JPH0245913A - Semiconductor manufacturing device - Google Patents

Semiconductor manufacturing device

Info

Publication number
JPH0245913A
JPH0245913A JP19676688A JP19676688A JPH0245913A JP H0245913 A JPH0245913 A JP H0245913A JP 19676688 A JP19676688 A JP 19676688A JP 19676688 A JP19676688 A JP 19676688A JP H0245913 A JPH0245913 A JP H0245913A
Authority
JP
Japan
Prior art keywords
reaction chamber
heater
temperature
section
door
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19676688A
Other languages
Japanese (ja)
Inventor
Eisuke Tanaka
英祐 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19676688A priority Critical patent/JPH0245913A/en
Publication of JPH0245913A publication Critical patent/JPH0245913A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce heat dissipation from a reaction chamber to set temperature uniformly at each section in the reaction chamber by providing a heat blocking member on the inside surface of the reaction chamber not heated by a heater. CONSTITUTION:Inside surface of a handle section door 2 and a source section door 3 are coated with high temperature sintered ceramics 9 having lower thermal conductivity than stainless. When a wafer 8 is heated by a handle section heater 4, an outer section heater 5, and a source section heater 6, heat dissipation is more restricted compared with prior cases. Thus, a temperature hysteresis at each section in a reaction chamber 1 is made the same and temperature at each section in the reaction chamber 1 is set uniform.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は加熱機構を有した半導体製造5A@に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to semiconductor manufacturing 5A@ having a heating mechanism.

〔従来の技術〕[Conventional technology]

第2図はこの種の従来の半導体製造装置である円筒チュ
ーブ型プラズマCVD装置の断面図である。図において
、1は円筒チューブ型の反応室、2は反応ガスを導入す
る側(以下ハンドル部という。)のドア、3は反応後の
ガスを排気する側(以下ソース部という。)のドアであ
る。ハンドル部ドア2及びソース部ドア3に使われてい
る材料はステンレスである。
FIG. 2 is a sectional view of a cylindrical tube type plasma CVD apparatus, which is a conventional semiconductor manufacturing apparatus of this type. In the figure, 1 is a cylindrical tube-shaped reaction chamber, 2 is a door on the side where the reaction gas is introduced (hereinafter referred to as the handle part), and 3 is the door on the side where the gas is exhausted after the reaction (hereinafter referred to as the source part). be. The material used for the handle door 2 and the source door 3 is stainless steel.

4はハンドル部を加熱するためのハンドル部ヒータ、5
は反応室1のセンタ一部を加熱するためのセンタ一部ヒ
ータ、6はソース部を加熱するためのソース部ヒータで
ある。7はウェーハサセプタであり、ウェーハサセプタ
7上にはウェーハ8が設置されている。
4 is a handle heater for heating the handle; 5
1 is a center part heater for heating a part of the center of the reaction chamber 1, and 6 is a source part heater for heating a source part. 7 is a wafer susceptor, and a wafer 8 is placed on the wafer susceptor 7.

