JPH0245674B2 - - Google Patents

Info

Publication number
JPH0245674B2
JPH0245674B2 JP57017641A JP1764182A JPH0245674B2 JP H0245674 B2 JPH0245674 B2 JP H0245674B2 JP 57017641 A JP57017641 A JP 57017641A JP 1764182 A JP1764182 A JP 1764182A JP H0245674 B2 JPH0245674 B2 JP H0245674B2
Authority
JP
Japan
Prior art keywords
oil
catalyst
heavy oil
nickel
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57017641A
Other languages
Japanese (ja)
Other versions
JPS58136693A (en
Inventor
Tomonori Shioiri
Takeshi Kawakatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Original Assignee
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai filed Critical Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority to JP1764182A priority Critical patent/JPS58136693A/en
Publication of JPS58136693A publication Critical patent/JPS58136693A/en
Publication of JPH0245674B2 publication Critical patent/JPH0245674B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重質油の流動接触分解方法に関するも
のであり、更に詳しくは、ニツケル、バナジウ
ム、鉄、ナトリウムなどを含む蒸留残渣を含有す
る重質油のうち、バナジウムよりもニツケルを多
く含む重質油を比表面積が200m2/g以下、ゼオ
ライト含有量が17wt%以下の触媒を用いて接触
分解することにより、ドライガス(水素、メタ
ン、エタン、エチレン)、コーク、液化石油ガス
(LPG)およびガソリン収率を低くし、中間留分
(沸点範囲200〜350℃)収率を増大させるもので
ある。 通常の流動接触分解は石油系炭化水素を触媒と
接触させて分解し、ドライガス、LPG、ガソリ
ンなどの多量の軽質分および少量の分解軽油等を
得、さらに触媒上に堆積したコークを空気で燃焼
除去して触媒を循環再使用するものである。また
原料油には従来から常圧蒸留塔からのライトガス
オイル(LGO)、ヘビーガスオイル(HGO)、減
圧蒸留塔からのバキユームガスオイル(VGO)
などのいわゆる留出油が主として用いられるにす
ぎない。 しかしながら最近では世界的な原油の重質化、
またわが国での需要構造の変化に伴ない、需給両
面から重油類の過剰傾向が現れたことから、流動
接触分解の原料油として蒸留残渣を含む重質油を
も対象とする必要が生じている。 ところが、蒸留残渣を含む重質油中には留出油
中よりもはるかに多い量のニツケル、バナジウ
ム、鉄、銅、ナトリウム等の金属類が含まれてお
り、これらの金属類は触媒上に堆積して分解の活
性と選択性を著しく阻害することが知られてい
る。すなわち金属類の触媒上への蓄積とともに分
解率が低下してゆき、実質的に望ましい分解率を
達成できなくなる一方、水素の発生量とコークの
生成量が著しく増加し、装置の運転を困難にする
と同時に、望ましい液状製品の収率が減少する。 これら金属の影響をできるだけ小さくするため
に、現在市販されている耐メタル触媒は、従来の
留出油分解触媒にくらべてゼオライト含有量の高
いことが特徴であり、金属堆積量1wt%程度まで
は実用的な分解率を維持し、水素発生量もある程
度減少させる効果があるといわれている。 ところがこれら市販の耐メタル触媒を用いて南
方系の重質油を分解したところ、触媒上に金属が
蓄積するにつれて増加する水素の発生量をある程
度抑制する効果があり、かつ分解率の低下もごく
わずかで高い分解率を維持することは認められた
が、コーク、LPG、およびガソリンの収率が高
く、中間留分である軽質分解軽油(LCO)の収
率は低いことがわかつた。 最近のわが国の石油製品の需給構造ではガソリ
ンはバランスしているが、中間留分は不足し、C
重油は大過剰という状態にあり、且つこの傾向は
将来さらに助長される見通しから、余剰の重油を
分解して不足している中間留分を多く得ること
が、わが国の今後の重要課題となつている。した
がつて現在市販されている耐メタル触媒を用いて
南方系の重質油を分解することは、水素の発生量
の抑制には効果があつても中間留分を多く得る目
的には適していない。 本発明はこれらの点を解決した重質油の流動接
触分解方法を提供するものである。詳しくは重質
油の分解に際して、水素とコーク生成量を抑制す
ると同時に、LPG、ガソリン収率を少なくして、
中間留分を多く得る方法である。 すなわち、本発明は、ニツケル、バナジウムの
合計量を0.5ppm以上含み、かつバナジウムより
もニツケルを2重量倍以上含む蒸留残渣を含有す
る重質油を比表面積が20〜200m2/gのシリカ−
アルミナ、シリカ−マグネシア又はマグネシアア
ルミナマトリツクスに17wt%以下のゼオライト
を含有した触媒の存在下で、流動接触分解を行な
い沸点200〜350℃の中間留分収率を20〜50vol%
とすることを特徴とする重質油の流動接触分解方
法を提供する。 以下に本発明をさらに詳しく説明する。 本発明でいう重質油とは、ニツケル、バナジウ
ム、の合計量を実質的に0.5ppm以上含み、なお
且つバナジウムよりもニツケルを多く含む、たと
えばニツケルの方がバナジウムよりも2重量倍以
上、好ましくは4重量倍以上のものをいう。も
し、ニツケルが2重量倍以下の場合はバナジウム
による触媒の分解活性低下が支配的となり、
17wt%以下のゼオライト含有量では実質的な分
解が行なわれなくなる。南方系の重質油はこの一
例であり、インドネシアおよびその周辺で産出す
るミナス、シンタ、デユリー、ハンデイル、タラ
カン、アタカ、プカパイなどの原油、および中国
で産する大慶、勝利などの原油に由来する重質油
が該当する。重質油は一種類の原油の由来するも
のでもよいし、二種類以上の混合原油に由来する
ものでもよく、また南方系以外のたとえば中東
系、アフリカ系、南北アメリカ系、メキシコ系、
北海系、アラスカ系の原油の混合した重質油でも
よい。またここでいう重質油とは、アスフアルテ
ンあるいはレジン分を実質的に含む(通常0.5wt
%以上含有する)炭化水素系鉱油で、石油精製工
程の中で蒸留操作によつて分けられる残渣成分を
含むものをいい、具体的には常圧蒸留残渣油、減
圧蒸留残渣油、溶剤脱歴油、溶剤脱歴アスフアル
トおよびこれらのいずれかと常圧蒸留、減圧蒸留
からの通常沸点200℃以上の留出油(たとえば、
LGO(沸点範囲200〜300℃)、HGO(300〜500℃)
およびVGO(300〜570℃)、好ましくはVGOが用
いられる)の混合油が例示できる。該混合油は残
渣油の含有率が1wt%以上である。 また、ここでいう重質油としてはシエールオイ
ル、タールサンド油および石炭液化油が例示でき
る。 本発明で用いられる触媒はマトリツクスと呼ば
れる非晶質の部分とゼオライトと呼ばれる結晶性
アルミノシリケートの部分から成る。該マトリツ
クスとしてはシリカ−アルミナ、シリカ−マグネ
シアまたはマグネシア−アルミナを主成分とする
合成品あるいは天然に存在する粘土鉱物を処理し
たものが好ましい。ゼオライトとしてはホージヤ
サイトに属する合成Y型ゼオライトがよく、交換
可能なカチオン、たとえばナトリウムを水素およ
