JPH0245815B2 - - Google Patents
Info
- Publication number
- JPH0245815B2 JPH0245815B2 JP57105437A JP10543782A JPH0245815B2 JP H0245815 B2 JPH0245815 B2 JP H0245815B2 JP 57105437 A JP57105437 A JP 57105437A JP 10543782 A JP10543782 A JP 10543782A JP H0245815 B2 JPH0245815 B2 JP H0245815B2
- Authority
- JP
- Japan
- Prior art keywords
- bubbles
- water
- oil
- hydrous
- heating element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 46
- 238000010438 heat treatment Methods 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 18
- 238000001704 evaporation Methods 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 4
- 238000000691 measurement method Methods 0.000 claims 1
- 239000003921 oil Substances 0.000 description 47
- 238000005259 measurement Methods 0.000 description 10
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000008162 cooking oil Substances 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/26—Oils; Viscous liquids; Paints; Inks
- G01N33/28—Oils, i.e. hydrocarbon liquids
- G01N33/2835—Specific substances contained in the oils or fuels
- G01N33/2847—Water in oils
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
【発明の詳細な説明】
本発明は含水油中の水分濃度の測定方法に関
し、更に詳述すれば、加熱体を用いて含水油を局
部的に加熱し、これにより加熱体と含水油との接
触面に発生する水の蒸発気泡を観測して含水油中
の水分濃度を決定する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the water concentration in hydrous oil. More specifically, the present invention relates to a method for measuring the water concentration in hydrous oil, and more specifically, the hydrous oil is locally heated using a heating element, and thereby the heating element and the hydrous oil are heated. This invention relates to a method for determining the water concentration in hydrous oil by observing evaporation bubbles of water generated on a contact surface.
従来、含水油中の水分濃度を測定する簡易な方
法は殆どなく、僅かにカールフイツシヤー法や加
熱した抵抗体の抵抗変化による測定法が知られて
いる。前者の方法は複雑な前処理を必要とし、測
定に時間及び手間を要する上、連続測定ができ
ず、適用範囲も制限される等の問題がある。ま
た、後者の方法としては、含水油中に加熱抵抗体
を浸漬し、油中の水分が加熱抵抗体表面で蒸発す
る時に起こる抵抗変化を出力として測定し、その
出力を含水率の目安として測定するものがある。
この方法を用いた測定器は周知のものとして市販
されているものであるが、電気的雑音によるエラ
ーが大きいという欠点があつた。 Conventionally, there have been few simple methods for measuring the water concentration in water-containing oil, and only a few known methods include the Karl Fischer method and a measuring method based on resistance change of a heated resistor. The former method requires complicated pretreatment, requires time and effort for measurement, and has problems such as not being able to perform continuous measurements and having a limited range of application. In the latter method, a heating resistor is immersed in water-containing oil, and the resistance change that occurs when the water in the oil evaporates on the surface of the heating resistor is measured as an output, and that output is used as a guide for the water content. There is something to do.
Measuring instruments using this method are well known and commercially available, but they have the drawback of large errors due to electrical noise.
