JPH0245485B2 - ROZAI - Google Patents

ROZAI

Info

Publication number
JPH0245485B2
JPH0245485B2 JP19507382A JP19507382A JPH0245485B2 JP H0245485 B2 JPH0245485 B2 JP H0245485B2 JP 19507382 A JP19507382 A JP 19507382A JP 19507382 A JP19507382 A JP 19507382A JP H0245485 B2 JPH0245485 B2 JP H0245485B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber density
thickness
folded
filter element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19507382A
Other languages
Japanese (ja)
Other versions
JPS5982919A (en
Inventor
Yatsuhiro Tani
Takao Kawasaki
Tsuyoshi Matsunaga
Susumu Oomori
Hideki Komagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd, NipponDenso Co Ltd filed Critical Toyobo Co Ltd
Priority to JP19507382A priority Critical patent/JPH0245485B2/en
Publication of JPS5982919A publication Critical patent/JPS5982919A/en
Publication of JPH0245485B2 publication Critical patent/JPH0245485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • B01D46/522Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material with specific folds, e.g. having different lengths

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエアフイルターエレメント用材、特
に、繊維密度勾配型不織布製フイルターエレメン
トを形成せしめるために特殊な構造特徴を具備せ
しめた材に関するものである。 従来、繊維密度勾配型不織布のフイルターエレ
メントは厚さ方向に繊維密度勾配を有する不織布
をフイルターエレメントに収納される材の過
面積を大きくし、粉塵保持量を高めるために、ひ
だ折りして折畳むことにより形成することが行な
われている。かかるひだ折り加工の方法としては
不織布に機械的な圧力ですじを付けその部分を折
り目とする方法や、不織布の厚さの半分程度の幅
の狭いすじを熱圧加工で付けその部分を折り目と
する方法がとられているが、材の有効面積の確
保という点からすれば何れも満足すべき効果が得
られていないのが現状である。 即ち、第2図および第3図はかかる従来法によ
り形成された不織布材の典型例の略断面図であ
るが、これらの図より明らかな如く不織布1を折
り曲げて形成した材においていずれも山ひだの
谷部2が詰つた状態になつたり、山部3の周辺が
圧縮変形を受けたりすぬのみならず、ダーテイサ
イド4やクリーンサイド5の空間の分配が不適正
で、クリーンサイド5が極端に狭くなるなど不織
布材の過面の有効な確保という点では決して
十分なものではなく、ましてやエレメント当りの
粉塵保持量は満足のゆくものではなかつた。この
ように不織布材のひだ折り形状が不十分である
理由は不織布材の厚さが大きいことや繊維密度
勾配のためにフイルターエレメントのクリーンサ
イドの層が高剛性でダーテイサイドの層が低剛性
であるという繊維密度勾配型不織布材の本来の
性質によるためであつた。 本発明は在来技術におけるこれらの欠点を解消
すべくなされたものであり、エレメントあたりの
粉塵保持量が大きいひだ折り形状をもつ折畳み構
造のフイルターエレメントの形成を可能ならしめ
る材を提供するものである。 即ち、本発明は繊維密度が表面から裏面へ漸次
増加している繊維密度勾配型不織布の表面側に、
該不織布の長さ方向と直交する方向に該不織布の
厚みの1.5〜3.0倍の幅を有する融着凹部Aおよび
該不織布の厚みの少なくとも0.3倍の幅を有する
融着凹部Bを交互に一定の間隔をおいて形成せし
め、該融着凹部A,Bを折り目にして折畳み可能
になした材に関するものである。 以下本発明と図面を参照して更に詳細に説明す
るに本発明にかかる材1は繊維密度が表面(ダ
ーテイサイドの面)から裏面(クリーンサイドの
面)わ漸次増加している繊維密度勾配型の縦長の
不織布をもつて構成される。この不織布は熱可塑
性合成樹脂繊維またはそれを含有する繊維材料か
らなるものである。また繊維密度勾配は表面(流
入側、即ちダーテイサイドの面)の層で繊維密度
が小さく裏面(流出側、即ちクリーンサイドの
面)の層で繊維密度が大きいことを意味し、この
勾配は段階的変化、連続的変化の何れであつても
よい。この不織布の厚さは少なくとも1mm、好ま
しくは2乃至5mmである。 紙などの均質な繊維密度の材の場合、機械
的な圧力によりすじを付け、後にその部分を折り
目にしてひだ折り加工すると山ひだは湾曲するこ
となく直線的にジグザグ形に折り畳みができるの
に対し、繊維密度勾配型不織布材では、繊維密
度の大きいクリーンサイドの層を内側にして折畳
む場合繊維密度の大きい層は鋭角に折れ、繊維密
度の小さいダーテイサイドの層は第2図に示した
如く変形を受け材本来の繊維密度が損われ、ま
た、繊維密度の小さいダーテイサイドの層を内側
にして折畳み場合繊維密度の大きい層は折れるこ
となく繊維密度の小さい層を包み込むようにU字
形に曲がることになり、山ひだは湾曲した形状を
呈する。かかる形状の折畳み構造の場合には材
の過面が有効に働かないためにエレメント当り
の粉塵保持量は小さくなつてしまう。 本発明は繊維密度勾配型不織布を用いながら上
記の欠点のない折畳み形状を可能ならしめるため
不織布の表面側に特定の凹部を形成せしめたもの
である。即ち第4図に示す如く本発明の材1に
は繊維密度勾配型の縦長の不織布の表面側(繊維
密度の小さい側)に該不織布の長さ方向と直交す
る方向に該不織布の厚みの1.5〜3.0倍の幅を有す
る融着凹部Aおよび該不織布の厚みの少なくとも
0.3倍(好ましくは0.5〜2.0倍)の幅を有する融着
凹部Bが交互に一定の間隔をおいて形成されてい
る。本発明においてはこれら凹部の重要な要件と
なるものであり、これによつてこの材を折畳ん
でフイルターエレメントとした場合、エレメント
容積あたりの粉塵保持量が最大限に発揮できるよ
うになるのである。なお、この材を折畳んでフ
イルターエレメントとした場合凹部Aは山ひだの
谷部に対応し、凹部Bは山ひだの山部に対応する
ようになる。 かかる融着凹部の深さは不織布の厚みの40%以
下、好ましくは10乃至30%とする。 このような融着凹部は不織布の表面(ダーテイ
サイドの面)に対し熱圧加工、超音波ウエルダー
加工、高周波ウエルダー加工などの熱圧融着加工
を施すことにより形成させることができる。 また、これらの融着凹部の各々は第4図および
第5図aに示す如く一本の溝の形になるように形
成せしめるのが普通であるが、場合によつては第
5図b,c,dに示す如く融着加工部6と非融着
加工部7が混在するパターンにすることも可能で
ある。 上記のような融着加工によつて凹部の底部およ
びそれに隣接する繊維密度の小さい繊維層部が繊
維密度の大きい繊維層部の側にフイルム状に固着