びまたは希土類金属で交換したものが好ましい。
触媒の比表面積は新触媒の状態で20〜200m2/g
以下がよく、好ましくは30〜150m2/gがよい。
その理由は十分明らかではないが、触媒上に蓄積
する金属によつて増加する水素とコークの収率が
抑制され、分解生成物の蒸留設備の一つであるガ
スコンプレツサーと触媒上のコーク燃焼用空気を
供給する空気ブロワーの負荷が軽減されるばかり
でなく、好ましい液状生成物の収率を増加させ
る。触媒中のゼオライト含有量は新触媒の状態で
17wt%以下がよく、好ましくは1〜16wt%、さ
らに好ましくは3〜15wt%がよい。現在市販の
耐メタル触媒はゼオライト含有量が18wt%以上
であり、ガソリン収率を増加させる目的にはよい
が、バナジウムよりもニツケルをより多く含む重
質油から中間留分を多く得るには不適当である。
本発明は触媒の比表面積とゼオライト含有量を調
節することにより、バナジウムよりもニツケルを
多く含む重質油から経済的に中間留分収率を増加
させることができるという発見に基くものであ
る。 具体的な触媒の使用方法としては流動接触分解
装置内に存在する触媒上の金属蓄積量を一定範囲
内に保つに必要な量の本発明の新触媒を定期的に
補給し、運転中の損失分と合せて補給量に見合う
量の使用中の触媒を装置から抜出すことである。
補給量は処理すべき重質油の量、重質油中の金属
含有量および触媒の金属蓄積許容量によつて決ま
る。触媒の金属蓄積許容量が高いほど補給量は少
なくて済み、経済的な重質油分解法を提供でき
る。本発明による触媒では金属蓄積量2wt%まで
水素およびコーク生成量を通常許容される範囲内
に抑制し、中間留分収率も高いことが発見され、
補給量も少なくて済む経済的にすぐれた触媒であ
ることがわかつた。 本発明を実施するにあたり用いられる装置、す
なわち反応帯、分離体、ストリツピング帯、触媒
再生帯、蒸留帯を有する流動接触分解装置は特に
限定されないが、実質的に重質油を分解するのに
適したものであることが望ましい。たとえば反応
帯としては油と触媒の接触時間を短かくしてコー
ク生成量を少なくするためのライザー反応帯を備
えたものがよく、再生帯としては750℃程度まで
の高温に耐える設備または除熱設備を有するもの
がよい。また装置の運転条件は特に限定されない
が、一例を示せば反応温度450〜550℃、圧力0.5
〜3Kg/cm2G、触媒再生温度550〜750℃、触媒/
油比3〜20wt/wt、接触時間0.5〜5sec、CFR
((新原料油+循環油)/新原料油)1.0〜2.0vol/
volである。 分解率は中間留分収率増加のために重要であ
り、分解率の定義を 分解率=原料油−沸点200℃以上の留分/原料油×100(
vol%) とするとき、分解率は30〜70vol%、好ましくは
40〜60vol%の範囲がよい。分解率が高いとガソ
リンが多く得られ、中間留分の得率が低くなる
が、本発明による触媒を用いることにより分解率
を望ましい範囲に制御できる。 本発明の中間留分の収率は20〜50vol%、好ま
しくは25〜40vol%である。なお、中間留分の収
率の算出方法は原料中の350℃以上の物質を基準
にして考え、次式によつて求められる。 中間留分収率(vol%)=生成物(200〜350℃)/原料
中の350℃以上の物質×100 本発明の方法は以下に示す実施例によりさらに
明瞭に理解されるであろう。 実施例1〜3および比較例1〜3 触媒の耐ニツケル性を比較するために表面積、
ゼオライト含有量の異なる6種類(A〜F)の新
触媒それぞれ6Kgを600℃で3hr焼成後ニツケルナ
フテネートを含浸させ、所定量のNiを担持させ
たのち760℃で6hrスチーミングを行なつた。スチ
ーミング処理触媒各4Kgを循環流動式ベンチ装置
に充填し、反応温度460℃、再生塔温度600℃、常
圧、触媒/油比7.0、原料供給速度10.5g/minの
条件で大慶常圧蒸留残渣油20部、脱硫減圧軽油
(VGO)80部から成る原料油の接触分解反応を行
なつた。新触媒の物性及び反応結果を表1に示
す。
The present invention relates to a method for fluid catalytic cracking of heavy oil, and more specifically, among heavy oils containing distillation residues containing nickel, vanadium, iron, sodium, etc., heavy oils containing more nickel than vanadium are used. By catalytically cracking oil using a catalyst with a specific surface area of 200 m 2 /g or less and a zeolite content of 17 wt% or less, dry gas (hydrogen, methane, ethane, ethylene), coke, liquefied petroleum gas (LPG) and It lowers the gasoline yield and increases the middle distillate (boiling range 200-350°C) yield. In normal fluid catalytic cracking, petroleum hydrocarbons are cracked by contacting them with a catalyst to obtain a large amount of light components such as dry gas, LPG, and gasoline, and a small amount of cracked light oil, and then the coke deposited on the catalyst is removed by air. The catalyst is removed by combustion and recycled for reuse. In addition, feedstock oils have traditionally been light gas oil (LGO) from atmospheric distillation columns, heavy gas oil (HGO), and vacuum gas oil (VGO) from vacuum distillation columns.
Only so-called distillate oils such as these are mainly used. However, recently, the world's crude oil has become heavier,