次に、反応室1を用いウェーハ8を処理する工程につい
て説明する。まず、ウェーハサセプタ7上にウェーハ8
を並べる。その後、ウェーハ8を並へたウェーハサセプ
タ7を、例えば、ハンドル部ドア2を開け、反応室1内
に入れる。そして、ハンドル部ドア2を閉じ、ハンドル
部ヒータ4゜センタ一部ヒータ5.ソース部ヒータ6に
よりハンドル部、センタ一部、ソース部を加熱し、つニ
ー八8の温度を250℃〜400℃にする。そして、ハ
ンドル部よりガスを注入しソース部より排気を行ないな
がら反応室1内にプラズマを発生させCVD処理を行な
う。
Next, a process of processing the wafer 8 using the reaction chamber 1 will be explained. First, place the wafer 8 on the wafer susceptor 7.
Arrange. Thereafter, the wafer susceptor 7 with the wafers 8 arranged thereon is placed into the reaction chamber 1 by, for example, opening the handle door 2. Then, close the handle door 2, turn on the handle heater 4° and the center partial heater 5. The handle portion, a part of the center, and the source portion are heated by the source portion heater 6 to bring the temperature of the knee 8 to 250° C. to 400° C. Then, plasma is generated in the reaction chamber 1 while gas is injected from the handle part and exhausted from the source part, and CVD processing is performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体製造装置は以上のように構成されており、
ハンドル部ドア2及びソース部ドア3の材料であるステ
ンレスの熱伝導率(厚さ1clRの板の両面に1℃の温
度差がある時、その板の1cIllを通して1秒間に流
れる熱量)が0.245J/ca+・s−にと比較的大
きく、ハンドル部、センター部、ソース部を同じように
加熱しても、ハンドル部ドア2及びソース部ドア3から
の放熱が大きくセンタ一部の温度が先に上昇するという
ように、反応室1内での温度履歴が各部で異なり、また
反応室1内の温度を均一に保つことが困難となり、ウェ
ーハ8上に形成される絶縁膜の膜厚が均一にならないな
どウェーハ8の処理状態に影響を与えるという問題点が
あった。この問題はウェーハ8の口径の増大に伴い反応
室1の口径も増大しているという今日においては、さら
に深刻となる。
Conventional semiconductor manufacturing equipment is configured as described above.
The thermal conductivity of stainless steel, which is the material for the handle door 2 and the source door 3 (when there is a 1°C temperature difference on both sides of a plate with a thickness of 1 clR, the amount of heat that flows through 1 cIll of the plate in 1 second) is 0. It is relatively large at 245 J/ca+・s-, and even if the handle, center, and source parts are heated in the same way, the heat dissipated from the handle part door 2 and the source part door 3 is large, and the temperature of the center part is higher. The temperature history inside the reaction chamber 1 is different in each part, as the temperature rises to 100.degree. There was a problem in that it affected the processing state of the wafer 8, such as not becoming wafer 8. This problem has become even more serious in today's world, where the diameter of the reaction chamber 1 has increased as the diameter of the wafer 8 has increased.

また、250℃〜400℃の低温領域で行なわれるプラ
ズマCVDにあってはハンドル部ドア2及びソース部ド
ア3を介し外気の温度の影響を受けやすく、反応室1内
各部の温度を均一に保つことが一層困難であるという問
題点があった。
In addition, in plasma CVD performed in a low temperature range of 250°C to 400°C, it is easily affected by the temperature of the outside air through the handle door 2 and the source door 3, and the temperature of each part in the reaction chamber 1 is kept uniform. The problem was that it was even more difficult to do so.

この発明は上記のような問題点を解消するためになされ
たもので、反応室からの放熱を防ぎ、反応室内各部の温
度履歴を同一にするとともに、反応室内温度を容易に均
一にすることができる半導体製造装置を得ることを目的
とする。
This invention was made in order to solve the above-mentioned problems, and it prevents heat radiation from the reaction chamber, makes the temperature history of each part of the reaction chamber the same, and easily makes the temperature in the reaction chamber uniform. The purpose is to obtain semiconductor manufacturing equipment that can

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体製造装置は、反応室と、反応室を
加熱するためのヒータとを有する半導体製造装置であっ
て、ヒータにより加熱されない反応室の内側表面に熱遮
断材を設けた構成としている。
A semiconductor manufacturing apparatus according to the present invention is a semiconductor manufacturing apparatus having a reaction chamber and a heater for heating the reaction chamber, and has a structure in which a heat shielding material is provided on the inner surface of the reaction chamber that is not heated by the heater. .

〔作用〕[Effect]

この発明における熱遮断材は、反応室からの放熱を防止
する。そのため反応室内各部の温度履歴を同一にするこ
とができるととらに、反応室内の温度を容易に均一にす
ることができる。
The heat shielding material in this invention prevents heat radiation from the reaction chamber. Therefore, not only can the temperature history of each part of the reaction chamber be made the same, but also the temperature within the reaction chamber can be easily made uniform.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す断面図である。図に
おいて、第2図に示した従来例との相違点は、ハンドル
部ドア2及びソース部ドア3の内側表面をステンレスよ
りも熱伝導率の低い高温焼結セラミックス9でコーティ
ングしたことである。
FIG. 1 is a sectional view showing an embodiment of the present invention. In the figure, the difference from the conventional example shown in FIG. 2 is that the inner surfaces of the handle door 2 and the source door 3 are coated with high-temperature sintered ceramic 9, which has a lower thermal conductivity than stainless steel.

その他の構成は従来例と同様である 反応室1を用いウェーハ8を処理する工程は従来と全く
同じである。この工程において、ハンドル部ヒータ4.
センタ一部ヒータ5.ソース部ヒータ6を用いウェーハ
8を加熱した場合、高温焼結セラミックス9でハンドル
部ドア2及びソース部ドア3の内側表面をコーティング
しCいるので、従来よりも放熱が抑えられる。具体的な
数字で示すと、ステンレスの熱伝導率は0.245J/
ca+・s−に、高温焼結セラミックス9の熱伝導率は
10、5x 10−3J/co+−s −kであり、高
温焼結セラミックス9をコーティングすることにより放
熱は従来に比べて約1/25に抑えられることになる。
The rest of the configuration is the same as in the conventional example, and the process of processing the wafer 8 using the reaction chamber 1 is completely the same as in the conventional example. In this step, the handle heater 4.
Partial center heater 5. When the wafer 8 is heated using the source heater 6, the inner surfaces of the handle door 2 and the source door 3 are coated with high-temperature sintered ceramics 9, so that heat radiation is suppressed more than in the past. In concrete terms, the thermal conductivity of stainless steel is 0.245J/
The thermal conductivity of the high-temperature sintered ceramics 9 is 10.5x 10-3 J/co+-s-k, and by coating the high-temperature sintered ceramics 9, the heat dissipation is reduced to about 1/1 compared to the conventional one. This will reduce the number to 25.

このため、ウェーハ8の加熱時に従来のようにセンタ一
部の温度のみが先に上昇することがなく、反応室1内各
部の温度履歴が同一になるとともに、反応室1内の各部
の温度を容易に均一な温度に設定することができ、ウェ
ーハ8の処理状態に影響を与えることがない。特に、2
50℃〜400℃という低域温度で行われるプラズマC
VDにおいては、従来のようにハンドル部ドア2及びソ
ース部ドア3を介し外気などの外乱による影響を受ける
ことがない。
Therefore, when heating the wafer 8, the temperature of only a part of the center does not rise first as in the conventional case, and the temperature history of each part of the reaction chamber 1 becomes the same, and the temperature of each part of the reaction chamber 1 is kept the same. The temperature can be easily set to be uniform, and the processing state of the wafer 8 is not affected. In particular, 2
Plasma C performed at a low temperature range of 50℃ to 400℃
In the VD, there is no influence from external disturbances such as outside air through the handle door 2 and the source door 3, unlike in the conventional case.

なお、上記実施例では熱遮断材として高温焼結セラミッ
クス9を用いたが、放熱を少なくすることができればい
かなる物質であってもよい。
In the above embodiment, high-temperature sintered ceramics 9 were used as the heat shielding material, but any material may be used as long as it can reduce heat dissipation.

また、上記実施例ではプラズマCVD装置について説明
したが、その伯の半導体製造装置についても適用するこ
とができる。
Further, although the above embodiments have been described with respect to a plasma CVD apparatus, the present invention can also be applied to a similar semiconductor manufacturing apparatus.

〔発明の効果] 以上のように、この発明によれば、ヒータにより加熱さ
れない反応室の内側表面に熱遮断材を設けたので、反応
室からの放熱が少なくなり、反応室をヒータにより加熱
した場合、反応室内各部の温度履歴が同一となるととも
に、反応室内の各部の温度を均一に設定することが容易
になるという効果がある。特に、低温領域で行われるプ
ラズマCVDにおいては外気などの外乱による影響を受
けないという効果がある。
[Effects of the Invention] As described above, according to the present invention, since the heat shielding material is provided on the inner surface of the reaction chamber that is not heated by the heater, the heat radiation from the reaction chamber is reduced, and the reaction chamber is not heated by the heater. In this case, the temperature history of each part of the reaction chamber becomes the same, and the temperature of each part of the reaction chamber can be easily set uniformly. Particularly, plasma CVD performed in a low temperature region has the advantage of not being affected by disturbances such as outside air.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る一実施例を示す断面図、第2図
は従来の半導体製造装置を示す断面図である。 図において、1は反応室、4はハンドル部ヒータ、5は
センタ一部ヒータ、6はソース部ヒータ、9は高温焼結
セラミックスである。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional semiconductor manufacturing apparatus. In the figure, 1 is a reaction chamber, 4 is a handle heater, 5 is a center partial heater, 6 is a source heater, and 9 is a high-temperature sintered ceramic. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)反応室と、前記反応室を加熱するためのヒータと
を有する半導体製造装置であって、前記ヒータにより加
熱されない前記反応室の内側表面に熱遮断材を設けたこ
とを特徴とする半導体製造装置。
(1) A semiconductor manufacturing apparatus having a reaction chamber and a heater for heating the reaction chamber, characterized in that a heat shielding material is provided on the inner surface of the reaction chamber that is not heated by the heater. Manufacturing equipment.
JP19676688A 1988-08-05 1988-08-05 Semiconductor manufacturing device Pending JPH0245913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19676688A JPH0245913A (en) 1988-08-05 1988-08-05 Semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19676688A JPH0245913A (en) 1988-08-05 1988-08-05 Semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JPH0245913A true JPH0245913A (en) 1990-02-15

Family

ID=16363267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19676688A Pending JPH0245913A (en) 1988-08-05 1988-08-05 Semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JPH0245913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696628B2 (en) 2001-08-08 2004-02-24 Yamaha Corporation Musical instrument stand
KR100855839B1 (en) * 2004-10-21 2008-09-01 마쯔시다덴기산교 가부시키가이샤 Oxygen-permeable film, oxygen-permeable sheet and electric cell comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696628B2 (en) 2001-08-08 2004-02-24 Yamaha Corporation Musical instrument stand
KR100855839B1 (en) * 2004-10-21 2008-09-01 마쯔시다덴기산교 가부시키가이샤 Oxygen-permeable film, oxygen-permeable sheet and electric cell comprising the same

Similar Documents

Publication Publication Date Title
JP2001525997A (en) Processing equipment
JP2007251126A (en) Semiconductor batch heating assembly
US20030087215A1 (en) Gas-assisted rapid thermal processing
JPH04243123A (en) Semiconductor manufacturing apparatus
US3842794A (en) Apparatus for high temperature semiconductor processing
JP4527449B2 (en) Cylinder for heat treatment chamber
JPH0245913A (en) Semiconductor manufacturing device
US6759624B2 (en) Method and apparatus for heating a semiconductor wafer plasma reactor vacuum chamber
KR100559198B1 (en) Bell jar having integral gas distribution channeling
JPS622544A (en) Noiseless discharge type gas plasma treating device
JP2676083B2 (en) heating furnace
JPH0487180A (en) Ceramic heater for heating semiconductor wafer
JP2734212B2 (en) Plasma process equipment
JPH04186616A (en) Heat treating apparatus
JP3022190U (en) Atmospheric pressure chemical vapor deposition tray
JPH0632680Y2 (en) Heating furnace for semiconductor manufacturing equipment
JPH0239425A (en) Apparatus for manufacturing semiconductor
JPH06310454A (en) Hot-wall type heat treatment device
JPH0493026A (en) Apparatus for forming insulating film
JPH02218119A (en) Vertical semiconductor diffusion furnace
JPS59107909A (en) Apparatus for forming silicon nitride film
JPH05343326A (en) Semiconductor substrate reactor
JPS59155135A (en) Formation of film and device thereof
JPH06151325A (en) Split-type furnace
JPH07161655A (en) Soaking tube for heat-treating device