JPH0245484B2 - ROZAI - Google Patents

ROZAI

Info

Publication number
JPH0245484B2
JPH0245484B2 JP18965382A JP18965382A JPH0245484B2 JP H0245484 B2 JPH0245484 B2 JP H0245484B2 JP 18965382 A JP18965382 A JP 18965382A JP 18965382 A JP18965382 A JP 18965382A JP H0245484 B2 JPH0245484 B2 JP H0245484B2
Authority
JP
Japan
Prior art keywords
fibers
denier
dust
nonwoven fabric
packing density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18965382A
Other languages
Japanese (ja)
Other versions
JPS5980313A (en
Inventor
Yatsuhiro Tani
Takao Kawasaki
Tsuyoshi Matsunaga
Susumu Oomori
Hideki Komagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd, NipponDenso Co Ltd filed Critical Toyobo Co Ltd
Priority to JP18965382A priority Critical patent/JPH0245484B2/en
Publication of JPS5980313A publication Critical patent/JPS5980313A/en
Publication of JPH0245484B2 publication Critical patent/JPH0245484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改良された材、特に塵埃の補集効率
が高く、かつ使用寿命の長い新規なエアフイルタ
ー用材に関するものである。 近年、道路環境は高速道路や舗装道路の普及に
ともない未舗装道路での砂煙に代表されるような
大粒径の塵埃が減少し、これに代つて自動車から
排出される排ガスに含まれる炭素塵や重油ボイラ
ーから出る煤などを成分とする小粒径の塵埃が増
える傾向にある。こうした状況にあつて従来から
使用されている例えば内燃機関用材である積層
型不織布材は大粒径の塵埃に対しては十分な使
用寿命を示すものの小粒径の塵埃に対しては極め
て短い使用寿命しか示さないという欠点があつ
た。この理由は積層型不織布材は小粒径の塵埃
の捕集が材の捕集効率を決めるところの最下流
側の最も目の細かい層で表面過となり易く、わ
ずかな塵埃量で目詰まりが起こりケーク層が成長
し使用寿命が比較的短時間でつきることによるた
めであり、かりに目詰まり発生を遅らせるように
材の構成を変えたとしても、材の塵埃捕集効
果が著しく低下するという問題があつた。 本発明者等はかかる問題を解決すべく鋭意検討
した結果、塵埃の捕集効果が高く、かつ大粒径を
小粒径のいずれの塵埃に対しても大きい塵埃保持
量を示し、しかも使用寿命の長い材を開発し本
発明に到つたものである。 すなわち、本発明は、0.5デニール乃至2デニ
ールの繊度を有する細い繊維35〜70重量%、3デ
ニール以上の繊度を有する太い繊維10〜62重量%
および融着用繊維3〜20重量%の繊維配合比より
なり、かつ厚さ方向に連続的充填密度勾配を有す
る不織布層と、3デニール以上の繊度を有する太
い繊維50〜90重量%、0.5デニール乃至2デニー
ルの繊度を有する細い繊維0〜20重量%および融
着用繊維10〜40重量%の繊維配合比よりなり、か
つ厚さ方向の充填密度が実質的に均一な不織布層
とを相互に重合せしめたことを特徴とする材を
提供するものである。 本発明の材は上述の如く連続充填密度勾配型
不織布層と均一充填密度型不織布層の二層を有す
る。連続充填密度勾配型不織布層とは層の厚さ方
向でその充填密度が空気の下流側から上流側にか
けて高密度から低密度へと連続勾配(好ましくは
おおよそ指数函数的な連続勾配)を層の全厚さ域
あるいは一部の厚さ域において有している不織布
層である。この層は適当な方法、例えば均質な繊
維ウエブの面に垂直に粒子状接着剤を一方向から
浸透させ粒子状接着剤の流入側に富に、流出側に
貧に付着させたのち熱圧着し、次いで繊維の圧縮
弾性回復をはかることにより得られる。かかる構
造の不織布層は塵埃を深層過するため目詰まり
が起こりにくい割には、高い捕集効率を示す材
となりうるのである。一方、均一充填密度型不織
布層とは層厚さ方向でその充填密度がおおよそ均
一である不織布層である。 本発明はかかる連続充填密度勾配型不織布層の
上(即ち上流側)に均一充填密度型不織布層を重
合したことを特徴とするものであり、かくするこ
とにより連続充填密度勾配型不織布層の単層では
到底得ることのできない使用寿命の伸長が可能と
なり、加えて従来の積層型不織布材の捕集効率
より格段に高い捕集効率を発揮するというこれま
でにない顕著な効果を得るに到つたのである。 本発明において連続充填密度勾配型不織布層を
構成する繊維のうち0.5デニールから2デニール
の繊度である細い繊維は主として材の塵埃捕集
効率を高める効果を発揮し、3デニール以上(好
ましくは3〜15デニール)の繊度である太い繊維
は連続充填密度勾配を発現させるに当り繊維ウエ
ブの圧縮弾性回復をはかるために必要であり、ま
た融着繊維は材の層内剥離を防止し形態を保持
するのに必要な成分である。 本発明において均一充填密度型不織布層を構成
する繊維は3デニール以上(好ましくは3〜15デ
ニール)の繊度である太い繊維を主体とするもの
であり、かかる太い繊維を使用する理由はこの層
の繊維充填密度を小さく維持し低圧損で塵埃を深
層過により保持できる不織布層を形成させるた
めである。なお繊維充填密度を制御するために一
部0.5〜2デニールの細い繊維を混合することも
できる。また融着繊維は不織布層の層内剥離防止
および繊維の毛羽立ち防止のために必要である。 本発明において材を構成する主な繊維はこの
ように細い繊維と太い繊維であるが、繊維の材料
としてはポリエステル、ポリアミド、ポリアクリ
ロニトリル、ポリプロピレン、ポリ弗化ビニリデ
ン等の合成繊維やレーヨン、ビスコース、アセテ
ート等の半合成繊維、炭素、金属、ガラス等の無
機繊維などが使用できる。 本発明における材を構成する不織布層に用い
られる融着繊維は材の主構成繊維より融点が低
く、材製造の熱圧着時に主構成繊維と融着しう
るものであり、繊度は1デニールから6デニール
の範囲が好ましく、繊維材料としては共重合ポリ
エステル、共重合ポリアミド、ポリエチレン等が
挙げられる。 なお、本発明において用いられる各種の繊維の
繊維長は150mm以下、好ましくは30〜100mmであ
る。 本発明における連続充填密度勾配型不織布層は
好ましくは、前述の如く、粒子状接着剤を均一な
繊維ウエブの面に垂直にかつ厚さ方向に分布濃度
勾配が生じるように浸透させたのち熱圧着し、次
いで繊維の圧縮弾性回復をはかることにより製造
されるが、この場合重要な点は粒子状接着剤(平
均粒径10乃至200μのものが好ましい)をその流
入側から流出側にかけて、所望の付着量濃度勾
配、好ましくはおおよそ指数函数的な勾配のもと
に分布させることと、繊維の圧縮弾性回復がなく
ならない程度の熱圧着操作を選ぶことであり、こ
れらによつて繊維の圧縮弾性回復量が粒子状接着
剤の付着量の富層程小さく、貧層程大きくなるこ
とにより、繊維の充填密度の連続勾配が発現する
ことになる。 本発明における連続充填密度勾配型不織布層は
空気の下流側の最大充填密度が0.1〜0.2cm3/cm3
上流側にいくにしたがつて0.03〜0.1cm3/cm3の最小
充填密度に指数函数的変化で近づく勾配を有する
のが好ましい。 本発明における均一充填密度型不織布層の充填
密度は塵埃を深層過により低圧損で保持するた
めに0.02〜0.06cm3/cm3とするのが好ましい。 また一般に、連続充填密度勾配型不織布層の厚
さは0.3〜2mm、均一充填密度型不織布層の厚さ
は1〜5mm、両者を重合してなる材の厚さは約
1.5〜7mmである。 なお、本発明の材を構成する繊維の断面形状
は丸型、三角型、星型、Y型、U型などが挙げら
れる。 また、前述の連続充填密度勾配型不織布層を製
造するに際して使用する粒子状接着剤には共重合
ポリエステル、共重合ナイロン、ポリエチレン等
の熱可塑性樹脂、フエノール、エポキシ、メラミ
ン、アルキツド等の熱硬化性樹脂、合成ゴム、天
然ゴム、天然ロウや松脂等が挙げられその形態と
しては200μ以下の粒子状で液体粒子、固体粉末
などがある。 本発明の材においては所望により、例えば
材を高い圧力損失が生じる状態まで使用する場合
には材の曲げ剛性を高めるために連続充填密度
勾配型不織布層の下に多孔性シートを重合させる
こともできる。このような材と重合する多孔性
シートとしては乾式不織布、湿式不織布、化繊
紙、寒冷紗、網等が挙げられる。 前述のように本発明の材によるときは大粒径
の塵埃のみならず小粒径の塵埃も長期にわたり効
果的に除塵しうる。なお砂煙で代表されるような
大粒径の塵埃とはJIS・Z・8901の3種試験用ダ
ストや8種試験用ダストが挙げられ、平均粒子径
は8μのものである。また、自動車や重油ボイラ
ー等から排出される小粒径の塵埃とは制御された
条件下で燃焼させた軽油燃焼排ガス中の炭素塵が
挙げられ、この炭素塵の粒径分布はロイコ社・粒
子計測器218により個数百分率の分析値で5μ
レンジが0.05〜0.1%、3μレンジが0.3〜2%、2μ
レンジが5〜11%、1μレンジが9〜22%、0.5μレ
ンジが65〜86%である。 以下本発明を具体例について説明する。 実施例 1 3デニールのポリエチレン/ポリプロピレン融
着繊維を25%含み6デニールのポリエステル繊維
からなる繊維量100g/m2の均一充填密度型不織布
層用繊維ウエブ(下層)と同じ融着繊維を5%含
む1デニールと6デニールのポリエステル繊維の
比が1対1からなる繊維量120g/m2の連続充填密
度勾配型不織布層用繊維ウエブ(上層)の二層か
らなるウエブに上層側からフエノール樹脂の初期
縮合物粉末を1m2当り50g降らせて上層のウエブ
に樹脂粉末を浸透させ、付着させこのウエブ積層
物を130℃、1分間、1.5mmの間隔に固定した熱板