In addition, as the demand structure in Japan has changed, there has been a tendency for heavy oils to be in surplus from both the supply and demand perspective, so it has become necessary to target heavy oils containing distillation residues as feedstock oil for fluid catalytic cracking. . However, heavy oil containing distillation residue contains much higher amounts of metals such as nickel, vanadium, iron, copper, and sodium than distillate oil, and these metals are not present on the catalyst. It is known that it accumulates and significantly inhibits the activity and selectivity of degradation. In other words, as metals accumulate on the catalyst, the decomposition rate decreases, making it practically impossible to achieve the desired decomposition rate, while the amount of hydrogen and coke generated increases significantly, making it difficult to operate the equipment. At the same time, the yield of the desired liquid product is reduced. In order to minimize the effects of these metals, currently commercially available metal-resistant catalysts are characterized by a higher zeolite content than conventional distillate oil cracking catalysts, and are capable of reducing the amount of metal deposited up to about 1wt%. It is said to be effective in maintaining a practical decomposition rate and reducing the amount of hydrogen generated to some extent. However, when these commercially available metal-resistant catalysts were used to decompose southern heavy oil, they were effective in suppressing to some extent the amount of hydrogen generated that increases as metals accumulate on the catalyst, and the decomposition rate was only slightly reduced. Although it was observed that a small but high cracking rate was maintained, the yields of coke, LPG, and gasoline were high, and the yield of the middle distillate, light cracked gas oil (LCO), was found to be low. In Japan's recent supply and demand structure for petroleum products, gasoline is in balance, but there is a shortage of middle distillates, and carbon
There is a large surplus of heavy oil, and this trend is expected to further accelerate in the future, so cracking the surplus heavy oil to obtain a large amount of the middle distillate, which is in short supply, will be an important issue for Japan in the future. There is. Therefore, cracking southern heavy oil using currently commercially available metal-resistant catalysts is not suitable for obtaining a large amount of middle distillates, although it is effective in suppressing the amount of hydrogen generated. do not have. The present invention provides a method for fluid catalytic cracking of heavy oil that solves these problems. In detail, when cracking heavy oil, we suppress the amount of hydrogen and coke produced, and at the same time reduce the yield of LPG and gasoline.
This is a method to obtain a large amount of middle distillate. That is, in the present invention, heavy oil containing a distillation residue containing a total amount of nickel and vanadium of 0.5 ppm or more and containing nickel by weight or more than vanadium is mixed with silica having a specific surface area of 20 to 200 m 2 /g.
Fluid catalytic cracking is carried out in the presence of a catalyst containing 17 wt% or less of zeolite in an alumina, silica-magnesia, or magnesia-alumina matrix to increase the yield of middle distillates with a boiling point of 200 to 350°C from 20 to 50 vol%.
A method for fluid catalytic cracking of heavy oil is provided. The present invention will be explained in more detail below. Heavy oil as used in the present invention means that it contains substantially 0.5 ppm or more in total of nickel and vanadium, and also contains more nickel than vanadium, for example, nickel is more than 2 times the weight of vanadium, preferably means more than 4 times the weight. If the amount of nickel is less than 2 times the weight, the decomposition activity of the catalyst due to vanadium will be reduced,
