JPH0246207B2 - - Google Patents

Info

Publication number
JPH0246207B2
JPH0246207B2 JP63036606A JP3660688A JPH0246207B2 JP H0246207 B2 JPH0246207 B2 JP H0246207B2 JP 63036606 A JP63036606 A JP 63036606A JP 3660688 A JP3660688 A JP 3660688A JP H0246207 B2 JPH0246207 B2 JP H0246207B2
Authority
JP
Japan
Prior art keywords
tube
flexible tube
thermoplastic
flexible
tube material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63036606A
Other languages
Japanese (ja)
Other versions
JPS6420822A (en
Inventor
Teruo Oochi
Hiromitsu Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medos Kenkyusho KK
Original Assignee
Medos Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medos Kenkyusho KK filed Critical Medos Kenkyusho KK
Priority to JP63036606A priority Critical patent/JPS6420822A/en
Publication of JPS6420822A publication Critical patent/JPS6420822A/en
Publication of JPH0246207B2 publication Critical patent/JPH0246207B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は内視鏡の可撓管の製造方法に関するも
ので、特にその外被の被着手段に特徴を有するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a flexible tube for an endoscope, and is particularly characterized by the means for attaching the outer cover.

従来知られている内視鏡の可撓管の製造方法と
しては、金属製の螺旋管(フレツクスとも呼ばれ
る)の外周に網状管を被せた可撓管素材に対し、
予め成形された合成樹脂のチユーブを被覆する方
法や、前記可撓管素材に対し熱可塑性弾性体を直
接被覆して成形する方法などがある。
Conventionally known methods for manufacturing flexible tubes for endoscopes include making a flexible tube material by covering the outer periphery of a metal spiral tube (also called flex) with a mesh tube.
There are a method of covering a pre-molded synthetic resin tube, and a method of directly covering and molding the flexible tube material with a thermoplastic elastomer.

前者の製造方法による製品は可撓管素材と予め
成形された合成樹脂チユーブとの間が接着されて
いない為に、体腔内に挿入した際に外表面に可撓
管の屈曲による皺を生じ易いばかりでなく、体腔
内挿入時の圧縮力に対して弱いという欠陥があつ
た。また回転追従性に劣る為に捩れを生じ易く、
一旦捩れを生ずると、体腔内壁や襞との間で引掛
り、挿入時に患者に苦痛を与え、挿入操作を円滑
順調に行なうことができなくなる。このような捩
れはまた検者にとつても可撓管先端による観察方
向を見失つたりするという不都合を伴ない好まし
いものではなかつた。
Products manufactured using the former method do not bond between the flexible tube material and the pre-formed synthetic resin tube, so when inserted into a body cavity, wrinkles are likely to occur on the outer surface due to bending of the flexible tube. Not only that, but it also had the defect of being weak against compressive force when inserted into a body cavity. Also, due to poor rotation followability, twisting is likely to occur.
Once twisted, it gets caught between the inner wall of the body cavity and the folds, causing pain to the patient during insertion, and making it impossible to perform the insertion operation smoothly. Such twisting is also undesirable for the examiner, as it causes the operator to lose sight of the direction of observation due to the tip of the flexible tube.

後者の製造方法によると加熱成型時に熱可塑性
弾性素材が可撓管素材の隙間に浸透し、浸透素材
が可撓管の内面にまではみ出してしまつたりし易
く、その結果熱可塑性素材が浸透した部分と浸透
しない部分とによるむらを生ずる製品となり、そ
の結果製品は中心軸線に対し外被の肉厚が不均衡
となつて均質な可撓管を得難く、これが撓曲時に
一様であるべき可撓性に悪影響を及ぼすといつた
問題を齎らした。これを改善するための手段とし
て特許出願公告昭55−17577公報に開示されてい
るような加工方法、即ち、一旦ラテツクスを浸漬
工程等により被着させて乾燥凝結させ後に熱可塑
性素材を被せこれを成型するといつた方法も提案
され、これによつて可撓管素材内部への熱可塑性
素材の浸透を防止することも試みられている。然
し、この加工方法も現実には製造工程が複雑とな
り、而も大がかりな成形機を必要とするといつた
施設上の問題があつて必ずしも歓迎されるところ
ではなかつた。
According to the latter manufacturing method, the thermoplastic elastic material penetrates into the gap between the flexible tube materials during hot molding, and the penetrating material tends to protrude into the inner surface of the flexible tube, resulting in the thermoplastic material penetrating. As a result, the thickness of the outer sheath becomes unbalanced with respect to the center axis, making it difficult to obtain a uniform flexible tube, which should be uniform when bent. This has led to problems that have an adverse effect on flexibility. As a means to improve this, a processing method such as that disclosed in Patent Application Publication No. 17577/1980 is used, in which latex is first coated by a dipping process, dried and solidified, and then covered with a thermoplastic material. A molding method has also been proposed, and attempts have also been made to prevent the thermoplastic material from penetrating into the interior of the flexible tube material. However, in reality, this processing method was not always welcomed because it complicated the manufacturing process and required a large-scale molding machine, which caused facility problems.

本発明は、上述のような内視鏡それ自体に生じ
勝ちな欠陥を改善して、皺の発生もなく、可撓性
も均一で、捻回追従性に富み捩れを生じ難い可撓
管を簡潔な工程によつて製造し、併せて製造され
た結果の内視鏡が要請される操作性の向上を大い
に発揮できるようにしようとするものである。
The present invention improves the above-mentioned defects that tend to occur in the endoscope itself, and provides a flexible tube that does not generate wrinkles, has uniform flexibility, has excellent twist followability, and is resistant to twisting. The aim is to manufacture the endoscope through a simple process, and to enable the resulting endoscope to greatly improve the required operability.

以下本発明に係る内視鏡の可撓管の製造工程を
図る参照しながら説明する。第1図及び第2図に
一部を切欠し且つ一部を縦断して示す可撓管は、
本発明の製造方法により得られる望ましき製品の
実例を示すものである。図中1は金属螺旋管で、
外圧による潰れを防止し、内部に内視鏡として必
要な光学繊維束、鉗子チヤンネルその他の内視鏡
要素を収容しこれを保護するものであつて、適度
の可撓管を有する。この金属螺旋管1の外表面に
はこれと密接する網状管2を被せてあり、金属螺
旋管1の長手方向の伸びを規制している。これら
金属螺旋管1及び網状管2によつて構成される可
撓管素材Aは、従前のそれと格別の相違はない。
本発明の製造方法によれば、可撓管はポリウレタ
ン、軟質塩化ビニール、ポリエチレン等の熱可塑
性プラスチツクチユーブ3を緊密に圧着外装され
るものであつて、緊密に圧着して外装する方法と
予め均質に生産準備されたチユーブ状の熱可塑性
プラスチツクを用いるところに重要な特徴があ
る。チユーブ状の熱可塑性プラスチツクを緊密に
圧着外装する工程としては、金属螺旋管1の内側
にその内径と略一致する外径をもつた芯金を挿入
嵌合しておいて、熱可塑性プラスチツクチユーブ
3の一端を可撓管素材Aに差込み、その他端から
圧搾空気を注入する。このようにすると熱可塑性
プラスチツクチユーブ3はそれ自体膨拡するので
拡がつた内径を利用してそのまま送り込むように
網状管2に被せ込んでゆく。柔軟性に富み圧搾空
気によりその外径が大きく拡がるような熱可塑性
プラスチツクチユーブを用いる場合には、その一
端を可撓管素材Aの一端に括り付けまたは固着し
ておいて、圧搾空気により膨拡した該チユーブを
翻転しながら可撓管素材Aの一端より他端に向け
て被せてゆく方法も採用され得る。このようにし
て網状管2の外面に該チユーブ3を被着した後
は、圧搾空気の注入を停止し、または排出を行な
うことにより自体の潜在収縮復元性を利用して該
チユーブ3を可撓管素材Aに対し、その表面網状
管2に緊密に纏着させることができる。斯くして
可撓管素材Aの外表面に緊密に被着している熱可
塑性プラスチツクチユーブ3に対して軟化点温度
以上の加熱処理を加える。の加熱によつて軟化、
若しくは温度によつては熔融する該チユーブ3は
網状管3の組織の目の中に食い入り、または熔け
込んで、可塑化と同時に網状管2と一体密着化す
る。軟化した熱可塑性プラスチツクチユーブ3に
対する網状管2による把持力は、爾後加工を施し
て成り立つ可撓管として充分皺れ捩れを生じない
だけの機能を生ずるが、この把持力をより強める
上では、該チユーブ3を融点の付近まで加熱し、
網状管2の組織の目に熔融プラスチツクの一部を
熔け込ませることが望ましい。斯くすることによ
り網状管2との密着力は飛躍的に高められる。こ
れら加熱工程において若し必要なら軟化点以上の
加熱により、軟化乃至半熔融状態にある熱可塑性
プラスチツクチユーブ3をその外側よりダイズ等
によつてしごき、外力により網状管2との密着を
促進させてもよい。図中Bは、上記工程を経て形
成された可撓管部分を示す。
The manufacturing process of the flexible tube for an endoscope according to the present invention will be explained below with reference to the drawings. The flexible tube shown partially cut away and partially longitudinally shown in FIGS. 1 and 2 is
1 illustrates an example of a desirable product obtained by the manufacturing method of the present invention. 1 in the figure is a metal spiral tube,
It prevents collapse due to external pressure, houses and protects the optical fiber bundle, forceps channel, and other endoscopic elements necessary for the endoscope, and has an appropriately flexible tube. The outer surface of the metal helical tube 1 is covered with a mesh tube 2 that is in close contact with the outer surface of the metal helical tube 1, thereby regulating the elongation of the metal helical tube 1 in the longitudinal direction. The flexible tube material A made up of the metal spiral tube 1 and the mesh tube 2 is not particularly different from the conventional one.
According to the manufacturing method of the present invention, the flexible tube is one in which a thermoplastic tube 3 made of polyurethane, soft vinyl chloride, polyethylene, etc. is tightly crimped and sheathed. An important feature is the use of tube-shaped thermoplastics prepared for production. In the process of tightly crimping and sheathing a tube-shaped thermoplastic plastic tube, a core metal having an outer diameter that approximately matches the inner diameter of the metal spiral tube 1 is inserted and fitted inside the metal spiral tube 1, and then the thermoplastic plastic tube 3 is sealed. One end of the tube is inserted into the flexible tube material A, and compressed air is injected from the other end. In this way, the thermoplastic tube 3 expands and expands, so it is inserted into the reticular tube 2 by utilizing its expanded inner diameter. When using a thermoplastic tube that is highly flexible and whose outer diameter can be greatly expanded by compressed air, one end of the tube is tied or fixed to one end of flexible tube material A, and the tube is expanded and expanded by compressed air. A method of covering the flexible tube material A from one end to the other end while turning the tube may also be adopted. After the tube 3 is attached to the outer surface of the mesh tube 2 in this way, the tube 3 is made flexible by using its own latent shrinkage recovery property by stopping the injection of compressed air or by discharging the compressed air. The tube material A can be tightly attached to the surface reticular tube 2. The thermoplastic tube 3, which is tightly adhered to the outer surface of the flexible tube material A, is then subjected to heat treatment at a temperature higher than its softening point. softened by heating,
Alternatively, the tube 3, which melts depending on the temperature, bites into or melts into the mesh of the tissue of the reticular tube 3, and becomes integrally attached to the reticular tube 2 at the same time as plasticization. The gripping force of the mesh tube 2 on the softened thermoplastic plastic tube 3 is sufficient to prevent wrinkling and twisting as a flexible tube that is formed by subsequent processing. Heat tube 3 to around the melting point,
It is desirable to melt a portion of the molten plastic into the tissue of the mesh tube 2. By doing so, the adhesion with the reticular tube 2 is dramatically increased. In these heating steps, if necessary, by heating above the softening point, the thermoplastic tube 3 in a softened or semi-molten state is squeezed from the outside with soybeans or the like, and external force is used to promote close contact with the reticular tube 2. Good too. B in the figure shows the flexible tube portion formed through the above steps.

第2図に示す実例は、本発明の製造方法による
他の製品実例を示すものであつて、図中第1図と
同一符号で示される部分は同一の部材を示すもの
とする。この実例では、金属螺旋管1とその外周
に被覆される網状管2を以つて構成される可撓管
素材Aに対し、緊密に纏着される熱可塑性プラス
チツクチユーブ3を硬度の異なる2種以のものと
してある。内視鏡の可撓管は、その用途によつて
構成を異にするが、十二指腸に対する診断、処理
をする場合のように消化器官の深奥部に向けて先
端観察部を挿入する必要のあるときは、口腔部よ
り器官の屈曲に沿わせて挿入させる必要があり、
これを円滑にするためには、操作部側に近い部分
では腰の強い可撓度の低いものとし、先端観察部
に近い程柔軟な可撓性に富むものとしないと、挿
入時の押込み操作に難渋し、器官屈曲に即応した
挿入を順調になし得ないことが知られている。つ
まり、内視鏡可撓部を体腔内に挿入してやる場
合、先端の観察部が体腔内の器官壁の屈曲に沿つ
て進入してゆかないと、先端部で器官壁に傷をつ
けたり、甚だしくは器官壁を突き破る虞もあり、
器官内で可撓管が突張り患者に苦痛を与えないよ
うに配慮しなければならない。このような使用実
態に鑑み、操作性の向上を図る為に可撓管全長に
亘つて柔軟性に変化を与えるようにした実例が第
2図に示すものである。図において3a及び3b
は互に硬さの異なる熱可塑性プラスチツクチユー
ブを示し、これらは夫々の切口端面3a′及び3
b′が対接するように衝き合わされる。これら硬さ
の異なる熱可塑性プラスチツクチユーブ3a,3
bは、加熱熔融によつて衝き合わされた切口端面
3a′,3b′が相互に親和性をもつて融合一体化さ
れるものを選ぶ必要があり、夫々の融点はできる
だけ近いものが好ましい。これら硬さの異なる熱
可塑性プラスチツクチユーブ3a,3bを網状管
2の外周面に纏着させるための手段は、前述の2
つの方式のうちのひとつまたはそれらを組合せて
適宜行なえばよく、実施上特別の障害はない。網
状管2の外周面に緊密に纏着されたこれら異種硬
度の熱可塑性プラスチツクチユーブ3a,3b
は、より高い融点をもつチユーブの融点付近まで
加熱昇温することにより、網状管2の組織の目に
対し熔融された一部が流入して冷却後は網状管2
による強力な把持力が発揮されるが、これと同時
に衝き合わされた切口端面3a′,3b′の部分も相
互に融合一体化され、冷却後は、継ぎ目のない外
表面平滑な被覆状態と化する。
The example shown in FIG. 2 shows another example of a product produced by the manufacturing method of the present invention, and parts in the figure denoted by the same reference numerals as in FIG. 1 indicate the same members. In this example, a flexible tube material A consisting of a metal spiral tube 1 and a reticulated tube 2 covering its outer periphery is made of two or more types of thermoplastic plastic tubes 3 with different hardnesses, which are tightly wrapped around the flexible tube material A. It belongs to. The flexible tube of an endoscope has a different configuration depending on its purpose, but it is used when the tip of the flexible tube needs to be inserted deep into the digestive tract, such as when diagnosing or treating the duodenum. must be inserted along the curvature of the organ from the oral cavity.
In order to do this smoothly, the part closer to the operation part must be stiff and less flexible, and the part closer to the distal observation part must be more flexible, otherwise it will be difficult to push in during insertion. However, it is known that insertion cannot be performed smoothly in response to organ bending. In other words, when inserting the flexible endoscope into a body cavity, if the observation part at the tip does not follow the curve of the organ wall inside the body cavity, the tip may damage the organ wall or cause severe damage. There is a risk of penetrating organ walls.
Care must be taken to ensure that the flexible tube does not stretch inside the organ and cause pain to the patient. In view of this usage situation, FIG. 2 shows an example in which flexibility is varied over the entire length of a flexible tube in order to improve operability. 3a and 3b in the figure
show thermoplastic tubes having different hardnesses, and these have respective cut end surfaces 3a' and 3.
b' are brought into contact so that they are in contact with each other. These thermoplastic tubes 3a, 3 with different hardness
It is necessary to select b so that the cut end surfaces 3a' and 3b' which are abutted against each other by heating and melting are fused and integrated with each other with mutual affinity, and it is preferable that the melting points of each are as close as possible. The means for attaching these thermoplastic tubes 3a, 3b having different hardness to the outer peripheral surface of the mesh tube 2 are as follows.
It is sufficient to use one of the two methods or a combination of them as appropriate, and there are no particular obstacles to implementation. These thermoplastic tubes 3a and 3b of different hardness are closely attached to the outer peripheral surface of the mesh tube 2.
By heating the tube to a temperature close to the melting point of the tube, which has a higher melting point, a part of the melt flows into the mesh of the mesh tube 2, and after cooling, the tube 2 melts.
At the same time, the abutted cut end surfaces 3a' and 3b' are fused into one, and after cooling, the outer surface is covered with a seamless and smooth surface. .

図示した製品による説明では、硬さの異なる2
種の熱可塑性プラスチツクチユーブ3a,3bに
ついて、その継ぎ目部分を対象に詳述したが、操
作部と先端観察部との間の可撓管全長に亘つて先
端部程段階的に柔軟性を高めて可撓性変化を与え
るためには、順次硬さの異なる熱可塑性プラスチ
ツクチユーブを選んで、次々に切口端面を衝き合
せてゆけばよいことは上記説明から当然に類推理
解されよう。また前記説明においては、製造方法
の説明を簡易化する都合上単一の金属螺旋管の上
に単一の網状管を被着した可撓管素材を対象に本
発明の方法を説明したが、本発明では可撓管素材
としては上記のものに限定されるものではなく、
右巻螺旋管と左巻螺旋管を組合せた場合、及び金
属螺旋管とこれに被着される網状管を交互に重層
組合わせた可撓管素材に対しても何等の障害なく
適用し得るものである。
In the explanation using the illustrated product, there are two types with different hardness.
The thermoplastic plastic tubes 3a and 3b have been described in detail with reference to their joints, but the flexibility is gradually increased toward the tip over the entire length of the flexible tube between the operation section and the tip observation section. It can be understood by analogy from the above description that in order to change the flexibility, thermoplastic tubes having different hardnesses are selected one after another and their cut end surfaces are abutted one after another. In addition, in the above description, in order to simplify the explanation of the manufacturing method, the method of the present invention was explained using a flexible tube material in which a single reticular tube was attached to a single metal spiral tube. In the present invention, the flexible tube material is not limited to the above-mentioned materials,
It can be applied without any problem to a combination of a right-handed helical tube and a left-handed helical tube, and to a flexible tube material made by alternately layering a metal spiral tube and a mesh tube attached thereto. It is.

更に図示の製品実例としては、最も実施し易い
形態を以つて本発明の方法を詳述して来たが、可
撓管の全長に亘つて柔軟性を漸増するために、管
径一様な一端で肉厚の薄く、他端で肉厚の厚い熱
可塑性プラスチツクチユーブを継ぎ目部分で段差
を生じないように順次衝き合わせて纏着し、加熱
熔融により衝き合わせ端を融合一体化して継ぎ目
のない外表面としてもよいことは勿論である。
Furthermore, although the illustrated product example has detailed the method of the invention in its most easily implemented form, the flexible tube is designed to have a uniform diameter in order to gradually increase its flexibility over its entire length. Thermoplastic tubes with a thin wall at one end and a thick wall at the other end are successively butted together so that there are no steps at the joints, and the butt ends are fused together by heating and melting to create a seamless structure. Of course, the outer surface may also be used.

叙上の如く本発明の製造方法によれば可撓管素
材に熱可塑性プラスチツクチユーブを纏着外装し
た可撓管を該プラスチツクチユーブ軟化点温度以
上に加熱することになるので、可撓管素材と該プ
ラスチツクチユーブとが密着一体化し、可撓管を
屈曲させた時に外被となるプラスチツクチユーブ
も無理なく伸縮して皺の発生が防止され、また回
転追従性が高まり、捩れが生じ難く可撓管の操作
部側と先端観察部の方向とが一致し体腔内挿入時
の圧縮力にも強くなることから操作性が著しく向
上する。また体腔内器官壁との引掛り等がなくな
り患者の苦痛を軽減することができる。さらに、
成形一体化に当たり可撓管外表面も同時に加熱さ
れることとなるから外表面が滑らかになることに
加え、予め成形された均質な熱可塑性プラスチツ
クチユーブを纏着外装したので、可撓管には均一
のプラスチツク外装がされており、これが加熱に
よつて可撓管素材に密着一体化されるので均等な
肉厚でしかも外被となる素材が可撓管素材の内部
まではみ出すことなく、むらのない内視鏡用可撓
管が提供できる。また生産加工に当たつては、熱
可塑性のプラスチツクチユーブを外装した可撓管
を加熱成形するのみであるから設備が簡単となり
安価に目的物を提供できる利点がある。可撓管の
硬さを段階的にまたは漸増的に変えるため、従来
は硬さの異なるプラスチツクチユーブを機械的に
継ぎ合わせる等の手段によつていたので継ぎ目に
凹凸や硬い部分が出来てしまい挿入時に引掛りを
生じて挿通性が悪かつたが本発明では互に硬さの
異なる熱可塑性プラスチツクチユーブを順次熔着
融合させているので体腔内臓器の屈曲に適合する
表面滑らかな可撓管を提供できる。
As described above, according to the manufacturing method of the present invention, a flexible tube in which a thermoplastic plastic tube is wrapped around a flexible tube material and sheathed is heated to a temperature higher than the softening point temperature of the plastic tube. The plastic tube is closely integrated with the plastic tube, and when the flexible tube is bent, the plastic tube that serves as the outer covering expands and contracts without force, preventing the generation of wrinkles, and the rotation followability is improved, making the flexible tube less likely to twist. Since the direction of the operation section and the distal observation section of the device coincide, and the device is strong against compressive force when inserted into a body cavity, operability is significantly improved. In addition, the patient's pain can be alleviated since there is no chance of it getting caught on the walls of internal organs in the body cavity. moreover,
The outer surface of the flexible tube is heated at the same time during molding and integration, so the outer surface becomes smooth, and since the tube is wrapped with a pre-molded homogeneous thermoplastic tube, the flexible tube has a smooth outer surface. It has a uniform plastic exterior, which is tightly integrated with the flexible tube material by heating, so it has an even wall thickness and the outer sheath material does not protrude into the flexible tube material, making it uneven. A flexible tube for an endoscope can be provided. In addition, in production processing, since only a flexible tube with a thermoplastic tube exterior is heated and formed, the equipment is simple and the desired product can be provided at a low cost. Conventionally, in order to change the hardness of flexible tubes stepwise or gradually, methods such as mechanically joining plastic tubes of different hardness were used, which resulted in unevenness and hard parts at the joints. However, in the present invention, thermoplastic tubes of different hardness are successively welded and fused together, resulting in a flexible tube with a smooth surface that adapts to the bending of internal organs in the body cavity. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1実施例としての可撓管
の一部切欠拡大縦断側面図であり、第2図は本発
明の第2の実施例としての可撓管の一部切欠拡大
縦断側面図である。 1……金属螺旋管、2……網状管、3……熱可
塑性プラスチツクチユーブ、3a,3b……硬さ
の異なる熱可塑性プラスチツクチユーブ、3a′,
3b′……切口端面。
FIG. 1 is an enlarged partially cutaway longitudinal side view of a flexible tube as a first embodiment of the present invention, and FIG. 2 is an enlarged partially cutaway side view of a flexible tube as a second embodiment of the present invention. FIG. 1...Metal spiral tube, 2...Mesh tube, 3...Thermoplastic plastic tube, 3a, 3b...Thermoplastic plastic tube with different hardness, 3a',
3b'...Cut end surface.

Claims (1)

【特許請求の範囲】 1 可撓性を有する可撓管素材の管内空間を閉塞
する工程に続き、その一端に均質な熱可塑性プラ
スチツクチユーブの開口端を拡開して嵌合固着
し、該熱可塑性プラスチツクチユーブに圧搾空気
を送つてこれを膨拡させ、膨拡する該熱可塑性プ
ラスチツクチユーブの内径と前記可撓管素材の外
径との間の緩みを利用して該熱可撓塑性プラスチ
ツクチユーブを可撓管素材の軸方向に送り込み、
所要の送り込みをなした後に該熱可塑性プラスチ
ツクチユーブの管内空気圧を除き、該熱可塑性プ
ラスチツクチユーブに固有の潜在収縮復元力を持
つてこれを前記可撓管素材の外周面に緊密に纏着
外装し、更に該熱可塑性プラスチツクチユーブを
軟化点温度以上に加熱してこれを前記可撓管素材
の外表面に一体密着化して被覆層とすることを特
徴とする内視鏡の可撓管の製造方法。 2 前記可撓性を有する可撓管素材が、金属螺旋
管の外周面に網状管を被着してある特許請求の範
囲第1項に記載の内視鏡の可撓管の製造方法。 3 前記可撓性を有する可撓管素材が、右巻き金
属螺旋管と左巻き金属螺旋管との重層構成から成
る特許請求の範囲第1項に記載の内視鏡の可撓管
の製造方法。 4 前記可撓性を有する可撓管素材が、金属螺旋
管の外周面に網状管を被着させた構造の重層構成
からなる特許請求の範囲第1項に記載の内視鏡の
可撓管の製造方法。 5 前記硬さの異なる熱可塑性プラスチツクチユ
ーブが、管径一様で、一端の肉厚を他端の肉厚よ
り厚くされており、隣り合う衝き合わせ端面でそ
の外径を揃えて可撓管素材の外周面に纏着外装さ
れることに特徴づけられる特許請求の範囲第1項
に記載の内視鏡の可撓管の製造方法。 6 可撓性を有する可撓管素材の管内空間を閉塞
する工程に続き、その一端に均質な熱可塑性プラ
スチツクチユーブの開口端を仮止めし、該熱可塑
性プラスチツクチユーブに圧搾空気を送つてこれ
を膨拡させ、仮止めした上記一端より順次該熱可
塑性プラスチツクチユーブを翻転してめくり返
し、該熱可塑性プラスチツクチユーブの外表面を
前記可撓管素材の外表面と圧着しながら前記可撓
管素材の軸方向に向けて展設してゆき、展設終了
後該熱可塑性プラスチツクチユーブの管内空気圧
を除いてこれを前記可撓管素材の外表面に緊密に
纏着外装し、更に該熱可塑性プラスチツクチユー
ブを軟化点温度以上に加熱してこれを前記可撓管
素材の外表面に一体密着化して被覆層とすること
を特徴とする内視鏡の可撓管の製造方法。 7 前記可撓性を有する可撓管素材が、金属螺旋
管の外周面に網状管を被着してある特許請求の範
囲第6項に記載の内視鏡の可撓管の製造方法。 8 前記可撓性を有する可撓管素材が、右巻き金
属螺旋管と左巻き金属螺旋管との重層構成から成
る特許請求の範囲第6項に記載の内視鏡の可撓管
の製造方法。 9 前記可撓性を有する可撓管素材が、金属螺旋
管の外周面に網状管を被着させた構造の重層構成
からなる特許請求の範囲第6項に記載の内視鏡の
可撓管の製造方法。 10 前記硬さの異なる熱可塑性プラスチツクチ
ユーブが、管径一様で、一端の肉厚を他端の肉厚
より厚くされており、隣り合う衝き合わせ端面で
その外径を揃えて可撓管素材の外周面に纏着外装
されることに特徴づけられる特許請求の範囲第6
項に記載の内視鏡の可撓管の製造方法。
[Scope of Claims] 1. Following the step of closing the inner space of a flexible tube material, the open end of a homogeneous thermoplastic tube is expanded and fixed to one end of the tube material, and the tube material is heated. Compressed air is sent to the plastic tube to expand and expand it, and the thermoplastic tube is expanded by utilizing the slack between the inner diameter of the expanding and expanding thermoplastic tube and the outer diameter of the flexible tube material. is fed in the axial direction of the flexible tube material,
After the required feeding is performed, the air pressure inside the thermoplastic tube is removed, and the thermoplastic tube, which has a latent shrinkage resilience inherent to the tube, is tightly wrapped around the outer peripheral surface of the flexible tube material and sheathed. A method for producing a flexible tube for an endoscope, further comprising heating the thermoplastic tube to a temperature above its softening point and integrally adhering it to the outer surface of the flexible tube material to form a coating layer. . 2. The method for manufacturing a flexible tube for an endoscope according to claim 1, wherein the flexible tube material has a mesh tube attached to the outer peripheral surface of a metal spiral tube. 3. The method of manufacturing a flexible tube for an endoscope according to claim 1, wherein the flexible tube material has a multilayer structure of a right-handed spiral metal tube and a left-handed spiral metal tube. 4. The flexible tube of an endoscope according to claim 1, wherein the flexible tube material has a multilayer structure in which a mesh tube is attached to the outer peripheral surface of a metal spiral tube. manufacturing method. 5 The thermoplastic plastic tubes having different hardnesses have uniform diameters, one end is thicker than the other end, and the outer diameters of the adjacent abutting end surfaces are aligned to form a flexible tube material. 2. The method of manufacturing a flexible tube for an endoscope according to claim 1, wherein the flexible tube is wrapped around the outer peripheral surface of the tube. 6 Following the step of closing the inner space of the flexible tube material, the open end of a homogeneous thermoplastic tube is temporarily fixed to one end of the flexible tube material, and compressed air is sent to the thermoplastic tube to close it. The thermoplastic plastic tube is sequentially turned over from the one end which has been expanded and temporarily fixed, and the outer surface of the thermoplastic plastic tube is pressed against the outer surface of the flexible tube material while the flexible tube material is closed. After the tube is expanded, the thermoplastic tube is tightly wrapped around the outer surface of the flexible tube material by removing the air pressure inside the tube, and is then wrapped around the outer surface of the flexible tube material. A method for manufacturing a flexible tube for an endoscope, comprising heating the tube to a temperature above its softening point and integrally adhering the tube to the outer surface of the flexible tube material to form a coating layer. 7. The method of manufacturing a flexible tube for an endoscope according to claim 6, wherein the flexible tube material has a mesh tube attached to the outer peripheral surface of a metal spiral tube. 8. The method of manufacturing a flexible tube for an endoscope according to claim 6, wherein the flexible tube material has a multilayer structure of a right-handed metal spiral tube and a left-handed metal spiral tube. 9. The flexible tube of an endoscope according to claim 6, wherein the flexible tube material has a multilayer structure in which a mesh tube is attached to the outer peripheral surface of a metal spiral tube. manufacturing method. 10 The thermoplastic plastic tubes having different hardnesses have uniform diameters, the wall thickness at one end is thicker than the wall thickness at the other end, and the outer diameters are made equal at the adjacent abutting ends to form a flexible tube material. Claim 6 is characterized in that it is wrapped around the outer peripheral surface of the
A method for manufacturing a flexible tube for an endoscope as described in 2.
JP63036606A 1988-02-19 1988-02-19 Preparation of flexible tube for endoscope Granted JPS6420822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63036606A JPS6420822A (en) 1988-02-19 1988-02-19 Preparation of flexible tube for endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63036606A JPS6420822A (en) 1988-02-19 1988-02-19 Preparation of flexible tube for endoscope