間で熱処理した後取出し、2.2mm厚さの実施例1
の材を得た。 比較例1として、実施例1と同様の2層ウエブ
にフエノール樹脂の初期縮合物粉末を付着させる
ことなく、実施例1と同様の熱処理をして、2.4
mm厚さの比較例1の材を得た。 比較例2としては、市販の内燃機関用のエアク
リーナの材である積層型不織布材を供した。
この材は繊度の異なる均一繊維ウエブの三層を
積層し、合成樹脂のエマルジヨン水溶液に浸漬し
て、次いで乾燥して得られる均一充填密度型不織
布層が空気の流入側から流出側にかけて粗な密度
から密な密度へと段階的に変化した目付が270g/
m2の積層型不織布材である。 これら三種類の材について、風速0.3m/秒
で増加抵抗300mmH2Oを使用寿命として、JIS8種
試験用ダストによる初期捕集効率とダスト保持量
および軽油排ガス中の炭素塵によるダスト保持量
をそれぞれ装定した。表1にそれらの結果を示し
た。接着剤の付着してない比較例1の材は両ダ
ストに対するダスト保持量は大きいが、初期捕集
効率がかなり低く実用に耐えるのではなかつた。
連続充填密度勾配を付与した不織布層を有する実
施例1の材はこれに反して、初期捕集効率が著
しく高いにもかかわらず、ダスト保持量も大であ
つた。市販の材である比較例2ではJIS8種ダス
ト保持量が実施例1と同等であるが、炭素塵保持
量が極めて低く、かつ初期捕集効率も実施例1よ
り劣つていた。
The present invention relates to an improved material, particularly a new material for air filters that has high dust collection efficiency and a long service life. In recent years, with the spread of expressways and paved roads, the road environment has seen a decline in large-sized dust such as dust on unpaved roads, and carbon dust contained in exhaust gas emitted from automobiles has been replaced. There is a tendency for small-sized dust, which consists of soot from boilers and heavy oil boilers, to increase. Under these circumstances, laminated non-woven fabric materials that have been traditionally used for internal combustion engines, for example, have a sufficient service life against large-sized dust particles, but their service life is extremely short when used against small-sized dust particles. The drawback was that it only showed the lifespan. The reason for this is that laminated nonwoven fabric materials tend to have surface roughness in the most downstream layer, where the collection efficiency of the material is determined by the collection of small-sized dust particles, and clogging occurs with a small amount of dust. This is because the cake layer grows and the service life is reached in a relatively short period of time.Even if the composition of the material is changed to delay the occurrence of clogging, the dust-trapping effect of the material will be significantly reduced. It was hot. As a result of intensive studies to solve this problem, the inventors of the present invention have found that they have a high dust collection effect, a large amount of dust retention for both large and small particle sizes, and a long service life. The present invention was achieved by developing a long material. That is, the present invention uses 35 to 70% by weight of thin fibers having a fineness of 0.5 denier to 2 denier, and 10 to 62% by weight of thick fibers having a fineness of 3 denier or more.
and a nonwoven fabric layer consisting of a fiber blending ratio of 3 to 20% by weight of fusion fibers and having a continuous packing density gradient in the thickness direction, and 50 to 90% by weight of thick fibers having a fineness of 3 denier or more, 0.5 denier to A nonwoven fabric layer consisting of a fiber blending ratio of 0 to 20% by weight of thin fibers having a fineness of 2 denier and 10 to 40% by weight of fusion fibers and having a substantially uniform packing density in the thickness direction is mutually superposed. The present invention provides a material having the following characteristics. As mentioned above, the material of the present invention has two layers: a continuous packing density gradient nonwoven fabric layer and a uniform packing density nonwoven fabric layer. What is a continuous packing density gradient type nonwoven fabric layer? The packing density of the layer has a continuous gradient (preferably an approximately exponential continuous gradient) from high density to low density from the downstream side to the upstream side of the air in the thickness direction of the layer. This is a nonwoven fabric layer that has the entire thickness range or a part of the thickness range. This layer is formed by a suitable method, for example, by infiltrating a particulate adhesive perpendicularly to the surface of a homogeneous fiber web from one direction, depositing the particulate adhesive richly on the inflow side and sparsely on the outflow side, and then thermocompression bonding. , and then by measuring the compressive elasticity recovery of the fibers. A nonwoven fabric layer with such a structure allows dust to pass through deep layers, making it less likely to become clogged and yet exhibiting high collection efficiency. On the other hand, a uniform packing density type nonwoven fabric layer is a nonwoven fabric layer whose packing density is approximately uniform in the layer thickness direction. The present invention is characterized in that a uniform packing density nonwoven fabric layer is polymerized on top of the continuous packing