されるようになる。この現象と前述の凹部の特定
の幅とが相まつて、本発明の材を凹部A,Bに
沿つて交互にひだ折りすると第1図に示す如く谷
部および山部が湾曲することなく直線的にジグザ
グ形に折畳むことができるようになり、かくして
理想的な形態のフイルターエレメントがえられる
のである。 かくしてえられるフイルターエレメントはひだ
折り形状をもつ折畳み構造を有するので従来の折
畳み構造のフイルターエレメントと比較して、同
じ不織布を用いても、エレメント当りの粉塵保持
量は格段に大きくなる。このようにエレメント当
りの粉塵保持量が大きくなる理由は材の山ひだ
の全面積に比べてわずかな面積(融着加工された
山ひだの谷部と山部のみ)だけが材として有効
に働かないだけでそれ以外の部分は繊維密度勾配
型不織布のもつ本来の過性能を発揮することが
できるからであり、従来のこの種材にみられる
ような山ひだの谷部と山部の周辺の過性能の低
下や、山ひだが重なつたりするようなことが起ら
ないからである。 以下、本発明を実施例により、具体的に説明す
る。 目付が300g/m2で厚さが3.0mmのポリエステルと
レーヨンの繊維からなる三層積層の繊維型密度勾
配型不織布の表面部(繊維密度の小さい側)に表
1に示す如く融着凹部A(材の山ひだの谷部に
相当する)および融着凹部B(材の山ひだの山
部に相当する)を幅を種々変えて35mmの一定間隔
で超音波ウエルダーによる融着加工により形成せ
しめた。なお何れの場合も凹部の深さは0.5mmと
した。かくして得られた材を凹部に沿つて折畳
み幅170mm、奥行40mm、高さ50mmの枠に収納し周
囲を接着剤で固着し(なお山数は表1に示すとお
りであつた)、実施例1、2および比較例1、2、
3、4のフイルターエレメントを作成した。これ
らのフイルターエレメントを用い試験風量1cm3
分、粉塵濃度1g/m2(JIS−Z−8901による8種
試験用ダストを使用)、増加抵抗300mmH2Oを寿
命として粉塵試験を行なつた。結果を表1に示し
た。この結果から明らかなように清浄効率は実施
例、比較例ともほとんど差がないが、粉塵保持量
は本発明の実施例1、2はいずれの比較例よりも
格段に大きかつた。
TECHNICAL FIELD This invention relates to air filter element materials, and more particularly to materials that have special structural features to form gradient fiber density nonwoven filter elements. Conventionally, a filter element made of a nonwoven fabric with a fiber density gradient type has a nonwoven fabric with a fiber density gradient in the thickness direction, which is folded by pleating in order to increase the overarea of the material stored in the filter element and increase the amount of dust held. Formation is performed by Such pleating processing methods include creating streaks on the non-woven fabric using mechanical pressure and using that area as a crease, or creating narrow streaks about half the thickness of the non-woven fabric using heat-pressure processing and using that area as a crease. However, the current situation is that none of these methods has achieved satisfactory results in terms of securing the effective area of the material. That is, FIGS. 2 and 3 are schematic cross-sectional views of typical examples of nonwoven fabric materials formed by such conventional methods, and as is clear from these figures, the materials formed by folding the nonwoven fabric 1 do not have mountain folds. Not only can the valleys 2 become clogged and the periphery of the peaks 3 undergo compression deformation, but also the distribution of space on the dirty side 4 and clean side 5 is inappropriate, causing the clean side 5 to become extremely crowded. It was never sufficient in terms of effectively securing the surface area of the nonwoven fabric material, such as narrowing, and even more so, the amount of dust retained per element was not satisfactory. The reason why the pleat shape of the nonwoven material is insufficient is that the thickness of the nonwoven material is large, and due to the fiber density gradient, the layer on the clean side of the filter element has high rigidity and the layer on the dirty side has low rigidity. This was due to the inherent properties of the fiber density gradient type nonwoven fabric material. The present invention has been made in order to eliminate these drawbacks in the conventional technology, and provides a material that enables the formation of a folded filter element having a pleated shape that can hold a large amount of dust per element. be. That is, in the present invention, on the front side of a fiber density gradient type nonwoven fabric in which the fiber density gradually increases from the front side to the back side,
Welding recesses A having a width of 1.5 to 3.0 times the thickness of the nonwoven fabric and welding recesses B having a width of at least 0.3 times the thickness of the nonwoven fabric are alternately formed at a constant rate in a direction perpendicular to the length direction of the nonwoven fabric. This relates to a material that is formed at intervals and is foldable by folding the fused recesses A and B. The material 1 according to the present invention will be described in more detail below with reference to the present invention and the drawings. Composed of vertically long non-woven fabric. This nonwoven fabric is made of thermoplastic synthetic resin fibers or a fiber material containing the same. In addition, the fiber density gradient means that the fiber density is low in the layer on the front side (the inlet side, i.e., the dirty side) and high in the layer on the back side (the outflow side, i.e., the clean side), and this gradient is gradual. It may be either a change or a continuous change. The thickness of this non-woven fabric is at least 1 mm, preferably 2 to 5 mm. In the case of a material with a homogeneous fiber density, such as paper, if the material is made with mechanical pressure and then folded into creases, the material can be folded straight into a zigzag shape without any curvature. On the other hand, when folding a fiber density gradient type nonwoven fabric with the clean side layer with a high fiber density inside, the layer with a high fiber density will fold at an acute angle, and the dirty side layer with a low fiber density will fold as shown in Figure 2. When deformed, the original fiber density of the material is lost, and when folded with the dirty side layer with a lower fiber density inside, the layer with a higher fiber density does not break and bends into a U-shape to wrap around the layer with a lower fiber density. The mountain folds take on a curved shape. In the case of a folding structure having such a shape, the surface of the material does not work effectively, so the amount of dust held per element becomes small. The present invention uses a fiber density gradient type nonwoven fabric and forms specific recesses on the surface side of the nonwoven fabric in order to enable a folded shape that does not have the above-mentioned drawbacks. That is, as shown in FIG. 4, in the material 1 of the present invention, a fiber density gradient type vertically elongated nonwoven fabric is coated with 1.5 of the thickness of the nonwoven fabric in a direction perpendicular to the length direction of the nonwoven fabric on the surface side (lower fiber density side). A fusion recess A having a width of ~3.0 times and at least the thickness of the nonwoven fabric
Fusion recesses B having a width of 0.3 times (preferably 0.5 to 2.0 times) are formed alternately at regular intervals. In the present invention, these recesses are an important requirement, so that when this material is folded to form a filter element, the amount of dust held per element volume can be maximized. . Note that when this material is folded to form a filter element, the recesses A will correspond to the valleys of the mountain folds, and the recesses B will correspond to the peaks of the mountain folds. The depth of such a welding recess is 40% or less, preferably 10 to 30%, of the thickness of the nonwoven fabric. Such a welding recess can be formed by subjecting the surface (dirty side surface) of the nonwoven fabric to a heat-pressure welding process such as a heat-pressure process, an ultrasonic welder process, a high-frequency welder process, or the like. Further, each of these welding recesses is normally formed in the shape of a single groove as shown in FIGS. 4 and 5a, but in some cases, as shown in FIGS. It is also possible to form a pattern in which the fused portions 6 and the non-fused portions 7 coexist as shown in c and d. By the above-described fusing process, the bottom of the recess and the adjacent fiber layer portion with a low fiber density are fixed to the side of the fiber layer portion with a high fiber density in the form of a film. This phenomenon combined with the above-mentioned specific width of the recesses means that when the material of the present invention is folded alternately along the recesses A and B, the troughs and peaks are straight without being curved, as shown in Figure 1. This allows the filter element to be folded into a zigzag shape, thus creating a filter element with an ideal shape. Since the filter element obtained in this way has a folded structure with a pleated shape, the amount of dust retained per element is significantly larger than that of a conventional filter element with a folded structure, even if the same nonwoven fabric is used. The reason why the amount of dust retained per element is large is that only a small area (only the valleys and peaks of the welded mountain folds) works effectively as a material compared to the total area of the mountain folds of the material. This is because the original excessive performance of the fiber density gradient type nonwoven fabric can be demonstrated in other parts, and the areas around the valleys and peaks of the mountain folds, which are seen in conventional seed materials, are not affected. This is because excessive performance deterioration and overlapping of mountain folds do not occur. Hereinafter, the present invention will be specifically explained with reference to Examples. As shown in Table 1, there is a fusion recess A on the surface (lower fiber density side) of a three-layer laminated fiber type density gradient nonwoven fabric made of polyester and rayon fibers with a basis weight of 300 g/m 2 and a thickness of 3.0 mm. (corresponding to the valleys of the mountain folds of the material) and fusion concave portions B (corresponding to the peaks of the mountain folds of the material) were formed with various widths at regular intervals of 35 mm by fusion processing using an ultrasonic welder. Ta. In both cases, the depth of the recess was 0.5 mm. The thus obtained material was folded along the concave portion and stored in a frame with a width of 170 mm, depth of 40 mm, and height of 50 mm, and the surrounding area was fixed with adhesive (the number of threads was as shown in Table 1). Example 1 , 2 and Comparative Examples 1 and 2,
I created 3 and 4 filter elements. Using these filter elements, the test air volume was 1 cm 3 /
A dust test was conducted with a dust concentration of 1 g/m 2 (using the 8th class test dust according to JIS-Z-8901) and a lifetime of increased resistance of 300 mmH 2 O. The results are shown in Table 1. As is clear from these results, there is almost no difference in cleaning efficiency between the Examples and the Comparative Examples, but the amount of dust retained in Examples 1 and 2 of the present invention was significantly larger than in any of the Comparative Examples.

【表】 次に上述の実施例1および比較例1における山
数のみを表2に示す如く変えて、実施例3、4お
よび比較例5、6のフイルターエレメントを作成
し、同一条件で粉塵試験を行なつた。参考のため
融着凹部を形成せしめることなく手作業でひだ折
り加工したフイルターエレメントについても粉塵
試験を行なつた。これらの結果を表2に示した。
この結果から、山数を変えても本発明の優位性は
変わらず、また手作業で折り加工したフイルター
エレメントである比較例7も本発明実施例よりは
るかに劣ることが認められた。
[Table] Next, filter elements of Examples 3 and 4 and Comparative Examples 5 and 6 were prepared by changing only the number of threads in Example 1 and Comparative Example 1 as shown in Table 2, and a dust test was conducted under the same conditions. I did this. For reference, a dust test was also conducted on a filter element that was manually pleated without forming any fused recesses. These results are shown in Table 2.
From this result, it was recognized that the superiority of the present invention did not change even if the number of threads was changed, and that Comparative Example 7, which was a manually folded filter element, was also far inferior to the Examples of the present invention.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様の材を用いて形
成したフイルターエレメントの斜視図、第2およ
び3図はそれぞれ従来の方法によりひだ折り加工
して形成した材の断面図、第4図は本発明の
材の一実施例の斜視図、第5図a,b,cおよび
dはそれぞれ本発明の材における融着加工部の
パターンを示す材の部分的略平面図である。 1……材、2……谷部、3……山部、4……
ダーテイサイドの空間、5……クリーンサイドの
空間、6……融着加工部、7……非融着加工部、
A……融着凹部、B……融着凹部。
FIG. 1 is a perspective view of a filter element formed using a material according to an embodiment of the present invention, FIGS. 2 and 3 are sectional views of a material formed by pleating by a conventional method, and FIG. A perspective view of an embodiment of the material of the present invention, and FIGS. 5a, b, c, and d are partial schematic plan views of the material showing the patterns of the fused portions in the material of the present invention, respectively. 1... Material, 2... Valley part, 3... Mountain part, 4...
Dirty side space, 5... Clean side space, 6... Fusion processed part, 7... Non-fused processed part,
A... Fusion recess, B... Fusion recess.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維密度が表面から裏面へ漸次増加している
繊維密度勾配型不織布の表面側に、該不織布の長
さ方向と直交する方向に該不織布の厚みの1.5〜
3.0倍の幅を有する融着凹部Aおよび該不織布の
厚みの少なくとも0.3倍の幅を有する融着凹部B
を交互に一定の間隔をおいて形成せしめ、該融着
部A,Bを折り目にして折畳み可能になした
材。
1. On the front side of a fiber density gradient type nonwoven fabric in which the fiber density gradually increases from the front side to the back side, 1.5 to 1.5 of the thickness of the nonwoven fabric in a direction perpendicular to the length direction of the nonwoven fabric.
Welding recess A having a width of 3.0 times and welding recess B having a width of at least 0.3 times the thickness of the nonwoven fabric.
A material made of sheets formed alternately at regular intervals and made foldable by folding the fused parts A and B.
JP19507382A 1982-11-05 1982-11-05 ROZAI Expired - Lifetime JPH0245485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19507382A JPH0245485B2 (en) 1982-11-05 1982-11-05 ROZAI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19507382A JPH0245485B2 (en) 1982-11-05 1982-11-05 ROZAI

Publications (2)

Publication Number Publication Date
JPS5982919A JPS5982919A (en) 1984-05-14
JPH0245485B2 true JPH0245485B2 (en) 1990-10-09

Family

ID=16335099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19507382A Expired - Lifetime JPH0245485B2 (en) 1982-11-05 1982-11-05 ROZAI

Country Status (1)

Country Link
JP (1) JPH0245485B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214709A (en) * 1988-04-18 1990-01-18 Cambridge Filter Corp Formation of air filter medium
ZA978890B (en) * 1996-10-18 1998-08-27 Mann & Hummel Filter Apparatus for folding material webs
DE102006027463A1 (en) 2006-06-12 2008-01-24 Helsa-Automotive Gmbh & Co. Kg Filter device and method for producing a filter device
MX2009008242A (en) 2007-02-02 2009-08-12 Donaldson Co Inc Air filtration media pack, filter element, air filtration media, and methods.
US8545589B2 (en) 2007-06-26 2013-10-01 Donaldson Company, Inc. Filtration media pack, filter element, and methods
MX2010008530A (en) 2008-02-04 2010-08-30 Donaldson Co Inc Method and apparatus for forming fluted filtration media.
WO2009143674A1 (en) * 2008-05-30 2009-12-03 诺维克贸易2008有限责任公司 Mesh fabric and its manufacturing method
BRPI0915931B1 (en) 2008-07-25 2020-03-31 Donaldson Company, Inc. PACKAGES OF PREGUE FILTERING AGENTS
JP5711230B2 (en) 2009-08-03 2015-04-30 ドナルドソン カンパニー,インコーポレイティド Method and apparatus for forming fluted filtration media having tapered flutes
EP2332630A1 (en) 2009-11-18 2011-06-15 Covidien AG Filter for a breathing circuit
CN105536383B (en) 2010-01-25 2019-12-24 唐纳森公司 Pleated filter media with wedge shaped flutes

Also Published As

Publication number Publication date
JPS5982919A (en) 1984-05-14

Similar Documents

Publication Publication Date Title
US5810898A (en) Nestable pleated filter
US6329308B1 (en) Disposable wipe-off article
AU2006337055B2 (en) Cleaning article, method of fluffing cleaning article, and method of producing cleaning article
KR970002181B1 (en) Filter cartridge
US5868889A (en) Process for manufacturing a fluid filter
CA2048086C (en) A filter
US20030089092A1 (en) Accordion-pleated filter material, method of making same, and filter element incorporating same
JPH0245485B2 (en) ROZAI
EP0528682A1 (en) Filter and a device for manufaturing the same
WO1993012862A1 (en) Filter element for filtering fluids
JP3203760B2 (en) Molded filter medium and method for producing the same
JPS5939320A (en) Filter element
EP1450927B1 (en) A method for manufacturing a filter, and a filter
JPH0624713U (en) Air filter
GB2294649A (en) Filter Element
JP3569770B2 (en) Filter media and unit filters
JPH09313856A (en) Filter
JP4063009B2 (en) Folding filter and manufacturing method thereof
JP2002361016A (en) Filter medium for air filter
JP2575730Y2 (en) Filter material
JP2002370007A (en) Filter medium for air filter
JP3819405B2 (en) Composite sheet and manufacturing method thereof
GB2274603A (en) Filter element
JP2575732Y2 (en) Filter material
JPH10511597A (en) Filter element