JPH0245719A - Method for measuring body temperature - Google Patents

Method for measuring body temperature

Info

Publication number
JPH0245719A
JPH0245719A JP63196345A JP19634588A JPH0245719A JP H0245719 A JPH0245719 A JP H0245719A JP 63196345 A JP63196345 A JP 63196345A JP 19634588 A JP19634588 A JP 19634588A JP H0245719 A JPH0245719 A JP H0245719A
Authority
JP
Japan
Prior art keywords
temperature
measured
sensor
radiant energy
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63196345A
Other languages
Japanese (ja)
Other versions
JPH0643921B2 (en
Inventor
Michio Miyagawa
宮川 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63196345A priority Critical patent/JPH0643921B2/en
Publication of JPH0245719A publication Critical patent/JPH0245719A/en
Publication of JPH0643921B2 publication Critical patent/JPH0643921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure a body temperature in a deep part by measuring the intensity of radiant energy of an electromagnetic wave radiated from a living body at two or more kinds of frequencies which are different from each other and analyzing the data on the radiant energy and the data on skin surface temperature. CONSTITUTION:The temperature of an electromagnetic wave sensor 2 integrated with a thermometer is controlled to be kept at nearly same temperature as the average skin surface temperature of a measured part 8 by using a sensor temperature controller 7. While the sensor 2 is made to approach, the skin surface temperature of the part 8 is measured without contact by the thermometer 5. Next, when the temperature of the living body 1 and that of the sensor 2 become nearly same, the sensor 2 is brought into contact with the surface of the living body 1 and the intensity of the radiant energy is measured at two or more kinds of measuring frequencies. Then, the measured intensity of the energy is transmitted to a temperature operation device 6 through a receiver 3. In the device 6 the temperature in the deep part can be operated from the radiant energy measured by the sensor 2, the skin surface temperature measured by the thermometer 5, the electric characteristic value of the tissue of the living body and the hypodermic structure of the measured part.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ヒトを含む動物の深部体温を無侵襲で、高精
度で、かつ瞬時に測定することのできる体温測定方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for measuring body temperature that can non-invasively, highly accurately, and instantaneously measure the core body temperature of animals including humans.

[従来の技術] ヒトを含む動物の深部体温を最も高速かつ無侵襲的に計
測可能な方法としては、半導体センサ等を含むいわゆる
棒状の体温計か、光ファイバ等のカテーテル型温度計を
、口腔、直腸等の体腔内に挿入して、センサを含む棒状
の体温計またはカテーテル型温度計と生体組織部との温
度平衡を待ち、その平衡温度を深部温度として計測する
か、あるいは初期温度からの温度上昇率の時間変化から
最終平衡温度を予測する方法等が挙げられる。
[Prior Art] The fastest and non-invasive method for measuring the core body temperature of animals including humans is to use a so-called rod-shaped thermometer that includes a semiconductor sensor, etc., or a catheter-type thermometer such as an optical fiber, to measure the core body temperature of animals including humans. Insert it into a body cavity such as the rectum, wait for temperature equilibrium between the rod-shaped thermometer or catheter-type thermometer containing the sensor and the living tissue, and then measure the equilibrium temperature as the deep temperature, or measure the temperature rise from the initial temperature. Examples include a method of predicting the final equilibrium temperature from the time change in the rate.

この方法によると、実用上ではセンサの熱時定数の限界
から最短でも約1分程度の測温時間を要し、かつ測温が
高速のものほど精度、確度共に劣ることが報告されてい
る。
According to this method, it is reported that in practice, it takes about one minute at the shortest to measure the temperature due to the limit of the thermal time constant of the sensor, and that the faster the temperature measurement, the lower the precision and accuracy.

また本発明者を始めとして、生体から放射される雑音電
磁波の強度を複数の周波数を用いて測定することにより
、1次元の体内温度分布を推定しようとする研究は以前
からある。しかし、その目的とする所は癌組織の温熱療
法等で人為的に形成された温度分布全体の大まかな推定
にあり、実測可能な皮膚表面温まで含め体内の極力多く
の部位で温度推定を行なうべく多周波数の測定を行ない
、かつ全体の誤差を最小とするような温度分布関数を求
めようとするものである。
Further, there has been research by the present inventor and others that attempts to estimate one-dimensional internal body temperature distribution by measuring the intensity of noise electromagnetic waves emitted from a living body using a plurality of frequencies. However, its purpose is to roughly estimate the entire temperature distribution artificially created by thermotherapy of cancer tissue, etc., and the temperature is estimated from as many parts of the body as possible, including the measurable skin surface temperature. The objective is to perform measurements at as many frequencies as possible and to find a temperature distribution function that minimizes the overall error.

[発明が解決しようとする課題] 従って、上記のような考えに基づいて作製された装置を
用いて深部体温を測定しようとしても、測定だけでも最
低数分間を要する。また、上述した装置では深部体温を
示す部分だけを高精度で推定しようとする考えはもとも
となく、皮膚表面温まで含めて全体の誤差が最小になる
ような温度分布を求めるアルゴリズムしか報告されてい
ない。
[Problems to be Solved by the Invention] Therefore, even if an attempt is made to measure core body temperature using a device manufactured based on the above idea, it will take at least several minutes just to measure. Furthermore, with the above-mentioned device, there was originally no idea of estimating only the part that indicates core body temperature with high accuracy, and only algorithms that calculate the temperature distribution that minimizes the overall error, including skin surface temperature, have been reported. .

その結果、深部体温としてしばしば数℃の誤差のある温
度分布関数が最適解として与えられる、という木質的な
欠点を有する。
As a result, it has the disadvantage that a temperature distribution function with an error of several degrees Celsius is often given as the optimal solution for core body temperature.

つまり、従来の技術においては生体内から放射される電
磁波エネルギーを測定することにより温度推定を行なお
うとするが、その目的とする所は深部体温の高速測定で
はないため、深部体温を瞬時(ここでいう瞬時とは数秒
以内という意味で使う)に高精度で測定することはでき
なかった。
In other words, conventional technology attempts to estimate temperature by measuring electromagnetic wave energy emitted from within a living body, but the purpose of this is not to measure core body temperature at high speed; (Instantaneous means within a few seconds) It was not possible to measure with high precision.

そこで、本発明の目的は、上述した問題点を解消し、通
常の温度平衡型体温計と同等以上の測定精度を有し、深
部体温を瞬時にかつ無侵襲で測定することのできる体温
計測方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a body temperature measurement method that solves the above-mentioned problems, has a measurement accuracy equal to or higher than that of a normal temperature-balanced thermometer, and can measure core body temperature instantaneously and non-invasively. It is about providing.

[課題を解決するための手段] このような目的を達成するために、本発明は、生体から
放射される電磁波の放射エネルギー強度を、互いに相異
なるZ fl類以上の周波数で測定し、かつ生体の皮膚
表面の温度を測定して、放射エネルギーのデータと皮膚
表面の温度データを解析することにより、生体内の深部
温度を計算することを特徴とする。
[Means for Solving the Problem] In order to achieve such an object, the present invention measures the radiant energy intensity of electromagnetic waves emitted from a living body at frequencies of Z fl or higher, which are different from each other, and It is characterized by calculating the deep temperature inside the body by measuring the temperature of the skin surface of the body and analyzing the radiant energy data and the temperature data of the skin surface.

[作 用] まず、生体深部の体温を体表上から無侵襲的に計測する
ために、波長と同程度の厚さまでならば生体組織を透過
する性質を有する電磁波の生体透過特性を利用する。
[Function] First, in order to non-invasively measure the body temperature deep inside the body from above the body surface, the bio-transmissive property of electromagnetic waves, which has the property of penetrating the living tissue up to a thickness comparable to the wavelength, is utilized.

つまり、第1図に示すようにブランクの放射法則に従っ
て生体1の内部の各点から放射される電磁波を、体表上
に置かれた電磁波センサ2にょフてとらえ、受信機3で
その強度を測定する。この時、生体中の相異なる点Pa
、Pb、・・・、Pnより放射される電磁波エネルギー
を電磁波センサ2がとらえることになるが、強度計測は
原理的には光速、実際には平均化処理を行なフても瞬時
になされ得る。この時、受信機3で計測される放射エネ
ルギー強度は測定される周波数と、測定対象である生体
1の測定部位の電気的特性によって定まる測定領域4内
から放射されるエネルギーに限定されることになる。こ
こで、生体1の表面温は温度計5によって計測され、得
られたデータは温度演算装置6に送られる。受信機3で
計測された放射エネルギーのデータも温度演算装置6に
送られる。
In other words, as shown in Figure 1, the electromagnetic waves emitted from various points inside the living body 1 according to Blank's radiation law are captured by the electromagnetic wave sensor 2 placed on the body surface, and the intensity is measured by the receiver 3. Measure. At this time, different points Pa in the living body
, Pb, ..., Pn, the electromagnetic wave sensor 2 will capture the electromagnetic wave energy, but the intensity measurement can be done at the speed of light in principle, and in reality, even without averaging processing. . At this time, the radiant energy intensity measured by the receiver 3 is limited to the energy radiated from within the measurement region 4 determined by the frequency to be measured and the electrical characteristics of the measurement site of the living body 1 to be measured. Become. Here, the surface temperature of the living body 1 is measured by a thermometer 5, and the obtained data is sent to a temperature calculation device 6. Data on the radiant energy measured by the receiver 3 is also sent to the temperature calculation device 6.

以上述べた測定は相異なる2種類以上の周波数で行ない
、かつその測定を内部構造の個体差がほとんどないよう
な部位、例えば、側頭骨上のような位置に選べば、電磁
波の生体透過特性と生体組織との電気的特性は既知なの
で、測定部位の温度分布は温度演算装置6により計算す
ることができる。
If the above-mentioned measurements are performed at two or more different frequencies, and if the measurements are made at a location where there is little individual difference in internal structure, such as on the temporal bone, the biological penetration characteristics of electromagnetic waves and Since the electrical characteristics with the living tissue are known, the temperature distribution at the measurement site can be calculated by the temperature calculation device 6.

深部体温を示す領域の温度を特に精度良く求めるために
は、第2図に示すように体表から体内中心部に向う温度
分布は距離(深さ)と共に指数関数的に変化し、ある距
離で飽和値に達し、その指数項のべき乗の係数は周囲温
度を敏感に反映するという知識を活用する。
In order to obtain the temperature in the region that indicates core body temperature with particular precision, the temperature distribution from the body surface to the center of the body changes exponentially with distance (depth), as shown in Figure 2, and at a certain distance, We exploit the knowledge that the saturation value is reached and that the coefficient of the power of the exponential term sensitively reflects the ambient temperature.

皮膚表面からの距離が大きくなるにつれて、生体内の温
度が増加し、飽和値に達した時の深部温度と皮膚表面温
Tsとの差をΔTで表わす。この時、深部体温はTs+
ΔTで与えられる。
As the distance from the skin surface increases, the temperature inside the body increases, and the difference between the deep temperature and the skin surface temperature Ts when it reaches a saturation value is expressed as ΔT. At this time, the core body temperature is Ts+
It is given by ΔT.

体内の温度分布は次式: %式%(1) で表わされると仮定する。ここで、Tは体内の温度であ
り、Tsは周囲温度を敏感に反映する体表面温度である
。この体表面温度Tsは推定によらず、例えば、赤外線
サーモスポットセンサのような温度計5を用いて精度よ
く実測することができる。
It is assumed that the temperature distribution inside the body is expressed by the following formula: % formula % (1). Here, T is the temperature inside the body, and Ts is the body surface temperature, which sensitively reflects the ambient temperature. This body surface temperature Ts is not based on estimation, but can be actually measured with high precision using, for example, a thermometer 5 such as an infrared thermospot sensor.

bは指数関数のべき乗の係数で、Xは体表面から生体中
心に向う距離座標の値である。
b is the coefficient of the power of the exponential function, and X is the value of the distance coordinate from the body surface to the center of the body.

電磁波センサ2と受信機3により計測される放射エネル
ギ強度Tb、は、測定部生体組織の電気的特性値、すな
わち比誘電率ε 、導電率σおよびΔT、bの関数とし
て Tb1=f(ε、 Q、ΔT、 b)       (
2)で表わされる。ただし、i=1.2.・・・、nで
ある。複数の周波数を用いて測定部位の放射エネルギー
強度Tbiを計測すれば、(2)式から極めて精度良く
、深部体温を測定することができる。
The radiant energy intensity Tb, measured by the electromagnetic wave sensor 2 and the receiver 3, is expressed as a function of the electrical characteristic values of the measuring body tissue, that is, the relative dielectric constant ε, the conductivity σ and ΔT, b, as Tb1=f(ε, Q, ΔT, b) (
2). However, i=1.2. ..., n. By measuring the radiant energy intensity Tbi of the measurement site using a plurality of frequencies, the core body temperature can be measured with extremely high accuracy from equation (2).

生体を含む全ての物体からは、その温度が絶対零度でな
い限りブランクの放射法則に基づく熱雑音電磁波が放射
されている。この放射エネルギーは、ヒトの場合波長約
9.7マイクロメータに最大値を有し、この最大値より
周波数が高くなっても低くなっても減少する。測定周波
数を下げていくと温度が一定ならば放射エネルギーは減
少するが、電磁波の生体透過厚は増加するので、体表面
上からでも生体内部の各点から放射される熱雑音電磁波
を直接計測することができる。また、透過することので
きる生体組織の厚さは、電磁波の周波数が上昇するに伴
い単調に減少することがわかっており、さらに主な生体
組織の電気的特性値も知られている。従って、生体の個
体差の少ない部位で(1)式の温度分布を仮定し、Ts
ならびに複数通りの放射エネルギー強度を計測すれば、
(2)式からT=Ts+ΔTとして深部温度を計算する
ことができる。
All objects, including living organisms, radiate thermal noise electromagnetic waves based on Blank's radiation law unless their temperature is absolute zero. This radiant energy has a maximum value at a wavelength of about 9.7 micrometers for humans, and decreases as the frequency becomes higher or lower than this maximum value. As the measurement frequency is lowered, the radiant energy decreases if the temperature is constant, but the thickness through which electromagnetic waves penetrate the living body increases, so thermal noise electromagnetic waves emitted from each point inside the living body can be directly measured even from the body surface. be able to. It is also known that the thickness of living tissue through which electromagnetic waves can penetrate decreases monotonically as the frequency of electromagnetic waves increases, and the electrical characteristic values of main living tissues are also known. Therefore, assuming the temperature distribution of equation (1) at parts of the living body with little individual difference, Ts
Also, if you measure the radiant energy intensity in multiple ways,
The deep temperature can be calculated from equation (2) as T=Ts+ΔT.

[実施例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

第3図は本発明を通用した装置の構成例を示すブロック
図である。第3図において、生体1内部の各点から放射
される電磁波を体表上におかれた電磁波センサ2により
とらえ、受信機3でその強度を測定する。センサ温度制
御装置7を用いて温度計5と一体となった電磁波センサ
2を測定部位8の平均的な皮膚表面温度とほぼ同様な温
度に保たれるように温度制御する。その理由は、放射エ
ネルギー強度の測定が短時間のため実際上生体温度分布
の測定にはほとんど問題とならないが、生体密着型の電
磁波センサ2を使用する場合、電磁波センサ2の接触に
よって生体温度分布が大幅に乱されないようにするため
である。本実施例では接触型の電磁波センサ2を用いる
。この電磁波センサ2の測定可能帯域は1オクターブあ
れば充分である。ここでは2〜4 GHzの帯域幅を有
するものとする。受信機3の測定帯域幅は、電磁波セン
サ2の帯域幅と同じか、それ以上の幅を有することが必
要であるのは勿論である。この時、電磁波センサ2は、
生体から放射される微弱な電磁波を効率良くとらえなけ
ればならないから、生体とのインピーダンス整合条件と
しては電圧定在波比として2以下程度に抑えることが望
ましい。
FIG. 3 is a block diagram showing an example of the configuration of an apparatus to which the present invention is applied. In FIG. 3, electromagnetic waves emitted from various points inside a living body 1 are captured by an electromagnetic wave sensor 2 placed on the body surface, and their intensity is measured by a receiver 3. Using the sensor temperature control device 7, the temperature of the electromagnetic wave sensor 2 integrated with the thermometer 5 is controlled so as to be maintained at approximately the same temperature as the average skin surface temperature of the measurement site 8. The reason for this is that the measurement of the radiant energy intensity takes a short time, so there is practically no problem in measuring the biological temperature distribution. This is to prevent it from being significantly disturbed. In this embodiment, a contact type electromagnetic wave sensor 2 is used. One octave is sufficient for the measurable band of the electromagnetic wave sensor 2. Here, it is assumed that the bandwidth is 2 to 4 GHz. Of course, the measurement bandwidth of the receiver 3 needs to be equal to or greater than the bandwidth of the electromagnetic wave sensor 2. At this time, the electromagnetic wave sensor 2
Since it is necessary to efficiently capture weak electromagnetic waves emitted from a living body, it is desirable to suppress the voltage standing wave ratio to about 2 or less as an impedance matching condition with the living body.

まず、電磁波センサ2を近づけながら測定部位8の皮膚
表面温度を、温度計5により非接触計測する。予め温度
を一定に侃たれでいる電磁波センサ2の温度と測定部位
8の皮膚表面温度との間に、一定置上の差異があった場
合、本実施例のように接触型の電磁波センサ2では、測
定部位8の温度と平衡になるまで電磁波センサ2の設定
温度を調節する。このようにして、生体1と電磁波セン
サ2の温度とがほぼ等しくなった場合、電磁波センサ2
を生体1の表面に接触させ、2通り以上の測定周波数で
放射エネルギー強度を計測する。
First, the skin surface temperature of the measurement site 8 is measured in a non-contact manner using the thermometer 5 while bringing the electromagnetic wave sensor 2 close. If there is a certain positional difference between the temperature of the electromagnetic wave sensor 2 whose temperature is kept constant in advance and the skin surface temperature of the measurement site 8, the contact type electromagnetic wave sensor 2 as in this embodiment , the set temperature of the electromagnetic wave sensor 2 is adjusted until it reaches equilibrium with the temperature of the measurement site 8. In this way, when the temperatures of the living body 1 and the electromagnetic wave sensor 2 become almost equal, the electromagnetic wave sensor 2
is brought into contact with the surface of the living body 1, and the radiant energy intensity is measured at two or more measurement frequencies.

電磁波センサ2により測定された2通り以上の放射エネ
ルギー強度は受信機3に送られ、次に温度演算装置6に
送られる。温度演算装置6は、電磁波センサ2により計
測された放射エネルギー強度と温度計5により計測され
た皮膚表面温と、生体組織の電気的特性値および測定部
位の皮下構造とから、(2)式によりΔTを求め、T=
Ts+ΔTで深部温度を求める。
Two or more radiant energy intensities measured by the electromagnetic wave sensor 2 are sent to the receiver 3 and then to the temperature calculation device 6. The temperature calculation device 6 calculates the temperature according to equation (2) from the radiant energy intensity measured by the electromagnetic wave sensor 2, the skin surface temperature measured by the thermometer 5, the electrical characteristic values of the living tissue, and the subcutaneous structure of the measurement site. Find ΔT, T=
The deep temperature is determined by Ts+ΔT.

測定周波数は最低2通り必要な訳であるが、測定周波数
が2種類のときは(1)式のbと6丁を精度良く推定で
きるように適度に離れていることが望ましい。測定周波
数が相互に近過ぎる場合にはデータの独立性が保証され
ず、bとΔTの推定値の誤差が大きくなる。しかし、相
互の測定周波数が離れ過ぎて、特に一方の周波数が高く
なり過ぎると、(1)式のbと6丁を推定する精度が下
がり広帯域の部品等が必要となるので、必然的に高価な
測定装置になってしまう。また、より深部からの信号を
拾うことは、必ずしも測定精度向上に寄与しないばかり
か、時により大きな誤差の原因となり得る。つまり、周
波数を下げて深部からの信号を拾おうとすると、体内の
深部にあるガスの存在や骨の影響でその時に測定される
放射エネルギー強度分布は、それら影響因子を考慮しな
い時に想定される体内の放射エネルギー強度分布から外
れてくる。実験した限りでは、測定周波数は2〜4 G
Hzの帯域で測定するのがヒトの場合適当である。
At least two measurement frequencies are required, but when there are two measurement frequencies, it is desirable that they are appropriately separated so that b and 6 in equation (1) can be estimated with high accuracy. If the measurement frequencies are too close to each other, independence of data is not guaranteed and errors in the estimated values of b and ΔT become large. However, if the measurement frequencies are too far apart, especially if one frequency becomes too high, the accuracy of estimating b and 6 in equation (1) will decrease and broadband components will be required, which will inevitably be expensive. It becomes a measuring device. Furthermore, picking up signals from deeper parts does not necessarily contribute to improving measurement accuracy, and may sometimes cause larger errors. In other words, when we try to lower the frequency to pick up signals from deep inside the body, the radiant energy intensity distribution measured at that time will be different from what would be expected in the body if these influencing factors are not taken into consideration due to the presence of gas deep inside the body and the influence of bones. deviates from the radiant energy intensity distribution. As far as I have tested, the measurement frequency is 2 to 4 G.
For humans, it is appropriate to measure in the Hz band.

[発明の効果] 以上説明したように、本発明によれば、深部体温の瞬時
無侵襲測定ができるようになり、乳幼児や緊急の重傷患
者に対して、その体温が瞬時に精度良く計れるようにな
り、実際の臨床面において益することが大きい。
[Effects of the Invention] As explained above, according to the present invention, instantaneous non-invasive measurement of core body temperature can be performed, and the body temperature of infants and critically injured patients can be measured instantaneously and with high precision. Therefore, it will be of great benefit in actual clinical practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した装置の基本構成を示すブロッ
ク図、 第2図は体内温度の分布図、 第3図は本発明を適用した装置の構成例のブロック図で
ある。 1・・・生体、 2・・・電磁波センサ、 3・・・受信機、 4・・・測定領域、 5・・・温度計、 6・・・温度演算装置、 7・・・センサ温度制御装置、 8・・・測定部位。 第1図 叉1表面が5C距葭
FIG. 1 is a block diagram showing the basic configuration of a device to which the present invention is applied, FIG. 2 is an internal temperature distribution diagram, and FIG. 3 is a block diagram of an example configuration of a device to which the present invention is applied. DESCRIPTION OF SYMBOLS 1... Living body, 2... Electromagnetic wave sensor, 3... Receiver, 4... Measurement area, 5... Thermometer, 6... Temperature calculation device, 7... Sensor temperature control device , 8...Measurement site. Figure 1: 1st surface is 5C ridge

Claims (1)

【特許請求の範囲】[Claims] 1)生体から放射される電磁波の放射エネルギー強度を
、互いに相異なる2種類以上の周波数で測定し、かつ前
記生体の皮膚表面の温度を測定して、前記放射エネルギ
ーのデータと前記皮膚表面の温度データを解析すること
により、前記生体内の深部温度を計算することを特徴と
する体温計測方法。
1) Measure the radiant energy intensity of electromagnetic waves emitted from a living body at two or more different frequencies, measure the temperature of the skin surface of the living body, and compare the data of the radiant energy and the temperature of the skin surface. A method for measuring body temperature, characterized in that the deep temperature inside the living body is calculated by analyzing data.
JP63196345A 1988-08-05 1988-08-05 Body temperature measurement method Expired - Lifetime JPH0643921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63196345A JPH0643921B2 (en) 1988-08-05 1988-08-05 Body temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63196345A JPH0643921B2 (en) 1988-08-05 1988-08-05 Body temperature measurement method

Publications (2)

Publication Number Publication Date
JPH0245719A true JPH0245719A (en) 1990-02-15
JPH0643921B2 JPH0643921B2 (en) 1994-06-08

Family

ID=16356293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63196345A Expired - Lifetime JPH0643921B2 (en) 1988-08-05 1988-08-05 Body temperature measurement method

Country Status (1)

Country Link
JP (1) JPH0643921B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525132A (en) * 1998-09-11 2002-08-13 エクサージン・コーポレーション Temporal artery temperature detector
JP2006519684A (en) * 2003-03-12 2006-08-31 ゾナレ メディカル システムズ, インコーポレイテッド Portable ultrasound unit and docking station
JP2007516018A (en) * 2003-05-27 2007-06-21 カーディオウエーブ インコーポレーテッド Apparatus and method for technology for remotely and non-invasively detecting the core body temperature of a subject by infrared image
JP2011053184A (en) * 2009-09-04 2011-03-17 Mitsubishi Denki Tokki System Kk Microwave sensor
JP2016536096A (en) * 2013-09-28 2016-11-24 ブレイン・テンプ,インコーポレーテッド System and method for non-invasively determining internal temperature
CN110381816A (en) * 2017-04-04 2019-10-25 奥尼欧有限公司 Sensing system and method for continuous and wireless monitor and the biological temperature of analysis
CN112473019A (en) * 2020-12-16 2021-03-12 迈尔健康科技(深圳)有限公司 Method and device for keeping radiation balance of infrared thermal therapy
JP6941720B1 (en) * 2020-12-17 2021-09-29 針次 近藤 Biological information measuring device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525132A (en) * 1998-09-11 2002-08-13 エクサージン・コーポレーション Temporal artery temperature detector
US7787938B2 (en) 1998-09-11 2010-08-31 Exergen Corporation Temporal artery temperature detector
JP2006519684A (en) * 2003-03-12 2006-08-31 ゾナレ メディカル システムズ, インコーポレイテッド Portable ultrasound unit and docking station
JP4722036B2 (en) * 2003-03-12 2011-07-13 ゾナレ メディカル システムズ, インコーポレイテッド Portable ultrasound unit and docking station
JP2007516018A (en) * 2003-05-27 2007-06-21 カーディオウエーブ インコーポレーテッド Apparatus and method for technology for remotely and non-invasively detecting the core body temperature of a subject by infrared image
JP2011053184A (en) * 2009-09-04 2011-03-17 Mitsubishi Denki Tokki System Kk Microwave sensor
JP2016536096A (en) * 2013-09-28 2016-11-24 ブレイン・テンプ,インコーポレーテッド System and method for non-invasively determining internal temperature
CN110381816A (en) * 2017-04-04 2019-10-25 奥尼欧有限公司 Sensing system and method for continuous and wireless monitor and the biological temperature of analysis
CN112473019A (en) * 2020-12-16 2021-03-12 迈尔健康科技(深圳)有限公司 Method and device for keeping radiation balance of infrared thermal therapy
JP6941720B1 (en) * 2020-12-17 2021-09-29 針次 近藤 Biological information measuring device
JP2022096139A (en) * 2020-12-17 2022-06-29 針次 近藤 Biological information measurement device

Also Published As

Publication number Publication date
JPH0643921B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
Barrett et al. Subcutaneous temperatures: a method of noninvasive sensing
Walters et al. Heating and pain sensation produced in human skin by millimeter waves: comparison to a simple thermal model
US4190053A (en) Apparatus and method for hyperthermia treatment
AU2016377259B2 (en) A non-invasive sensing system
Dubois et al. Temperature control and thermal dosimetry by microwave radiometry in hyperthermia
Stauffer et al. Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case
US9333033B2 (en) Detection of ablation electrode contact with tissue
KR20200135833A (en) Blood sugar tracking system
JP2010088898A (en) Apparatus, system, and method for monitoring tissue during electrosurgical procedure
EA002288B1 (en) Non-invasive continuous blood glucose monitoring
JP2012507382A (en) Impedance spectroscopy with coupled antennas.
JP6543243B2 (en) Temperature monitoring apparatus and method for monitoring temperature in tissue
JPH0245719A (en) Method for measuring body temperature
Jacobsen et al. Improved detectability in medical microwave radio-thermometers as obtained by active antennas
Haines et al. Wireless system for continuous monitoring of core body temperature
KR102231303B1 (en) Continuous non-invasive measurement of tissue temperatures based on impedance measurements
Chive Use of microwave radiometry for hyperthermia monitoring and as a basis for thermal dosimetry
Mizushina et al. Recent trends in medical microwave radiometry
RU2510236C2 (en) Applicator array and measuring device for temperature changes of biological object's internal tissues by simultaneous noninvasive measurement of radiance temperature at various depths
KR20150096272A (en) Method of controlling temperature of tissue and apparatus of teperature control using the same
KR102301731B1 (en) System having Dual Band Bio-Matched Bow-tie Antennas to be used RF receiver module for detecting core body temperature
CN113598943A (en) Surgical instrument and measurement method
JPS628188B2 (en)
Anosov et al. Reconstruction of the deep temperature by the acoustothermometric method and with consideration for the heat conduction equation
JP2007007074A (en) Thermotherapy apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term