density gradient nonwoven fabric layer (that is, on the upstream side). It has become possible to extend the service life, which could never be achieved with layers, and in addition, it has achieved the unprecedented effect of exhibiting a collection efficiency that is much higher than that of conventional laminated nonwoven fabric materials. It is. In the present invention, among the fibers constituting the continuous packed density gradient type nonwoven fabric layer, thin fibers with a fineness of 0.5 to 2 deniers mainly exhibit the effect of increasing the dust collection efficiency of the material, and are 3 deniers or more (preferably 3 to 2 deniers). Thick fibers with a fineness of 15 denier are necessary to recover the compressive elasticity of the fiber web in order to develop a continuous packing density gradient, and the fused fibers prevent interlayer separation of the material and maintain its shape. It is a necessary ingredient. In the present invention, the fibers constituting the uniform packing density nonwoven fabric layer are mainly thick fibers with a fineness of 3 deniers or more (preferably 3 to 15 deniers), and the reason for using such thick fibers is that this layer This is to form a nonwoven fabric layer that can maintain a low fiber packing density and retain dust through deep layer filtration with low pressure loss. Note that in order to control the fiber packing density, thin fibers of 0.5 to 2 deniers may be mixed in part. Further, the fused fibers are necessary to prevent interlayer peeling of the nonwoven fabric layer and to prevent the fibers from fuzzing. The main fibers constituting the material in the present invention are thin fibers and thick fibers as described above, but the fiber materials include synthetic fibers such as polyester, polyamide, polyacrylonitrile, polypropylene, polyvinylidene fluoride, rayon, and viscose. , semi-synthetic fibers such as acetate, inorganic fibers such as carbon, metal, glass, etc. can be used. The fused fibers used in the nonwoven fabric layer constituting the material in the present invention have a lower melting point than the main constituent fibers of the material, and can be fused with the main constituent fibers during thermocompression bonding during material production, and have a fineness of 1 denier to 6 denier. A denier range is preferred, and examples of the fiber material include copolyester polyester, copolyamide, polyethylene and the like. The fiber length of the various fibers used in the present invention is 150 mm or less, preferably 30 to 100 mm. The continuous packing density gradient type nonwoven fabric layer in the present invention is preferably formed by infiltrating a particulate adhesive perpendicularly to the surface of a uniform fiber web so as to create a distribution concentration gradient in the thickness direction, as described above, and then bonding by thermocompression. It is then manufactured by restoring the compressive elasticity of the fibers, but the important point in this case is that the particulate adhesive (preferably with an average particle size of 10 to 200 μm) is applied from the inflow side to the outflow side to form the desired shape. The two methods are to distribute the deposited amount according to a concentration gradient, preferably an approximately exponential gradient, and to select a thermocompression bonding operation that does not eliminate the compressive elastic recovery of the fibers. The amount becomes smaller as the amount of adhered particulate adhesive becomes richer and becomes larger as the amount becomes poorer, thereby creating a continuous gradient in the packing density of the fibers. The continuous packing density gradient type nonwoven fabric layer in the present invention has a maximum packing density of 0.1 to 0.2 cm 3 /cm 3 on the downstream side of air, and a minimum packing density of 0.03 to 0.1 cm 3 /cm 3 as it goes upstream. Preferably, it has a slope that approaches an exponential change. The packing density of the uniform packing density type nonwoven fabric layer in the present invention is preferably 0.02 to 0.06 cm 3 /cm 3 in order to retain dust with low pressure loss through deep layer filtration. In general, the thickness of the continuous packing density gradient type nonwoven fabric layer is 0.3 to 2 mm, the thickness of the uniform packing density type nonwoven fabric layer is 1 to 5 mm, and the thickness of the material obtained by polymerizing the two is approximately
It is 1.5 to 7 mm. The cross-sectional shapes of the fibers constituting the material of the present invention include round, triangular, star, Y-shaped, and U-shaped. In addition, the particulate adhesive used in manufacturing the above-mentioned continuous packing density gradient type nonwoven fabric layer includes thermoplastic resins such as copolymerized polyester, copolymerized nylon, and polyethylene, and thermosetting resins such as phenol, epoxy, melamine, and alkyd. Examples include resin, synthetic rubber, natural rubber, natural wax, and pine resin, and their forms include liquid particles, solid powder, etc. in the form of particles of 200 μm or less. In the material of the present invention, if desired, a porous sheet may be polymerized under the continuous packing density gradient nonwoven fabric layer in order to increase the bending rigidity of the material, for example, when the material is used to a state where a high pressure loss occurs. can. Porous sheets that can be polymerized with such materials include dry nonwoven fabrics, wet nonwoven fabrics, synthetic paper, cheesecloth, nets, and the like. As mentioned above, when using the material of the present invention, not only large particle size dust but also small particle size dust can be effectively removed over a long period of time. Note that large particle size dust such as sand smoke includes JIS Z 8901 Type 3 test dust and Type 8 test dust, which have an average particle size of 8μ. In addition, small particle size dust emitted from automobiles, heavy oil boilers, etc. includes carbon dust in light oil combustion exhaust gas that is combusted under controlled conditions, and the particle size distribution of this carbon dust is The analytical value of the number of pieces by the measuring device 218 is 5μ.
Range: 0.05-0.1%, 3μ range: 0.3-2%, 2μ
The range is 5-11%, the 1μ range is 9-22%, and the 0.5μ range is 65-86%. The present invention will be explained below using specific examples. Example 1 A uniform packing density type nonwoven fabric layer with a fiber content of 100 g/m 2 consisting of 6 denier polyester fibers containing 25% of 3 denier polyethylene/polypropylene fused fibers and 5% of the same fused fibers as the fiber web (lower layer). Phenol resin was applied from the upper layer side to a web consisting of two layers, a fiber web (upper layer) for a continuous packed density gradient type nonwoven fabric layer with a fiber amount of 120 g/m 2 in which the ratio of 1 denier and 6 denier polyester fibers was 1:1. 50 g of initial condensate powder per 1 m 2 was dropped to infiltrate and adhere the resin powder to the upper web layer, and the web laminate was heat-treated at 130°C for 1 minute between hot plates fixed at a spacing of 1.5 mm, and then taken out. Example 1 with 2.2mm thickness
The material was obtained. As Comparative Example 1, the same two-layer web as in Example 1 was subjected to the same heat treatment as in Example 1 without adhering the initial condensate powder of phenolic resin, and 2.4
A material of Comparative Example 1 with a thickness of mm was obtained. As Comparative Example 2, a laminated nonwoven fabric material, which is a commercially available air cleaner material for internal combustion engines, was provided.
This material is made by laminating three layers of uniform fiber webs with different finenesses, immersing them in an aqueous synthetic resin emulsion solution, and then drying them.The resulting uniform packing density nonwoven fabric layer has a coarse density from the air inflow side to the air outflow side. The basis weight changes gradually from to dense density to 270g/
It is a laminated non-woven fabric material of m2 . For these three types of materials, the initial collection efficiency and amount of dust retained using JIS class 8 test dust and the amount of retained dust due to carbon dust in light oil exhaust gas were determined, respectively, using a wind speed of 0.3 m/sec and an increased resistance of 300 mm H 2 O as the service life. I was equipped. Table 1 shows the results. The material of Comparative Example 1 to which no adhesive was attached had a large amount of dust retention for both types of dust, but the initial collection efficiency was quite low and was not suitable for practical use.
On the contrary, the material of Example 1, which had a nonwoven layer with a continuous packing density gradient, had a large amount of dust retained, although the initial collection efficiency was significantly high. In Comparative Example 2, which is a commercially available material, the amount of JIS class 8 dust retained was the same as that of Example 1, but the amount of carbon dust retained was extremely low, and the initial collection efficiency was also inferior to that of Example 1.