本出願の発明者はその後者の方法による含水率
研究の種々の検討の過程で、加熱体を含水油と接
触させて前記加熱体近傍の含水油を水の沸点以上
に加熱した場合、含水油と加熱体との接触面に発
生する水の蒸発による気泡の数と、含水油中の水
分濃度との間に一定の関係が存在することを知得
して本発明を完成するに至つたもので、その目的
とするところは含水油中の水分濃度を簡単かつ精
度良く測定する方法を提供することにある。この
場合、本発明においては、測定対象となる含水油
の特定の加熱温度における気泡の数と水分濃度と
の相関を予め調べておき、この相関に基づいて水
分濃度を決定するものである。例えば、水分濃度
の低い油の測定を行なう場合には気泡を多く発生
させるために加熱体表面を120℃程度に加熱して
加熱体近傍の油を120℃程度の高温に加熱する必
要があるが、この場合にはその油を120℃に加熱
した場合における気泡数と水分濃度との相関を予
め調べておく。また、水分濃度の高い油を測定す
るときには加熱体表面を110℃程度に加熱して加
熱体近傍の油を110℃程度に加熱すればよいが、
この場合にはその油を110℃に加熱した場合にお
ける気泡数と水分濃度との相関を予め調べてお
く。従つて、本発明によれば、気泡数を観測する
だけでこの気泡数から直ちに水分量を決定するこ
とができるものである。 In the course of various studies on moisture content research using the latter method, the inventor of the present application discovered that when a heating body is brought into contact with hydrous oil and the hydrous oil near the heating element is heated to a temperature higher than the boiling point of water, the hydrous oil The present invention was completed based on the knowledge that there is a certain relationship between the number of bubbles due to evaporation of water generated at the contact surface between the oil and the heating element and the water concentration in the water-containing oil. The purpose is to provide a method for easily and accurately measuring the water concentration in hydrous oil. In this case, in the present invention, the correlation between the number of bubbles and the moisture concentration at a specific heating temperature of the hydrous oil to be measured is investigated in advance, and the moisture concentration is determined based on this correlation. For example, when measuring oil with a low water concentration, it is necessary to heat the surface of the heating element to around 120°C and heat the oil near the heating element to a high temperature of around 120°C in order to generate many bubbles. In this case, the correlation between the number of bubbles and the water concentration when the oil is heated to 120°C is investigated in advance. Also, when measuring oil with a high moisture concentration, it is sufficient to heat the surface of the heating element to about 110°C and then heat the oil near the heating element to about 110°C.
In this case, the correlation between the number of bubbles and the water concentration when the oil is heated to 110°C is investigated in advance. Therefore, according to the present invention, the moisture content can be immediately determined from the number of bubbles by simply observing the number of bubbles.
以下、本発明の一実施例につき第1図を参照し
て説明する。 Hereinafter, one embodiment of the present invention will be described with reference to FIG.
第1図は本発明の実施に使用する含水油測定装
置の一例を示すもので、図中1は内部に含水油2
を満す測定槽である。この槽1内には槽内壁に取
付けられたアーム3a,3bによつて検出器ホル
ダー4及び中空の受音管5が垂直に並設して固定
されている。前記ホルダー4の下端部にはガラ
ス、金属その他の材質の被覆管6内にフイラメン
ト7を内蔵してなる加熱体8が装着されている。
そして、この加熱体8から引き出されたリード線
9はホルダー4内を通つて電気部10に接続され
ており、このリード線9を介して電気部10から
フイラメント7に所定の電力が供給され、これに
より加熱体8が110℃程度に加熱される。 Figure 1 shows an example of a water-containing oil measuring device used in carrying out the present invention.
This is a measurement tank that satisfies the following conditions. Inside the tank 1, a detector holder 4 and a hollow sound receiving tube 5 are vertically arranged and fixed in parallel by arms 3a and 3b attached to the inner wall of the tank. At the lower end of the holder 4, a heating element 8 is mounted which has a filament 7 built into a cladding tube 6 made of glass, metal, or other material.
A lead wire 9 drawn out from this heating body 8 passes through the inside of the holder 4 and is connected to an electric section 10, and a predetermined electric power is supplied from the electric section 10 to the filament 7 via this lead wire 9. As a result, the heating element 8 is heated to about 110°C.
前記受音管5の下部側は所定箇所で約90度に折
曲されていると共に、その端部側はやや大径の受
音部11が形成され、これにより受音部11の開
口端12が加熱体8に対向して配設されている。
また、受音管5の上部には音響を検出してその音
量に対応した電気信号を送出するマイクロホン等
の受音素子13が装着されており、受音部11で
受音された音響は受音管5内を通つて受音素子1
3に到達し、ここで電気信号に変換されて電気部
10に送られる。このようにして電気部10に送
られた信号は、ここで信号処理がなされ、記録計
14に送られて結果が記録される。なお、15は
受音素子13から電気部10へ前記電気信号を伝
送するケーブルである。 The lower side of the sound receiving tube 5 is bent at approximately 90 degrees at a predetermined point, and a sound receiving portion 11 with a slightly larger diameter is formed at the end thereof, so that an open end 12 of the sound receiving portion 11 is formed. is arranged facing the heating element 8.
Further, a sound receiving element 13 such as a microphone that detects sound and sends out an electrical signal corresponding to the volume is attached to the upper part of the sound receiving tube 5, and the sound received by the sound receiving section 11 is The sound receiving element 1 passes through the sound tube 5.