At zeolite contents below 17 wt%, no substantial decomposition occurs. An example of this is southern heavy oil, which is derived from the Minas, Sinta, Duly, Handail, Tarakan, Ataka, and Pukapai crude oils produced in and around Indonesia, as well as the Daqing and Shengli crude oils produced in China. This applies to heavy oil. Heavy oil may be derived from one type of crude oil or a mixture of two or more types of crude oil, and may also be derived from crude oil of non-southern origin, such as Middle Eastern origin, African origin, North and South America origin, Mexican origin, etc.
Heavy oil that is a mixture of North Sea and Alaskan crude oil may also be used. Furthermore, the heavy oil referred to here includes substantially asphaltene or resin content (usually 0.5wt).
% or more) is a hydrocarbon-based mineral oil that contains residual components separated by distillation during the petroleum refining process, specifically atmospheric distillation residue oil, vacuum distillation residue oil, solvent deasphalting. oil, solvent-deasphalted asphalt, and any of these and distillate oils with a normal boiling point of 200°C or higher from atmospheric distillation or vacuum distillation (e.g.
LGO (boiling point range 200-300℃), HGO (300-500℃)
and VGO (300 to 570°C, preferably VGO is used). The mixed oil has a residual oil content of 1 wt% or more. Examples of the heavy oil mentioned here include shale oil, tar sand oil, and coal liquefied oil. The catalyst used in the present invention consists of an amorphous part called a matrix and a crystalline aluminosilicate part called a zeolite. The matrix is preferably a synthetic product containing silica-alumina, silica-magnesia or magnesia-alumina as a main component, or a matrix treated with naturally occurring clay minerals. The zeolite is preferably a synthetic Y-type zeolite belonging to the faujasite family, preferably one in which an exchangeable cation, such as sodium, is exchanged with hydrogen and/or a rare earth metal.
The specific surface area of the catalyst is 20 to 200 m 2 /g in the new catalyst state.
It is preferably 30 to 150 m 2 /g.
The reason for this is not completely clear, but the increasing yield of hydrogen and coke is suppressed by the metals accumulated on the catalyst, and the coke on the catalyst is Not only is the load on the air blower supplying the combustion air reduced, but the yield of the desired liquid product is increased. The zeolite content in the catalyst is in the new catalyst state.
The content is preferably 17 wt% or less, preferably 1 to 16 wt%, and more preferably 3 to 15 wt%. Currently commercially available metal-resistant catalysts have a zeolite content of 18wt% or more, which is good for increasing gasoline yield, but is not suitable for obtaining a large amount of middle distillate from heavy oil, which contains more nickel than vanadium. Appropriate.
The present invention is based on the discovery that middle distillate yields can be economically increased from heavy oils containing more nickel than vanadium by adjusting the specific surface area and zeolite content of the catalyst. A specific method for using the catalyst is to periodically replenish the amount of the new catalyst of the present invention necessary to maintain the amount of metal accumulated on the catalyst within a certain range within the fluid catalytic cracker, and to reduce losses during operation. This is to remove the catalyst in use from the equipment in an amount that corresponds to the amount of replenishment.
The amount of replenishment depends on the amount of heavy oil to be treated, the metal content in the heavy oil and the metal accumulation capacity of the catalyst. The higher the metal accumulation capacity of the catalyst, the smaller the amount of replenishment is required, providing an economical heavy oil cracking method. It has been discovered that the catalyst according to the present invention suppresses hydrogen and coke production within the normally acceptable range up to a metal accumulation of 2 wt%, and also has a high middle distillate yield.
It was found that it is an economically excellent catalyst that requires only a small amount of supply. The apparatus used in carrying out the present invention, that is, the fluid catalytic cracking apparatus having a reaction zone, a separator, a stripping zone, a catalyst regeneration zone, and a distillation zone is not particularly limited, but is suitable for substantially cracking heavy oil. It is desirable that the For example, the reaction zone should preferably be equipped with a riser reaction zone to shorten the contact time between oil and catalyst and reduce the amount of coke produced, and the regeneration zone should be equipped with equipment that can withstand high temperatures up to about 750°C or heat removal equipment. What you have is good. In addition, the operating conditions of the device are not particularly limited, but an example is a reaction temperature of 450 to 550°C, a pressure of 0.5
~3Kg/ cm2G , catalyst regeneration temperature 550~750℃, catalyst/
Oil ratio 3~20wt/wt, contact time 0.5~5sec, CFR
((New feedstock oil + circulating oil)/New feedstock oil) 1.0~2.0vol/
It is vol. The decomposition rate is important for increasing the middle distillate yield, and the definition of the decomposition rate is as follows: decomposition rate = Feedstock oil - distillate with boiling point of 200℃ or higher / Feedstock oil x 100 (
vol%), the decomposition rate is 30-70vol%, preferably
A range of 40 to 60 vol% is preferable. If the cracking rate is high, a large amount of gasoline will be obtained and the yield of middle distillate will be low, but by using the catalyst of the present invention, the cracking rate can be controlled within a desired range. The yield of the middle distillate of the present invention is 20 to 50 vol%, preferably 25 to 40 vol%. In addition, the method of calculating the yield of the middle distillate is based on the substance at 350° C. or higher in the raw material, and is determined by the following formula. Middle distillate yield (vol%) = product (200-350°C)/substances above 350°C in the raw material x 100 The process of the present invention will be more clearly understood from the following examples. Examples 1 to 3 and Comparative Examples 1 to 3 In order to compare the nickel resistance of the catalyst, the surface area,
Six kg of each of six types of new catalysts (A to F) with different zeolite contents were calcined at 600°C for 3 hours, impregnated with nickel naphthenate, supported with a predetermined amount of Ni, and then steamed at 760°C for 6 hours. . Each steaming treatment catalyst (4 kg) was packed into a circulating flow bench device and subjected to Daqing atmospheric distillation under the following conditions: reaction temperature 460℃, regeneration tower temperature 600℃, normal pressure, catalyst/oil ratio 7.0, and raw material supply rate 10.5g/min. A catalytic cracking reaction was carried out on feedstock oil consisting of 20 parts of residual oil and 80 parts of desulfurized vacuum gas oil (VGO). Table 1 shows the physical properties and reaction results of the new catalyst.

【表】 注1:新触媒時の値
水素/メタン比は転化率に左右されない金属被
毒の指標としてよく用いられ、比が高いほど金属
被毒の影響は大きい。各触媒は約7000〜
20000ppmのNi蓄積量を示しているが、触媒A、
B、C、Dと比較して、表面積の大きいE、Fは
水素/メタン比が2倍程度高く、耐メタル性の劣
る結果を示した。触媒Dは耐メタル性が認められ
るものの分解活性が高く、中間留分収率の低いこ
とがわかる。触媒AはNiが19600ppm蓄積してい
るにも拘らず、耐メタル性、中間留分収率ともに
すぐれた結果を示し、触媒B、Cについても良好
な結果が得られた。 実施例4〜5および比較例4 3種類の新触媒(G、H、I)を循環流動式パ
イロツトプラントにそれぞれ40Kg充填し、所定の
条件で常圧蒸留残渣油の接触分解反応を実施し
た。常圧残油の原油構成比を表2に、触媒の物
性、反応条件、反応結果を表3に示す。
[Table] Note 1: Value for new catalyst The hydrogen/methane ratio is often used as an indicator of metal poisoning that is not affected by the conversion rate, and the higher the ratio, the greater the effect of metal poisoning. Each catalyst is about 7000~
It shows a Ni accumulation amount of 20000ppm, but catalyst A,
Compared to B, C, and D, E and F, which have a larger surface area, had a hydrogen/methane ratio about twice as high and showed inferior metal resistance. It can be seen that Catalyst D has high cracking activity and low middle distillate yield, although metal resistance is observed. Although catalyst A accumulated 19,600 ppm of Ni, it showed excellent results in both metal resistance and middle distillate yield, and good results were also obtained for catalysts B and C. Examples 4 to 5 and Comparative Example 4 Three types of new catalysts (G, H, I) were each charged at 40 kg into a circulating flow type pilot plant, and a catalytic cracking reaction of atmospheric distillation residue oil was carried out under predetermined conditions. The crude oil composition ratio of the atmospheric residual oil is shown in Table 2, and the physical properties of the catalyst, reaction conditions, and reaction results are shown in Table 3.

【表】 注1:金属の蓄積を加速するために原料
油に油溶性ニツケルを添加した。
[Table] Note 1: Oil-soluble nickel was added to the raw oil to accelerate metal accumulation.

【表】【table】

【表】【table】

【表】 注1:新触媒時の値
触媒G、H、Iともに水素/メタン比は低く耐
メタル性が認められた。触媒上のニツケルが0か
らそれぞれの蓄積量に達するまでのドライガス流
量の増加は50〜80scf/bbl、コーク収率の増加は
1〜2wt%であり十分実用に供せられることもわ
かつた。しかしながら触媒Iは分解活性が高く、
中間留分を多く得るには不適当な触媒である。
[Table] Note 1: Values for new catalyst Catalysts G, H, and I all had low hydrogen/methane ratios and were found to be metal resistant. It was also found that the dry gas flow rate increased by 50 to 80 scf/bbl and the coke yield increased by 1 to 2 wt% until nickel on the catalyst reached the respective accumulated amounts from zero, which is sufficient for practical use. However, Catalyst I has high decomposition activity;
It is an unsuitable catalyst for obtaining a large amount of middle distillates.

Claims (1)

【特許請求の範囲】 1 ニツケルおよびバナジウムを合計0.5ppm以
上含む蒸留残渣を含有する重質油を流動接触する
方法において、原料油としてニツケル含有量がバ
ナジウム含有量の2重量倍以上の重質油を用い、
触媒として比表面積が20〜200m2/gのシリカ−
アルミナ、シリカ−マグネシア又はマグネシア−
アルミナマトリツクスに17重量%以下のゼラオイ
トを含有した触媒を使用し、それにより沸点200
〜350℃の中間留分を20〜50容量%の高収率で得
ることを特徴とする方法。 2 該重質油が常圧蒸留残渣油、減圧蒸留残渣
油、溶剤脱歴油、溶剤脱歴アスフアルトおよびこ
れらのいずれかと常圧蒸留、減圧蒸留の留出油の
混合油である特許請求の範囲第1項記載の方法。 3 触媒の比表面積が30〜150m2/gである特許
請求の範囲第1項又は2項記載の方法。 4 ゼラオイトが交換可能なカチオンを水素およ
びまたは希土類金属で交換したY型ホージヤサイ
トである特許請求の範囲第1又は2項又は3項記
載の方法。
[Scope of Claims] 1. In a method of fluidly contacting heavy oil containing distillation residue containing a total of 0.5 ppm or more of nickel and vanadium, a heavy oil having a nickel content of 2 times the vanadium content or more by weight as a feedstock oil. using
Silica with a specific surface area of 20 to 200 m 2 /g as a catalyst
Alumina, silica-magnesia or magnesia
A catalyst containing up to 17% by weight of gelaite in an alumina matrix is used, thereby achieving a boiling point of 200%.
A process characterized in that a middle distillate at ~350°C is obtained in a high yield of 20-50% by volume. 2 Claims in which the heavy oil is an atmospheric distillation residue oil, a vacuum distillation residue oil, a solvent deasphalted oil, a solvent deasphalted asphalt, or a mixed oil of any of these and a distillate oil from atmospheric distillation or vacuum distillation. The method described in paragraph 1. 3. The method according to claim 1 or 2, wherein the catalyst has a specific surface area of 30 to 150 m 2 /g. 4. The method according to claim 1, 2 or 3, wherein the gelaoite is Y-type haujasite in which exchangeable cations are exchanged with hydrogen and/or rare earth metals.
JP1764182A 1982-02-08 1982-02-08 Fluid catalytic cracking of heavy oil Granted JPS58136693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1764182A JPS58136693A (en) 1982-02-08 1982-02-08 Fluid catalytic cracking of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1764182A JPS58136693A (en) 1982-02-08 1982-02-08 Fluid catalytic cracking of heavy oil

Publications (2)

Publication Number Publication Date
JPS58136693A JPS58136693A (en) 1983-08-13
JPH0245674B2 true JPH0245674B2 (en) 1990-10-11

Family

ID=11949482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1764182A Granted JPS58136693A (en) 1982-02-08 1982-02-08 Fluid catalytic cracking of heavy oil

Country Status (1)

Country Link
JP (1) JPS58136693A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121191A (en) * 1984-07-09 1986-01-29 ガルフ・リサ−チ・エンド・デベロツプメント・コンパニ− Novel catalytic decomposition and process for catalytically decomposing supply material of high metal content
JPS61235491A (en) * 1985-04-12 1986-10-20 Res Assoc Residual Oil Process<Rarop> Fluid catalytic cracking of heavy oil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137276A (en) * 1974-09-25 1976-03-29 Canon Kk ROKORYOMONITAAHOSHIKI
JPS5167279A (en) * 1974-12-06 1976-06-10 Catalysts & Chem Ind Co Shirika aruminashokubaino seizoho
JPS5637046A (en) * 1979-08-30 1981-04-10 Nippon Kaihatsu Consultant:Kk Catalytic cracking method of heavy oil and catalyst thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137276A (en) * 1974-09-25 1976-03-29 Canon Kk ROKORYOMONITAAHOSHIKI
JPS5167279A (en) * 1974-12-06 1976-06-10 Catalysts & Chem Ind Co Shirika aruminashokubaino seizoho
JPS5637046A (en) * 1979-08-30 1981-04-10 Nippon Kaihatsu Consultant:Kk Catalytic cracking method of heavy oil and catalyst thereof

Also Published As

Publication number Publication date
JPS58136693A (en) 1983-08-13

Similar Documents

Publication Publication Date Title
JP5936819B2 (en) Catalytic conversion process
JP5840840B2 (en) An improved integrated method for hydrogenating and catalytically cracking hydrocarbon oils
US8597500B2 (en) Process for converting inferior feedstock to high quality fuel oil
US9771529B2 (en) Process for producing light olefins and aromatics
KR100577134B1 (en) Integrated Hydrotreating and Hydrocracking Process
US9062261B2 (en) Catalytic cracking process for reducing sulfur content in gasoline and the device thereof
JPH01146989A (en) Catalytic cracking method
JP4417105B2 (en) Multistage process for sulfur removal from transportation fuel blending components
JPS6337155B2 (en)
CN101747129A (en) Method for producing light olefins through catalytic conversion
CN113717754B (en) Catalytic cracking process for producing high aromatic hydrocarbon oil and high yield liquefied gas
US4256567A (en) Treatment of petroleum stocks containing metals
US5536391A (en) Production of clean distillate fuels from heavy cycle oils
EP2716735A1 (en) Method for producing monocylic aromatic hydrocarbons
CN1137968C (en) Two-stage catalytic cracking process for hydrocarbon oil
US20030111388A1 (en) Process for catalytic upgrading light petroleum hydrocarbons accompanied by low temperature regenerating the catalyst
US4915820A (en) Removal of coke and metals from carbo-metallic oils
TWI418619B (en) A combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils
JPH0245674B2 (en)
CN113897220B (en) High aromatic hydrocarbon oil material and preparation method and application thereof
US3974063A (en) Denitrogenating and upgrading of high nitrogen containing hydrocarbon stocks with low molecular weight carbon-hydrogen fragment contributors
CN108611123A (en) A kind of method of catalytic cracking diesel oil and the method for processing poor ignition quality fuel
JPH0465117B2 (en)
EP0125709B1 (en) A process for the production of low-asphaltenes hydrocarbon mixtures
CN113897216A (en) Catalytic cracking method and system