【表】 実施例 2および3 1.5デニールのポリエチレン/ポリプロピレン
融着繊維を25%含み、3デニールのY型断面形状
のポリエステル繊維からなる繊維量80g/m2の均
一充填密度型不織布層用繊維ウエブ(下層)、お
よび1.5デニールのポリエチレン/ポリプロピレ
ン融着繊維;1デニールおよび10デニールのポリ
エステル繊維の三者からなる繊維量100g/m2の連
続充填密度勾配型不織布用繊維ウエブ(上層)の
二層よりなるウエブを上層の繊維配合を表2に示
した如く変え、フエノール樹脂の初期縮合物粉末
を1m2当り30g降らせて実施例1と同様の条件で
材を作成し、実施例2と3並びに比較例3、
4、5、6と7を得た。これらの材について実
施例1と同様の条件でダスト試験した。表2にそ
れらの結果を示した。
[Table] Examples 2 and 3 Fiber web for a uniform packing density nonwoven fabric layer with a fiber amount of 80 g/m 2 and comprising 25% of 1.5 denier polyethylene/polypropylene fused fibers and 3 denier Y-shaped cross-sectional polyester fibers. (lower layer), and 1.5 denier polyethylene/polypropylene fused fiber; 1 denier and 10 denier polyester fiber with a fiber content of 100 g/m 2 continuous packing density gradient nonwoven fabric web (upper layer). A material was prepared under the same conditions as in Example 1 by changing the fiber composition of the upper layer as shown in Table 2 and dropping 30 g of initial condensate powder of phenolic resin per 1 m 2 . Comparative example 3,
I got 4, 5, 6 and 7. These materials were subjected to a dust test under the same conditions as in Example 1. Table 2 shows the results.

【表】 比較例3は1デニールのポリエステル繊維が多
すぎる配合のため、熱圧着後の層の厚さ回復が小
さく、初期捕集効率は高い水準にあるがダスト保
持量、とりわけ炭素塵保持量が低い値であつた。
比較例4と7は比較例3より10デニールのポリエ
ステル繊維の配合量が大で1デニールのポリエス
テル繊維の配合量が小のため、熱圧着後の層の厚
さ回復は大きくなるべきであるが、融着繊維の配
合量が大きいために厚さ回復は小さく、これが原
因でダスト保持量は共に低い値であつた。比較例
5は融着繊維が未混入のため材としての形態保
持が不良であつた。比較例6は1デニールのポリ
エステル繊維が極めて少なくない配合ゆえに初期
捕集効率が実用的な範囲ではなかつた。これらの
比較例に対して上層の融着繊維が本発明で規定す
る範囲で、かつ1デニールと10デニールの繊維配
合比が同じく本発明で規定する領域にある実施例
2と3は初期捕集効率とJIS8種試験用ダストおよ
び炭素塵のダスト保持量の両面に優れた性能を示
した。 実施例 4 1.5デニールのポリエチレン/ポリプロピレン
融着繊維を8%含み1デニールと6デニールのポ
リエステル繊維の配合比が1対1である繊維量
150g/m2の連続充填密度勾配型不織布用繊維ウエ
ブ(上層)と上層と同様の融着繊維と1デニール
および6デニールのポリエステル繊維の二者ある
いは三者からなる繊維量150g/m2の均一充填密度
型不織布用繊維ウエブ(下層)との二層よりなる
ウエブに上層側から共重合ポリエス樹脂粉末を1
m2当り60g降らせて上層のウエブに樹脂粉末を浸
透付着させこのウエブを140℃、1分間、2.0mmの
間隔に固定した熱板間で熱処理した後取出した。
下層の繊維配合比は表3に示す如く種々変えて、
実施例4および比較例8、9と10の材を得た。
これらの材を、実施例1と同様の条件でダスト
試験をし、その結果を表3に示した。
[Table] Comparative Example 3 contains too much 1-denier polyester fiber, so the layer thickness recovery after thermocompression bonding is small, and although the initial collection efficiency is at a high level, the amount of dust retained, especially the amount of carbon dust retained, is low. was a low value.
Comparative Examples 4 and 7 contain a larger amount of 10 denier polyester fiber and smaller amount of 1 denier polyester fiber than Comparative Example 3, so the layer thickness recovery after thermocompression bonding should be greater. Since the blended amount of fused fibers was large, the thickness recovery was small, and for this reason, the amount of dust retained was low in both cases. Comparative Example 5 had poor shape retention as a material because no fused fibers were mixed in. Comparative Example 6 had an extremely large amount of 1 denier polyester fiber, so the initial collection efficiency was not within a practical range. In contrast to these comparative examples, Examples 2 and 3, in which the fused fibers in the upper layer were within the range specified by the present invention and the blending ratio of 1 denier and 10 denier fibers were also within the range specified by the present invention, were used for initial collection. It showed excellent performance in terms of both efficiency and the amount of dust retention for JIS Class 8 test dust and carbon dust. Example 4 Fiber amount containing 8% of 1.5 denier polyethylene/polypropylene fused fibers and a 1:1 blending ratio of 1 denier and 6 denier polyester fibers
A uniform fiber web of 150g/m 2 consisting of a 150g/m 2 continuous packing density gradient nonwoven fabric web (upper layer), fused fibers similar to the upper layer, and 1 denier and 6 denier polyester fibers. One layer of copolymerized polyester resin powder is applied from the upper layer side to a web consisting of two layers: a fiber web for packed density type nonwoven fabric (lower layer).
The resin powder was deposited at 60 g per m 2 to permeate and adhere to the upper web, and the web was heat-treated at 140° C. for 1 minute between hot plates fixed at a spacing of 2.0 mm, and then taken out.
The fiber blending ratio of the lower layer was varied as shown in Table 3.
Materials of Example 4 and Comparative Examples 8, 9 and 10 were obtained.
These materials were subjected to a dust test under the same conditions as in Example 1, and the results are shown in Table 3.

【表】 比較例8は下層ウエブ中に融着繊維量が少なく
ないため繊維の毛羽立ちが多く、形態保持性の面
から材にはなり得ないものであつた。これに反
して、比較例9は融着繊維が多すぎるために、こ
の層の繊維密度が高くなりすぎダスト保持量が小
さくなつたと考えられ、比較例10は適正な融着繊
維量ではあるが1デニールのポリエステル繊維量
が多いことにより、初期捕集効率が高くなり、均
一充填密度不織布層で目詰まりが起こつたものと
考えられる。実施例4は下層の融着繊維量が10〜
40%の最適配合域にあり、かつ1デニールのポリ
エステル繊維が本発明で規定する配合域にあるた
め初期捕集効率およびJIS8種試験用ダストと炭素
塵のいずれに対しても優れた性能を示した。
[Table] In Comparative Example 8, the amount of fused fibers in the lower layer web was not small, so the fibers had a lot of fluff, and could not be used as a material from the viewpoint of shape retention. On the other hand, in Comparative Example 9, it is thought that the fiber density of this layer became too high due to too much fused fiber, resulting in a small amount of dust retention, while in Comparative Example 10, although the amount of fused fiber was appropriate, It is thought that the initial collection efficiency was high due to the large amount of 1 denier polyester fibers, which caused clogging in the uniform packing density nonwoven fabric layer. In Example 4, the amount of fused fibers in the lower layer is 10~
40%, and since the 1 denier polyester fiber is in the blending range specified by the present invention, it exhibits excellent initial collection efficiency and performance against both JIS Class 8 test dust and carbon dust. Ta.