3, where it is converted into an electrical signal and sent to the electrical section 10. The signals thus sent to the electrical section 10 are processed here, and sent to the recorder 14, where the results are recorded. Note that 15 is a cable that transmits the electrical signal from the sound receiving element 13 to the electrical section 10.
この装置を用いて含水油中の水分濃度を測定す
る場合には、まず測定槽1内に被測定試料である
含水油2を入れる。含水油2としては、例えばエ
ンジンオイル、切削油、焼入油、食用油等の種々
の油中にppmオーダーの低濃度の水が分散又は溶
解したものなども測定の対象となり得る。次い
で、電気部10からフイラメント7に所定の電力
が供給され、これによりフイラメント7が発熱し
て加熱体8の温度が110℃程度になる。すると、
加熱体8近傍の含水油が水の沸点以上に加熱さ
れ、これにより加熱体8と含水油2との接触面に
含水油2中の水の蒸発による気泡16が発生し、
成長するが、この気泡16の発生量(発生数)は
含水油2中の水分濃度と相関を有するものであ
る。そして、気泡16が発生する際には気泡16
の発生音が生じるが、この発生音は加熱体8と対
向して配設された受音部11の開口端12を通つ
て受音管5内に導びかれ、受音管5内を通つて受
音素子13に到達し、ここで発生音量に対応した
電気信号に変換されて電気部10に送られ、ここ
で信号処理がなされた後、記録計14に送られ、
これに含水油中の水分濃度が表示される。 When measuring the water concentration in water-containing oil using this device, first, water-containing oil 2, which is a sample to be measured, is placed in measurement tank 1. As the water-containing oil 2, various oils such as engine oil, cutting oil, quenching oil, cooking oil, etc., in which water at a low concentration of ppm order is dispersed or dissolved, can also be measured. Next, a predetermined electric power is supplied from the electric section 10 to the filament 7, whereby the filament 7 generates heat and the temperature of the heating element 8 reaches about 110°C. Then,
The hydrous oil near the heating element 8 is heated to a temperature higher than the boiling point of water, and as a result, bubbles 16 are generated at the contact surface between the heating element 8 and the hydrous oil 2 due to evaporation of the water in the hydrous oil 2.
However, the amount of bubbles 16 generated (number of bubbles generated) has a correlation with the water concentration in the hydrous oil 2. Then, when the bubble 16 is generated, the bubble 16
This generated sound is guided into the sound receiving tube 5 through the open end 12 of the sound receiving section 11 disposed opposite the heating body 8, and is guided into the sound receiving tube 5. The sound reaches the sound receiving element 13, where it is converted into an electrical signal corresponding to the generated sound volume and sent to the electrical section 10, where the signal is processed and then sent to the recorder 14.
This displays the water concentration in the hydrous oil.
本実施例によれば、含水油2を加熱体8によつ
て局部的に加熱し、これにより発生する気泡16
の数を観測するに際し、気泡16の発生音を測定
するようにしたので、含水油2が着色していた
り、浮遊物等が混在等していても、これらの影響
を受けずに含水油2中の水分濃度を正確かつ感度
良く測定できる。更に、加熱体8及び受音部11
を小型に形成できるため、各種装置内に組込み易
く都合の良いものである。 According to this embodiment, the hydrous oil 2 is locally heated by the heating element 8, and the bubbles 16 generated thereby.
When observing the number of bubbles 16, the sound produced by the bubbles 16 is measured, so even if the hydrous oil 2 is colored or contains floating objects, etc., the hydrous oil 2 can be measured without being affected by these. The moisture concentration inside can be measured accurately and with high sensitivity. Furthermore, the heating body 8 and the sound receiving section 11
Since it can be made compact, it is convenient and easy to incorporate into various devices.
また、第2図に示すように測定槽1の一側壁内
にフイラメント7を埋設して側壁の一部を加熱体
8とし、この加熱体8と含水油2との接触面に発
生する気泡16の発生音を観測するようにする場
合には、受音管5だけを含水油2中に浸漬すれば
足り、構造的にも簡単なものになる。 Further, as shown in FIG. 2, a filament 7 is buried in one side wall of the measuring tank 1, and a part of the side wall is used as a heating element 8, and air bubbles 16 are generated at the contact surface between the heating element 8 and the water-containing oil 2. In order to observe the generated sound, it is sufficient to immerse only the sound receiving tube 5 in the water-containing oil 2, resulting in a simple structure.
第3図は本発明の他の実施例に使用する含水油
中の水分濃度測定装置を示すもので、この例にあ
つては測定槽1の互に対向する一対の側壁に発光
部17及び受光部18がそれぞれ対向して装着さ
れており、加熱体8の加熱によつて発生する気泡
16が発光部17及び受光部18間を通過して上
昇する際に、発光部17から照射された光を遮断
してこの光が受光部18に到達することを妨げ、
これにより生じる到達光量の変化を受光部18で
測定し、得られた電気信号を電気部10に送るこ
とにより、気泡16の数を観測するものであり、
その他の構成は前記測定装置と同一であるので、
同一部分に同一参照符号を付してその説明を省略
する。 FIG. 3 shows an apparatus for measuring water concentration in hydrous oil used in another embodiment of the present invention. The parts 18 are mounted facing each other, and when the bubbles 16 generated by the heating of the heating element 8 pass between the light emitting part 17 and the light receiving part 18 and rise, the light emitted from the light emitting part 17 to prevent this light from reaching the light receiving section 18,
The number of bubbles 16 is observed by measuring the change in the amount of arriving light caused by this with the light receiving section 18 and sending the obtained electrical signal to the electrical section 10.
The rest of the configuration is the same as the measurement device described above, so
Identical parts will be given the same reference numerals and their explanations will be omitted.
この実施例においては、発生した気泡の数の観
察を光学的に行なうものであるため、外部からの
入射光を遮断することにより、外部からのノイズ
の混入を完全に防止し得、感度良く水分濃度を測
定できる。更に、発光部17及び受光部18に安
価かつ高感度の半導体素子を使用することによ
り、構造を簡素化できる。更に、光にレーザー光
を用いてその散乱光を測定するなどの方法も利用
し得る。 In this example, since the number of generated bubbles is optically observed, by blocking incident light from the outside, it is possible to completely prevent the intrusion of noise from the outside, and to detect moisture with high sensitivity. Concentration can be measured. Furthermore, by using inexpensive and highly sensitive semiconductor elements for the light emitting section 17 and the light receiving section 18, the structure can be simplified. Furthermore, it is also possible to use a method such as using laser light as the light and measuring the scattered light.
なお、第3図の説明では発光部17、受光部1
8として気泡による入射光の散乱を原理的に説明
したが、実際にはレンズ系を用いて入射光を気泡
発生部に集光するなど、光学一般の手法が活用で
きることは勿論である。 Note that in the explanation of FIG. 3, the light emitting section 17 and the light receiving section 1 are
Although the scattering of incident light by bubbles has been explained in principle in Section 8, in practice, it goes without saying that general optical techniques can be used, such as using a lens system to focus the incident light on the bubble generation area.
第4図は本発明の更に他の実施例に使用する含
水油中の水分濃度測定装置を示すもので、この例
にあつては、測定槽1内においてフイラメント7
の上方に一対の電極19,20が含水油2中に浸
漬して配設されており、フイラメント7によつて
加熱されて発生した気泡16がこれら両電極1
9,20間を上昇する際に両電極19,20間の
誘電率の変化を検出することにより、気泡の数を
観測するもので、その他の構成は前記装置と同様
である。 FIG. 4 shows an apparatus for measuring water concentration in hydrous oil used in still another embodiment of the present invention.
A pair of electrodes 19 and 20 are placed above and immersed in hydrous oil 2, and air bubbles 16 generated by heating by filament 7 penetrate these electrodes 1.
The number of bubbles is observed by detecting the change in the dielectric constant between the electrodes 19 and 20 as they rise between the electrodes 9 and 20, and the other configurations are the same as the device described above.
以上述べた各種の実施例においては、気泡16
の数の観測を直接的に行なつているので、構造が
簡単になり、また大小泡の発生数を計数し得て、
本質的なデイジタル計測が可能である。更に、計
数と水分の対応が明確であり、測定値の物理的内
容が明瞭で今後の発展を期待し得る。 In the various embodiments described above, the bubbles 16
Since the number of bubbles is directly observed, the structure is simple, and the number of large and small bubbles can be counted.
Essential digital measurements are possible. Furthermore, the correspondence between counting and moisture is clear, and the physical content of the measured values is clear, so future development can be expected.
なお、上記各実施例においては、加熱体8の加
熱に電力を用いたがこれに限られず、高温のスチ
ーム等各種熱源が使用でき、また気泡16の観測
も測定槽1内で行なうことは必ずしも必要ではな
く、例えば加熱体と気泡の観測部を一体化したも
のを直接測定場所に浸漬して測定するようにして
も良く、その他本発明の要旨を逸脱しない範囲で
種々変形して差支えない。 In each of the above embodiments, electric power is used to heat the heating element 8; however, the heating element 8 is not limited to this, and various heat sources such as high-temperature steam can be used. It is not necessary, and for example, a heating element and a bubble observation part integrated may be directly immersed in the measurement place for measurement, and various other modifications may be made without departing from the gist of the present invention.
而して、本発明は加熱体を含水油と接触して前
記加熱体近傍の含水油を水の沸点以上に加熱する
ことにより、含水油と加熱体との接触面に水の蒸
発気泡を発生させると共に、発生させた前記気泡
の数を観測することにより水分濃度を決定するよ
うにしたので含水油中の水分濃度の測定を極めて
短時間に、かつ簡単になし得、しかも測定値は正
確なものである。更に、本方法によれば、測定は
非破壊分析で、しかも何ら試薬等を添加するもの
でもないため、含水油を汚染することもない。ま
た、更に連続測定もなし得、工程管理等の種々の
分野に利用できる等の特長を有する。 Thus, the present invention brings a heating element into contact with hydrous oil and heats the hydrous oil near the heating element to a temperature higher than the boiling point of water, thereby generating evaporation bubbles of water at the contact surface between the hydrous oil and the heating element. At the same time, the water concentration is determined by observing the number of bubbles generated. Therefore, the water concentration in water-containing oil can be measured in an extremely short time and easily, and the measured value is accurate. It is something. Furthermore, according to this method, the measurement is a non-destructive analysis and no reagents or the like are added, so there is no possibility of contaminating the water-containing oil. It also has the advantage of being able to carry out continuous measurements and can be used in various fields such as process control.
第1図乃至第4図はそれぞれ本発明の実施に使
用する含水油中の水分濃度測定装置を示す側面断
面図である。
2……含水油、8……加熱体、10……電気
部、13……受音素子、16……気泡、17……
発光部、18……受光部、19,20……電極。
FIGS. 1 to 4 are side sectional views each showing an apparatus for measuring water concentration in hydrous oil used in carrying out the present invention. 2... Water-containing oil, 8... Heating body, 10... Electric part, 13... Sound receiving element, 16... Bubbles, 17...
Light emitting part, 18... Light receiving part, 19, 20... Electrode.
Claims (1)
の含水油を水の沸点以上の温度に加熱することに
より含水油と加熱体との接触面に水の蒸発気泡を
発生させると共に、発生させた前記気泡の数を観
測し、前記加熱温度における蒸発気泡の数と含水
油の水分濃度との相関から含水油の水分濃度を決
定することを特徴とする含水油中の水分濃度測定
方法。 2 気泡の数の観測を気泡の発生音を検出するこ
とにより行なう特許請求の範囲第1項記載の測定
方法。 3 気泡の数の観測を気泡による光の透過量の変
化又は散乱を検出することにより行なう特許請求
の範囲第1項記載の測定方法。 4 気泡の数の観測を気泡による含水油の誘電率
の変化を検出することにより行なう特許請求の範
囲第1項記載の測定方法。[Claims] 1. By bringing a heating body into contact with hydrous oil and heating the hydrous oil near the heating body to a temperature higher than the boiling point of water, evaporation bubbles of water are created at the contact surface between the hydrous oil and the heating element. In a water-containing oil, the water concentration in the water-containing oil is determined from the correlation between the number of evaporated bubbles and the water concentration in the water-containing oil at the heating temperature. Moisture concentration measurement method. 2. The measuring method according to claim 1, wherein the number of bubbles is observed by detecting the sound of bubbles. 3. The measuring method according to claim 1, wherein the number of bubbles is observed by detecting changes in the amount of light transmitted or scattering by the bubbles. 4. The measuring method according to claim 1, wherein the number of bubbles is observed by detecting a change in the dielectric constant of hydrous oil due to the bubbles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10543782A JPS58223049A (en) | 1982-06-21 | 1982-06-21 | Method for measuring concentration of water in oil including water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10543782A JPS58223049A (en) | 1982-06-21 | 1982-06-21 | Method for measuring concentration of water in oil including water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58223049A JPS58223049A (en) | 1983-12-24 |
JPH0245815B2 true JPH0245815B2 (en) | 1990-10-11 |
Family
ID=14407564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10543782A Granted JPS58223049A (en) | 1982-06-21 | 1982-06-21 | Method for measuring concentration of water in oil including water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58223049A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4577978A (en) * | 1984-10-22 | 1986-03-25 | Shell Oil Company | Field test for determining water in oil |
US5563337A (en) * | 1994-10-12 | 1996-10-08 | Diagnetics, Inc. | Moisture monitor apparatus for a fluid system |
JP5448385B2 (en) * | 2008-07-30 | 2014-03-19 | 芝浦メカトロニクス株式会社 | Substrate processing apparatus and substrate processing method |
CN104535658B (en) * | 2014-12-17 | 2017-06-23 | 中国神华能源股份有限公司 | A kind of lubricating oil moisture content tester and method based on sound detection |
CN114136834A (en) * | 2021-12-03 | 2022-03-04 | 武汉理工大学 | Portable on-site oil moisture rapid intelligent detector |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS542872A (en) * | 1977-06-02 | 1979-01-10 | Dart Ind Inc | Table dish |
JPS55110935A (en) * | 1979-02-19 | 1980-08-27 | Mitsubishi Heavy Ind Ltd | Device and method of monitoring state of oil |
-
1982
- 1982-06-21 JP JP10543782A patent/JPS58223049A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS542872A (en) * | 1977-06-02 | 1979-01-10 | Dart Ind Inc | Table dish |
JPS55110935A (en) * | 1979-02-19 | 1980-08-27 | Mitsubishi Heavy Ind Ltd | Device and method of monitoring state of oil |
Also Published As
Publication number | Publication date |
---|---|
JPS58223049A (en) | 1983-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5141331A (en) | Ultrasonic temperature measurement and uses in optical spectroscopy and calorimetry | |
US4655589A (en) | Apparatus for automatic measurement of stress in a transparent body by means of scattered light | |
JPS59500385A (en) | Methods and means of inspecting the surface quality of solid state materials | |
JPS63140927A (en) | Distribution temperature sensor | |
JPH0245815B2 (en) | ||
EP0096696B1 (en) | Method and apparatus for measuring moisture content | |
US8084002B2 (en) | Chemical sensing device | |
CN116297308A (en) | Optical fiber type terahertz time-domain spectrum system | |
CN113514368A (en) | Optical fiber array dynamic imbibition tester | |
JP2004512521A (en) | Device for online measurement of laser pulse and measurement method by photoacoustic spectroscopy | |
RU215745U1 (en) | Device for monitoring the degree of purity of water | |
EP0456763A1 (en) | Sensor | |
SU922601A1 (en) | Device for investigating thermal properties of materials | |
JPH0572186A (en) | Ultrasonic wave generating/detecting device for ultrasonic microscope | |
SU1093952A1 (en) | Method and device for measuring light absorption coefficient | |
SU779869A1 (en) | Thermoacoustic method and device for measuring masut moisture-content | |
Yasin et al. | Acquisition of electrical signals using commercial electronic components for detection system of Lead ion in distilled water | |
CN101776598A (en) | Localized plasma resonance sensing element and system thereof | |
SU1439411A1 (en) | Method of determining velocity of propagation of ultrasound oscillations in melts | |
CN106442334B (en) | A kind of device of laser measurement substance classes | |
JPS6186649A (en) | Ultrasonic-wave flaw detector | |
SU1239586A1 (en) | Method and apparatus for measuring physical properties of liquids | |
JPS593249A (en) | Apparatus for measuring concentration of water in oil | |
JPH01259242A (en) | Spectrochemical analysis probe for breakdown | |
RU1800427C (en) | Method for atmosphere inverse scattering index determining |