manufacture of field electron emission element and flat panel display device using this field electron emission element
US5831387A (en) 1994-05-20 1998-11-03 Canon Kabushiki Kaisha Image forming apparatus and a method for manufacturing the same
JP3062990B2 (en) * 1994-07-12 2000-07-12 キヤノン株式会社 Electron emitting device, method of manufacturing electron source and image forming apparatus using the same, and device for activating electron emitting device
US6246168B1 (en) 1994-08-29 2001-06-12 Canon Kabushiki Kaisha Electron-emitting device, electron source and image-forming apparatus as well as method of manufacturing the same
KR100220133B1 (en) * 1995-03-13 1999-09-01 미따라이 하지메 Electron emission device, electron source and image forming device and the manufacturing method thereof
KR100211945B1 (en) * 1995-12-20 1999-08-02 정선종 Mux and demux circuits using photo gate transistors
JP3647436B2 (en) 2001-12-25 2005-05-11 キヤノン株式会社 Electron-emitting device, electron source, image display device, and method for manufacturing electron-emitting device
JP2009272097A (en) 2008-05-02 2009-11-19 Canon Inc Electron source and image display apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150648A (en) * 1974-10-30 1976-05-04 Hitachi Ltd
JPS5417551A (en) * 1977-06-30 1979-02-08 Rosenblad Corp Falling film heat exchanger and condensation method
JPS59105252A (en) * 1982-11-25 1984-06-18 エム・ア−・エン・マスチネンフアブリツク・アウグスベルグ−ニユ−ルンベルグ・アクテンゲゼルシヤフト Image transferring method and apparatus
JPS62261153A (en) * 1986-05-08 1987-11-13 Nec Corp Manufacture of semiconductor device
JPS63274047A (en) * 1987-05-06 1988-11-11 Canon Inc Electron emitting element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2568394B1 (en) * 1984-07-27 1988-02-12 Commissariat Energie Atomique DEVICE FOR VIEWING BY CATHODOLUMINESCENCE EXCITED BY FIELD EMISSION

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150648A (en) * 1974-10-30 1976-05-04 Hitachi Ltd
JPS5417551A (en) * 1977-06-30 1979-02-08 Rosenblad Corp Falling film heat exchanger and condensation method
JPS59105252A (en) * 1982-11-25 1984-06-18 エム・ア−・エン・マスチネンフアブリツク・アウグスベルグ−ニユ−ルンベルグ・アクテンゲゼルシヤフト Image transferring method and apparatus
JPS62261153A (en) * 1986-05-08 1987-11-13 Nec Corp Manufacture of semiconductor device
JPS63274047A (en) * 1987-05-06 1988-11-11 Canon Inc Electron emitting element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048246U (en) * 1990-05-01 1992-01-24
JPH04137343A (en) * 1990-09-27 1992-05-12 Agency Of Ind Science & Technol Picture display device
JPH052985A (en) * 1990-11-28 1993-01-08 Matsushita Electric Ind Co Ltd Functional electron emitting element and its manufacture
JPH04308626A (en) * 1991-01-24 1992-10-30 Motorola Inc Controlled apparatus for emitting electron induced by electric field from cold cathode
JPH0574327A (en) * 1991-02-22 1993-03-26 Matsushita Electric Ind Co Ltd Electron emitter
US6593950B2 (en) 1991-10-08 2003-07-15 Canon Kabushiki Kaisha Electron-emitting device, and electron beam-generating apparatus and image-forming apparatus employing the device
EP2251891A2 (en) 2009-05-11 2010-11-17 Canon Kabushiki Kaisha Electron beam apparatus and image display apparatus
US8093796B2 (en) 2009-05-11 2012-01-10 Canon Kabushiki Kaisha Electron beam apparatus and image display apparatus

Also Published As

Publication number Publication date
CA1323901C (en) 1993-11-02
JP2623738B2 (en) 1997-06-25
EP0354750A2 (en) 1990-02-14
EP0354750B1 (en) 1994-07-20
DE68916875D1 (en) 1994-08-25
DE68916875T2 (en) 1995-01-12
EP0354750A3 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
JPH0246636A (en) Image display device and its manufacture
US5508584A (en) Flat panel display with focus mesh
JP2656851B2 (en) Image display device
US5723052A (en) Soft luminescence of field emission display
US5880554A (en) Soft luminescence of field emission display
JPH08255583A (en) Plate for picture display device reinforced optically by fluorescent layer with groove
KR100242038B1 (en) Field emission cold cathode and display device using the same
US5717288A (en) Perforated screen for brightness enhancement
KR100859685B1 (en) Field emission display device having carbon-based emitter
JP3717358B2 (en) Display device
JPH0799679B2 (en) Flat panel display
EP0461657B1 (en) Flat display
KR20000062110A (en) A flat panel display
KR20050112818A (en) Electron emission device and method for manufacturing the same
KR20010046802A (en) Field emission display device having focusing electrode and manufacturing method thereof and focusing method of electron beam using the same
KR940011723B1 (en) Method of manufacturing fed
JP3082290B2 (en) Flat panel display
JP2981765B2 (en) Electron beam generator and image forming apparatus using the same
JPH10283956A (en) Field emission display device
KR100434554B1 (en) Method for manufacturing field effect electron emission device, including steps of forming first insulating layer by pecvd process and forming second insulating layer by screen printing process
KR20050086233A (en) Field emission display device
JP2513389B2 (en) Color shift fluorescent display tube
JP2890572B2 (en) Flat panel display
KR20020039699A (en) A field emission display and manufacturing method for it
JPH0896698A (en) Electron emitting element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees