JPH0245711A - Three-dimensional measuring device - Google Patents

Three-dimensional measuring device

Info

Publication number
JPH0245711A
JPH0245711A JP19619188A JP19619188A JPH0245711A JP H0245711 A JPH0245711 A JP H0245711A JP 19619188 A JP19619188 A JP 19619188A JP 19619188 A JP19619188 A JP 19619188A JP H0245711 A JPH0245711 A JP H0245711A
Authority
JP
Japan
Prior art keywords
telescope
target
angle
image
theodolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19619188A
Other languages
Japanese (ja)
Inventor
Masaki Shimada
嶋田 勝紀
Yoichi Kawakami
川上 用一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19619188A priority Critical patent/JPH0245711A/en
Publication of JPH0245711A publication Critical patent/JPH0245711A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a large-sized structure with high accuracy by attaching an observation device to a telescope, incorporating a signal from the observation device in an image processor, automatically obtaining a deviation angle from a target in the direction of the telescope and performing three-dimensional calculation. CONSTITUTION:The visual field image of an altazimuth I which is made to turn to a nearly target direction is displayed on a monitor 8-2 through the image pickup device 8-1 of the observation device II and focusing and aiming are performed on the monitor. Next, image information is transmitted from the device 8-1 to the frame memory 9-1 of the image processor III and the deviation between the direction of the telescope 1 of the altazimuth I and the target is obtained from the target position for the center of a visual field by using an image operation device 9-2. Then, the obtained result and the read value of an elevation angle and an azimuth by the encoders 3 and 4 of the altazimuth I are transmitted to a distance calculation device IV so as to calculate the correction angle for aiming and to obtain the three- dimensional position of the target or the driving quantity of a fine adjustment mechanism 10 provided in the elevation angle and the azimuth of the telescope 1. Thus, the large-sized structure can be measured with high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、構造物の三次元位置を測定する光学測定装置
の高蹟度化並びに自動化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the enhancement and automation of an optical measuring device that measures the three-dimensional position of a structure.

(従来の技術) 近年、大型構造物の三次元形状測定に対する需要が高ま
っており、三輪あるいは多関節の触針子を用いた三次元
座標測定器が開発されているが、装置寸法により測定対
象寸法が限定されるため、大型構造物の測定には大型の
装置が必要となっている。
(Prior art) In recent years, there has been an increasing demand for three-dimensional shape measurement of large structures, and three-dimensional coordinate measuring instruments using three-wheeled or multi-jointed stylus have been developed. Due to the limited dimensions, measurements of large structures require large equipment.

一方、装置の簡便さと測定対象寸法に上限を設けないで
済むことから、土木測量などで用いられてきた経緯儀の
測定精度を向上させて構造物の寸法計測に用いる手法も
取られるようになってきた。
On the other hand, due to the simplicity of the device and the fact that there is no need to set an upper limit on the dimensions of the object to be measured, the measurement accuracy of the theodolites, which have been used in civil engineering surveying, has been improved and a method has been adopted for measuring the dimensions of structures. It's here.

望遠鏡に方位角(Az)と仰角(El)に関する二軸の
角度測定器を組合せた経緯儀(第2図)を用いた大型構
造物の計測は、以下の手順によっている。
Measurement of large structures using a theodolite (Fig. 2), which is a combination of a telescope and a two-axis angle measuring device for azimuth (Az) and elevation (El), is performed according to the following procedure.

先ず、二台の経緯儀を適当な間隔をあけた2点6−1.
6−2 (第3図)に設置し、水準器を用いて回転軸E
1が鉛直方向と一致するように調整する。
First, we set up two theodolites with an appropriate distance between them 6-1.
6-2 (Fig. 3), and use a spirit level to adjust the rotation axis E.
Adjust so that 1 matches the vertical direction.

次に互いの経緯儀の望遠鏡の光軸を一致させ、Az及び
Elの値を記録する(正確のためには、望遠鏡をAz軸
回りに反転させて、再び正対させる)。
Next, align the optical axes of the telescopes of both theodolites and record the values of Az and El (for accuracy, flip the telescopes around the Az axis and face them directly again).

これで点6−1の位置を原点に鉛直軸上方にZ軸、zx
平面上に点6−2をとる空間座標軸が決定され、二台の
経緯儀間のAz目盛りの関係が定められる(第3図−a
)。
Now, move the Z axis, zx, upward from the vertical axis with the point 6-1 as the origin.
The spatial coordinate axis that takes point 6-2 on the plane is determined, and the relationship between the Az scales between the two theodolites is determined (Fig. 3-a).
).

空間座標系の決定誤差は、以後の測角のバイアス成分と
なる。
The error in determining the spatial coordinate system becomes a bias component in subsequent angle measurements.

更に、望遠鏡から予め間隔Sの判っている2点(7−1
,7−2)へのベクトルαijを求める。
Furthermore, two points (7-1
, 7-2).

このとき、7−iから6−jへ向かうベクトルβ1J=
−α1Jであるから、7−1.7−2を基準として各経
緯儀の位置を測定したことに相当し、二台の経緯イλの
間隔(基線長さC)が計算される。座標系の方向と基線
の長さより、角度測定から空間座標値へ変換のキャリブ
レーションが行われる(第3図−b)。
At this time, vector β1J from 7-i to 6-j=
-α1J, this corresponds to measuring the position of each theodolite based on 7-1.7-2, and the distance between the two theodolites (baseline length C) is calculated. Based on the direction of the coordinate system and the length of the base line, calibration for converting angle measurements into spatial coordinate values is performed (FIG. 3-b).

即ち、7−1.7−2の間隔Sを基準として、測定精度
m、より なる位置精度で6−1.6−2を測定することに相当し
、基線長さCの同定誤差を生じる。この誤差は線形に伝
搬するため、2m間隔の二点を0.2mm相当の誤差で
測定できる系を5m間隔に設定した場合、基線長さの同
定に0.5mmの誤差を生じ、以下の測定では測定値(
座標値)が全て1710000の誤差をバイアスとして
含む。
That is, this corresponds to measuring 6-1.6-2 with a positional accuracy of measurement accuracy m based on the interval S of 7-1.7-2, which causes an identification error of base line length C. This error propagates linearly, so if a system that can measure two points 2 m apart with an error equivalent to 0.2 mm is set at 5 m intervals, a 0.5 mm error will occur in the identification of the baseline length, and the following measurement Then, the measured value (
All coordinate values) include an error of 1710000 as a bias.

以後、二台の経緯儀を目標に合焦、照準し、測定誤差を
含む角度(El、Az)よりなる2つのベクトルから最
短距離となる点として対象の空間座標位置が計算される
(第3図−C)。
Thereafter, the two theodolites are focused and aimed at the target, and the spatial coordinate position of the target is calculated as the point that is the shortest distance from the two vectors formed by the angle (El, Az) including the measurement error (3rd Figure-C).

測定精度は以下で規定される。Measurement accuracy is specified below.

(1)と同様に、第4図−aにおいて基線長さCのとき
の測定位置積度mpは測角精度m、として と表され、対象が基線の中点を通る垂線上にあるときに
は、 となる。
Similarly to (1), in Fig. 4-a, when the baseline length is C, the measurement position degree mp is expressed as the angle measurement accuracy m, and when the object is on a perpendicular line passing through the midpoint of the baseline, becomes.

このとき第4図−bに示すように、二台の経緯儀に対す
る対象物の位置により、同一の測角精度で測定しても三
次元座標値の総合精度δ(= dx2+dy2+dz2
)が変化する。二台の経緯儀を見込む角θが110°前
後で誤差が最小になり、78°から142°の間で、そ
れに対し石割以内の積度低下となっている。
At this time, as shown in Figure 4-b, depending on the position of the object with respect to the two theodolites, the overall accuracy of the three-dimensional coordinate values δ (= dx2 + dy2 + dz2) even when measured with the same angle measurement accuracy.
) changes. The error is at its minimum when the angle θ viewing the two theodolites is around 110°, and when it is between 78° and 142°, the drop in accumulation is within a stone's worth.

(発明が解決しようとする課題) 以上のように、経緯イλを用いた位置測定では、キャリ
ブレーションと測定のいずれの段階に於いても、目標の
捕捉(粗合焦、粗照準)、蹟合焦、蹟照準という手順が
要求されている。このとき、経緯儀の設置精度、照準の
精度が測定精度に強い影響を与えるが、合焦及び照準が
未だ目視で行われているために個人差が避けられず、ま
た測定回数を多くした場合には極めて困難な作業であっ
た。
(Problems to be Solved by the Invention) As described above, in position measurement using the latitude and longitude λ, target acquisition (coarse focusing, coarse aiming), The steps of focusing and aiming are required. At this time, the accuracy of the theodolite installation and aiming have a strong influence on measurement accuracy, but since focusing and aiming are still done visually, individual differences are unavoidable, and if the number of measurements is increased. It was an extremely difficult task.

また、特に高精度な測定が求められる場合、キャリブレ
ーションを正確に行う必要があり、測定前の調整作業が
大きな負担となっていた。
In addition, especially when highly accurate measurement is required, calibration must be performed accurately, and the adjustment work before measurement becomes a heavy burden.

本発明は、大型構造物の非接触測定を高精度にかつ効率
良く行う装置を提供することを目的とする。
An object of the present invention is to provide an apparatus that performs non-contact measurement of large structures with high precision and efficiency.

(課題を解決するための手段) 前記目的を達成するための本発明の特徴は、経緯儀を用
いて物体の三次元位置を計測する三次元計測装置におい
て、経緯儀が望遠鏡の仰角及び方位角を外部信号により
調節する微動機構と、望遠鏡の仰角及び方位角を外部装
置に出力する手段とを具備し、経緯儀の望遠鏡による像
を画像情報としてとり出す、撮像装置及びモニタを備え
た観測装置と、該画像情報から望遠鏡の指向方向と目標
の方向とのずれを求める画像処理装置と、該ずれに従っ
て望遠鏡の指向方向の修正角を計算して前記微動機構を
介して望遠鏡の指向方向を修正させる計算手段とが具備
される三次元計測装置にある。
(Means for Solving the Problems) A feature of the present invention for achieving the above object is that in a three-dimensional measuring device that measures the three-dimensional position of an object using a theodolite, the theodolite measures the elevation angle and azimuth angle of a telescope. An observation device equipped with an imaging device and a monitor, which is equipped with a fine movement mechanism that adjusts the telescope using an external signal, and a means for outputting the elevation angle and azimuth angle of the telescope to an external device, and which extracts the telescope image of the theodolite as image information. an image processing device that calculates a deviation between the pointing direction of the telescope and the target direction from the image information; and an image processing device that calculates a correction angle of the pointing direction of the telescope according to the deviation and corrects the pointing direction of the telescope via the fine movement mechanism. A three-dimensional measuring device is provided with a calculation means for calculating.

(作用) 上記構成によると、構造物の三次元非接触測定に用いる
経緯儀において、望遠鏡に観測装置を取り付けることに
よりモニタ画面上での観測を可能とするとともに、該観
測装置からの信号を画像処理装置に取り込み、望遠鏡指
向方向の目標からのずれ角を自動的に求めて、三次元座
標値の計算を行う。従って、大型構造物の三次元位置の
非接触測定が個人差なく高精度にかつ効率よく行える。
(Function) According to the above configuration, in a theodolite used for three-dimensional non-contact measurement of structures, by attaching an observation device to a telescope, observation can be made on a monitor screen, and signals from the observation device can be imaged. The data is imported into a processing device, the deviation angle of the telescope pointing direction from the target is automatically determined, and three-dimensional coordinate values are calculated. Therefore, non-contact measurement of the three-dimensional position of a large structure can be performed with high precision and efficiency without individual differences.

(実施例) 第1図に、エンコーダにより読取り角度を計算機に出力
して距離を計算する経緯儀の、望遠鏡の仰角及び方位角
に微動機構を設け、接眼部に固体撮像素子を置いてモニ
タに接続し、さらにフレームメモリを持つ画像処理装置
を接続した測定系の構成例を示す。
(Example) In Fig. 1, a fine movement mechanism is installed in the elevation angle and azimuth angle of the telescope for a theodolite that outputs the reading angle to a computer using an encoder to calculate the distance, and a solid-state image sensor is placed in the eyepiece to monitor it. An example of the configuration of a measurement system is shown in which an image processing device with a frame memory is connected to the image processing system.

第1図において、工は経緯儀で望遠鏡1とエンコーダ3
,4と、望遠鏡の微動機構10を具備する。■は観測装
置で、望遠鏡の像を電気信号に変換する撮像装置8−1
と、変換された像をスクリーンでモニタするための視野
画像装置8−2を有する。■は画像処理装置で、フレー
ムメモリ9−1と画像演算装置9−2を有し、望遠鏡の
方向の誤差を出力する。■は距離計算装置で角度と距離
を表示するモニタl l−1と計算機11−2を有し、
前記誤差を補正するための望遠鏡の駆動量を与える。
In Figure 1, engineering is a theodolite with telescope 1 and encoder 3.
, 4, and a telescope fine movement mechanism 10. ■ is an observation device, which is an imaging device 8-1 that converts the telescope image into an electrical signal.
and a visual field image device 8-2 for monitoring the converted image on a screen. 2 is an image processing device, which has a frame memory 9-1 and an image calculation device 9-2, and outputs an error in the direction of the telescope. ■ is a distance calculation device that has a monitor l-1 that displays angles and distances and a calculator 11-2;
A driving amount of the telescope is given to correct the error.

概ね目標の方向に向けた経緯儀(I)の視野像を観測装
置(II)のモニタ(8−2)に表示して、モニタ上で
の合焦と照準を行い、撮像装置(8−1)から画像処理
装置(m)のフレームメモリ(9−1)に画像情報を送
り、画像演算装置(9−2)を用いて視野の中心に対す
る目標の位置から経緯儀の望遠鏡(1)の方向と目標と
のずれを求め、その結果と経緯儀のエンコーダ(3,4
)による仰角及び方位角の読取り値とを距離計算装置(
mV)に送り、照準の修正角を計算して目標の三次元位
置、あるいは望遠鏡の仰角及び方位角に設けた微動機構
(10)の駆動量を求める。
Display the visual field image of the theodolite (I) pointing roughly in the direction of the target on the monitor (8-2) of the observation device (II), perform focusing and aiming on the monitor, and ) sends image information to the frame memory (9-1) of the image processing device (m), and uses the image processing device (9-2) to determine the direction of the theodolite telescope (1) from the target position relative to the center of the field of view. and the target, and compare the result with the theodolite encoder (3, 4).
) and the elevation and azimuth readings from the distance calculation device (
mV) and calculates the correction angle of the sight to determine the three-dimensional position of the target or the amount of drive of the fine movement mechanism (10) provided at the elevation and azimuth angles of the telescope.

高精度な測定の場合、照準の修正角に応じて微動機構を
駆動し、目標を視野中心に合致させた後に距離を計算す
る。
For high-precision measurements, the fine movement mechanism is driven according to the correction angle of the sight, and the distance is calculated after the target is aligned with the center of the field of view.

以上により、望遠鏡視野の目視が不要になるため作業負
荷が減少するとともに、モニタ上で目標を照準でき、照
準の修正が不要となり測定効率が向上し、照準の修正を
行う場合も機械駆動によるため、個人差を排除した高精
度な測定が行える。
As a result, the workload is reduced because visual inspection of the telescope field of view is no longer necessary, and the target can be sighted on the monitor, making it unnecessary to correct the sight, improving measurement efficiency. , it is possible to perform highly accurate measurements that eliminate individual differences.