Claims (1)

【特許請求の範囲】[Claims] 1 0.5デニール乃至2デニールの繊度を有する
細い繊維35〜70重量%、3デニール以上の繊度を
有する太い繊維10〜62重量%および融着用繊維3
〜20重量%の繊維配合比よりなり、かつ厚さ方向
に連続的充填密度勾配を有する不織布層と、3デ
ニール以上の繊度を有する太い繊維50〜90重量
%、0.5デニール乃至2デニールの繊度を有する
細い繊維0〜20重量%および融着用繊維10〜40重
量%の繊維配合比よりなり、かつ厚さ方向の充填
密度が実質的に均一な不織布層とを相互に重合せ
しめたことを特徴とする材。
1 35 to 70% by weight of thin fibers with a fineness of 0.5 to 2 denier, 10 to 62% by weight of thick fibers with a fineness of 3 or more denier, and fibers for fusing 3
A nonwoven fabric layer with a fiber blending ratio of ~20% by weight and a continuous packing density gradient in the thickness direction, and 50~90% by weight of thick fibers with a fineness of 3 denier or more and a fineness of 0.5 denier to 2 denier. A nonwoven fabric layer having a fiber blending ratio of 0 to 20% by weight of fine fibers and 10 to 40% by weight of fusion fibers and having a substantially uniform packing density in the thickness direction is superimposed on each other. material to do.
JP18965382A 1982-10-28 1982-10-28 ROZAI Expired - Lifetime JPH0245484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18965382A JPH0245484B2 (en) 1982-10-28 1982-10-28 ROZAI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18965382A JPH0245484B2 (en) 1982-10-28 1982-10-28 ROZAI

Publications (2)

Publication Number Publication Date
JPS5980313A JPS5980313A (en) 1984-05-09
JPH0245484B2 true JPH0245484B2 (en) 1990-10-09

Family

ID=16244913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18965382A Expired - Lifetime JPH0245484B2 (en) 1982-10-28 1982-10-28 ROZAI

Country Status (1)

Country Link
JP (1) JPH0245484B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082805A1 (en) * 2003-03-20 2004-09-30 Ambic Co., Ltd. Nonwoven fabric air filter for internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1278533C (en) * 1989-08-22 1991-01-02 E. Lee Noddin Polyimide composite filter fabrics
WO2006017703A1 (en) * 2004-08-05 2006-02-16 Akers Biosciences, Inc. Blood separator and method of separating a fluid fraction from whole blood
US8267681B2 (en) 2009-01-28 2012-09-18 Donaldson Company, Inc. Method and apparatus for forming a fibrous media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082805A1 (en) * 2003-03-20 2004-09-30 Ambic Co., Ltd. Nonwoven fabric air filter for internal combustion engine

Also Published As

Publication number Publication date
JPS5980313A (en) 1984-05-09

Similar Documents

Publication Publication Date Title
US20070220852A1 (en) High Capacity Filter Medium
US4976858A (en) Multi-layer filter medium
CA1337476C (en) Air laid filtering material
US5785725A (en) Polymeric fiber and glass fiber composite filter media
US5221573A (en) Adsorbent textile product
US7754123B2 (en) High performance filter media with internal nanofiber structure and manufacturing methodology
US5766288A (en) Multilayered deep-bed filter material
CA2845554C (en) Filtration media fiber structure and method of making same
US5820645A (en) Pleatable nonwoven composite article for gas filter media
WO2002020130B1 (en) Filter structure with two or more layers of fine fiber having extended useful service life
CN102935314A (en) Process for forming a laminate of a nanoweb and a substrate, and filters utilizing the laminate
US5728187A (en) Air filtration media
JP3138016B2 (en) Filter media
US5271780A (en) Adsorbent textile product and process
WO2004050216A1 (en) Multilayer nonwovens incorporating differential cross-sections
SK150896A3 (en) Fibre-coated filter element and process for manufacturing the same
JPH0568824A (en) Flame-retardant filter medium and its production
JPH0245484B2 (en) ROZAI
AU2019263091A1 (en) Composite filter media with multiple fiber structures including nanofibers
US20160220927A1 (en) Filtration media fiber structure and method of making same
JP2004305853A (en) Nonwoven fabric for canister filter
JP2967233B2 (en) ▲ filter material for air filter
KR101766115B1 (en) Long life absorption filter for automobile and manufacturing method thereof
EP3081277B1 (en) Filtration media fiber structure and method of making same
JP3573861B2 (en) Filter material for air cleaner and method for producing the same