Publications (2)

Publication Number Publication Date
JPS6420822A JPS6420822A (en) 1989-01-24
JPH0246207B2 true JPH0246207B2 (en) 1990-10-15

Family

ID=12474458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63036606A Granted JPS6420822A (en) 1988-02-19 1988-02-19 Preparation of flexible tube for endoscope

Country Status (1)

Country Link
JP (1) JPS6420822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561528A (en) * 1991-08-30 1993-03-12 Makino Milling Mach Co Ltd Feed speed control method for numerical control
JPH0561529A (en) * 1991-08-30 1993-03-12 Makino Milling Mach Co Ltd Feed speed controller for numerical control

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3370434B2 (en) * 1994-06-16 2003-01-27 ペンタックス株式会社 Rigid endoscope
JP4590219B2 (en) * 2004-06-16 2010-12-01 オリンパス株式会社 Endoscope flexible tube manufacturing method, endoscope flexible tube and aging apparatus thereof
JP4542465B2 (en) * 2005-04-27 2010-09-15 オリンパスメディカルシステムズ株式会社 Endoscope flexible tube manufacturing apparatus
KR102182739B1 (en) 2020-06-03 2020-11-25 (주)에어바이블 Levitational solid structure and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561528A (en) * 1991-08-30 1993-03-12 Makino Milling Mach Co Ltd Feed speed control method for numerical control
JPH0561529A (en) * 1991-08-30 1993-03-12 Makino Milling Mach Co Ltd Feed speed controller for numerical control

Also Published As

Publication number Publication date
JPS6420822A (en) 1989-01-24

Similar Documents

Publication Publication Date Title
JPH0329406B2 (en)
US4690175A (en) Flexible tube for endoscope
US7582079B2 (en) Composite flexible tube for medical applications
US7534317B2 (en) Kink-resistant access sheath and method of making same
US6464632B1 (en) Flexible inner liner for the working channel of an endoscope
JPH0550288B2 (en)
JPH01310666A (en) Soft leading end catheter
JPS5838565A (en) Production of reinforced surgical tube
US8257249B2 (en) Flexible tube for endoscope and method of manufacturing the same
JPH0246207B2 (en)
US20050059861A1 (en) Flexible tube of endoscope and method for manufacturing the same
JP3149259B2 (en) Endoscope flexible tube
JPS6324380B2 (en)
JP3253899B2 (en) Method for manufacturing flexible tube for endoscope and flexible tube for endoscope
JPH03141920A (en) Flexible tube for endoscope and manufacture of flexible tube
JP3123565B2 (en) Medical tube and method of manufacturing the same
JPH07136280A (en) Small-diameter tube for medical treatment
JP2001238851A (en) Flexible tube of endoscope
JP4338257B2 (en) Endoscope flexible tube
JPH01121065A (en) Medical tube and its preparation
JPS63125231A (en) Soft part of endoscope
JPH02274259A (en) Manufacture braiding-reinforced type catheter
JPH0595894A (en) Soft part of endoscope
JP2002065591A (en) Flexible tube for endoscope or endoscope treatment instrument, and its manufacturing method
JP2008036204A (en) Manufacturing method of endoscope flexible tube