(発明の効果) 以上説明のように、本発明による三次元計測装置を用い
ることにより、大型構造物の構成要素の位置及び形状測
定の精度と作業性が向上するために、大型アンテナや飛
行機の胴体の形状の計測を短時間に行うことができ、組
立調整が容易になる。
(Effects of the Invention) As explained above, by using the three-dimensional measuring device according to the present invention, the accuracy and workability of measuring the position and shape of the components of large structures are improved. The shape of the fuselage can be measured in a short time, making assembly and adjustment easier.

また、本装置の経緯儀の望遠鏡の倍率を可変として、目
標捕捉時には低倍率、精照準時に高倍率とすることで高
精度化が図れる。
In addition, high precision can be achieved by making the magnification of the telescope of the theodolite of this device variable, with a low magnification when capturing a target and a high magnification when aiming finely.

さらに、自動焦点機構を付加することにより、目標捕捉
のみ行う反自動計測が可能となり、省力化が図れる。
Furthermore, by adding an automatic focusing mechanism, counter-automatic measurement that only performs target acquisition becomes possible, resulting in labor savings.

望遠鏡を持ち測定対象物を視野中心に置く必要のある光
学測定系の望遠鏡に用いれば、種々の計測の設定が効率
的に行える。
If used in an optical measurement telescope that has a telescope and requires the object to be measured to be placed in the center of the field of view, various measurement settings can be made efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による三次元計測装置の構成例、第2図
は従来の経緯儀の例、第3図は経緯儀を用いた三次元測
定の流れを示す図、第4図は経緯儀を用いた三次元測定
の精度を説明する図である。 1・・・望遠鏡、     2・・・El  (仰角)
軸、3・・・El軸エンコーダ、4・・・Az軸エンコ
ーダ、5・・・Az軸、     6−1.6−2・・
・経緯儀位置、7−1.7−2・・・目標位置、 8−
1・・・撮像装置、8−2.・・モニタ、     9
−1・・・フレームメモリ、9−2・・・画像演算装置
、 10・・・微動機構、11−1・・・モニタ、  
  11−2・・・計算機、■・・・経緯儀、    
 ■・・・観測装置、■・・・画像処理装置、 ■・・
・距離計算装置、mp・・・位置精度、   mr・・
・角度精度、S・・・目標間隔、    C・・・経緯
儀間隔、α1J・・・経緯儀から目標のベクトル、β1
J・・・目標から経緯儀のベクトル、θ・・・経緯儀を
見込む角、 φ、ψ・・・αの方向を示す角。 V−−−−−一一−コ
Fig. 1 shows an example of the configuration of a three-dimensional measuring device according to the present invention, Fig. 2 shows an example of a conventional theodolite, Fig. 3 shows the flow of three-dimensional measurement using a theodolite, and Fig. 4 shows a theodolite. It is a figure explaining the precision of three-dimensional measurement using. 1... Telescope, 2... El (elevation angle)
Axis, 3...El axis encoder, 4...Az axis encoder, 5...Az axis, 6-1.6-2...
・Theodolite position, 7-1.7-2...Target position, 8-
1... Imaging device, 8-2.・・Monitor, 9
-1... Frame memory, 9-2... Image calculation device, 10... Fine movement mechanism, 11-1... Monitor,
11-2...Calculator, ■...Theodolite,
■...Observation device, ■...Image processing device, ■...
・Distance calculation device, mp...Position accuracy, mr...
・Angular accuracy, S...Target spacing, C...Theodolite spacing, α1J...Vector from theodolite to target, β1
J: Vector of the theodolite from the target, θ: Angle looking into the theodolite, φ, ψ: Angle indicating the direction of α. V------11-co

Claims (1)

【特許請求の範囲】 経緯儀を用いて物体の三次元位置を計測する三次元計測
装置において、 経緯儀が望遠鏡の仰角及び方位角を外部信号により調節
する微動機構と、望遠鏡の仰角及び方位角を外部装置に
出力する手段とを具備し、 経緯儀の望遠鏡による像を画像情報としてとり出す、撮
像装置及びモニタを備えた観測装置と、該画像情報から
望遠鏡の指向方向と目標の方向とのずれを求める画像処
理装置と、該ずれに従って望遠鏡の指向方向の修正角を
計算して前記微動機構を介して望遠鏡の指向方向を修正
させる計算手段とが具備されることを特徴とする、 三次元計測装置。
[Scope of Claims] A three-dimensional measuring device that measures the three-dimensional position of an object using a theodolite, wherein the theodolite has a fine movement mechanism that adjusts the elevation angle and azimuth angle of the telescope using an external signal, and a fine movement mechanism that adjusts the elevation angle and azimuth angle of the telescope. an observation device equipped with an imaging device and a monitor that outputs an image taken by the telescope of the theodolite to an external device as image information; A three-dimensional system, characterized in that it is equipped with an image processing device that calculates the deviation, and a calculation means that calculates a correction angle of the pointing direction of the telescope according to the deviation and corrects the pointing direction of the telescope via the fine movement mechanism. Measuring device.
JP19619188A 1988-08-08 1988-08-08 Three-dimensional measuring device Pending JPH0245711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19619188A JPH0245711A (en) 1988-08-08 1988-08-08 Three-dimensional measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19619188A JPH0245711A (en) 1988-08-08 1988-08-08 Three-dimensional measuring device

Publications (1)

Publication Number Publication Date
JPH0245711A true JPH0245711A (en) 1990-02-15

Family

ID=16353708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19619188A Pending JPH0245711A (en) 1988-08-08 1988-08-08 Three-dimensional measuring device

Country Status (1)

Country Link
JP (1) JPH0245711A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469710U (en) * 1990-10-29 1992-06-19
EP0661519A1 (en) * 1993-12-28 1995-07-05 Kabushiki Kaisha Topcon Surveying instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469710U (en) * 1990-10-29 1992-06-19
EP0661519A1 (en) * 1993-12-28 1995-07-05 Kabushiki Kaisha Topcon Surveying instrument
EP0874218A1 (en) * 1993-12-28 1998-10-28 Kabushiki Kaisha Topcon Surveying instrument

Similar Documents

Publication Publication Date Title
US7200945B2 (en) Surveying instrument
CN1846148B (en) Self-compensating laser tracker
CN100410642C (en) Method for detecting verticality of optical axis and mounting baseplane in optical system
CN111076880B (en) Multi-point deflection measuring method of long-span bridge considering camera attitude change
CN106197292B (en) A kind of building displacement monitoring method
CN110345970B (en) Optical navigation sensor calibration method and device thereof
US9194698B2 (en) Geodetic device and a method for determining a characteristic of the device
CN110873578A (en) Hexahedron prism and IMU installation error calibration method based on turntable transmission
RU2635336C2 (en) Method of calibrating optical-electronic device and device for its implementation
CN109990801B (en) Level gauge assembly error calibration method based on plumb line
CN107167109B (en) Method and device for measuring plane space deflection angle by two-point laser
JP2001296124A (en) Method and apparatus for measurement of three- dimensional coordinates
CN112097794A (en) Calibration method and system for remote sensing satellite load platform
JPH0245711A (en) Three-dimensional measuring device
CN107179066B (en) Rotary calibration device and calibration method thereof
CN104570580A (en) Space distributive type camera boresight included angle measurement method
CN115290008A (en) Angle calibration algorithm of image measurement collimator
JPS58191917A (en) Method and device for measuring object by theodolite pair
CN114018167A (en) Bridge deflection measuring method based on monocular three-dimensional vision
CN113607188A (en) Calibration system and method of multi-view-field star sensor based on theodolite cross-hair imaging
CN113063367A (en) Full-field deflection real-time measurement system and measurement method based on oblique optical axis digital image correlation method
RU2428656C1 (en) Installation method of measuring instrument to working position and device for its implementation
CN115183681B (en) Laser measurement method and system for structural displacement
CN104880569B (en) The Dynamic High-accuracy angle-measuring equipment and measuring method of a kind of star catalogue
US20240044642A1 (en) Orbital Goniometer Autocollimation Device