JP2004305853A - Nonwoven fabric for canister filter - Google Patents

Nonwoven fabric for canister filter Download PDF

Info

Publication number
JP2004305853A
JP2004305853A JP2003101151A JP2003101151A JP2004305853A JP 2004305853 A JP2004305853 A JP 2004305853A JP 2003101151 A JP2003101151 A JP 2003101151A JP 2003101151 A JP2003101151 A JP 2003101151A JP 2004305853 A JP2004305853 A JP 2004305853A
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
fiber layer
fineness
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003101151A
Other languages
Japanese (ja)
Other versions
JP4226372B2 (en
Inventor
Hirohisa Taniguchi
裕久 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Ltd
Original Assignee
Kureha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Ltd filed Critical Kureha Ltd
Priority to JP2003101151A priority Critical patent/JP4226372B2/en
Publication of JP2004305853A publication Critical patent/JP2004305853A/en
Application granted granted Critical
Publication of JP4226372B2 publication Critical patent/JP4226372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Filtering Materials (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide nonwoven fabric which is used as a canister filter for preventing fuel vapor leaking through an intake system from diffusing into ambient air, which hardly passes fine particles of granular activated carbon and which is hardly clogged with dust, or the like. <P>SOLUTION: This nonwoven fabric is obtained by bonding a fiber layer 1 of a polyester long fiber formed by spun-bonding and a fiber layer 2 of a polyester short fiber by using a fusing fiber 3 so that this nonwoven fabric has ≤150 μm maximum pore size and ≥20.0 g/m<SP>2</SP>peeling strength. The fiber layer of the polyester short fiber is formed by mixing a fine-denier fiber with a coarse-denier fiber by 30/70 to 50/50 mass% mixing ratio to obtain a short fiber web, entangling the obtained web and bonding the entangled web by using a resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関用吸着フィルタに係り、特に吸気系を通って漏れ出てくる燃料蒸気の外気への拡散を防止する燃料蒸気捕集器、いわゆるキャニスターフィルタに用いて好適な不織布に関する。
【0002】
【従来の技術】
エンジンを停止した自動車あるいはガソリンスタンド等のガソリンタンクから蒸発したガソリン蒸気は、従来は回収することなく大気中に放出されていた。
近年では、環境浄化の要請から吸気系を通って漏れ出てくる燃料蒸気の大気への流出を防止するために、放出パイプの途中に吸着剤を充填した捕集器(キャニスター)を取り付け、蒸発したガソリンを吸着させ、次の走行時、逆方向に空気を通して脱着してエンジンに供給する吸着剤を備えたエアクリーナが配されている。
【0003】
そして、この吸気系を通って漏れ出てくる燃料蒸気の大気への流出を防止する吸着剤を配置する方法として、2層の濾紙あるいは不織布の間に吸着剤を挟んだシートを作り、エアクリーナー内に固定する構成が提案されている。(例えば特許文献1参照)
しかし、エレメントと吸着剤を備えたエレメントとが並列に設けられているため、燃料蒸気がエレメントを通過して大気に漏れ出る恐れがあった。
また、エレメントの不織布が容易にダストにて目詰まりを起こし、その結果、吸着剤を備えたエレメントの通気抵抗が大きく上昇して燃料蒸気の吸着力が大幅に減少する問題があった。
【0004】
そこで、フィルタエレメントの内燃機関側に、粒状活性炭を耐熱性ネットと不織布で挟んだシート状の吸着フィルタを配置し、エンジン停止時にエンジン内部に付着したガソリン蒸気がエアクリーナーの内部へ侵入するが、そのガソリン蒸気は粒状活性炭に吸着されるため、大気へ流出することがなく、また、バックファイヤーに耐え得るように耐熱性ネットとした内燃機関用エアクリーナーが提案されている。(例えば特許文献2参照)
【0005】
【特許文献1】実開昭60−14269号公報
【特許文献2】特開2002−276486号公報
【0006】
【発明が解決しようとする課題】
しかし、上記のものも耐熱性の効果があるにしても、活性炭の粒子やダスト粒子によって不織布フィルタが目詰まりを起こして、その結果、通気抵抗が大幅に上昇して燃料蒸気の吸着能力が大幅に減少するという問題がある。
【0007】
本発明は上述の如き実状に鑑み、これに対処すべく吸気系を通って漏れ出てくる燃料蒸気の外気への拡散を防止する燃料蒸気捕集器、いわゆるキャニスターの不織布フィルタにおいて、粒状活性炭の微粒子が抜けにくく、ダスト等による目詰まりを起こしにくい不織布フィルタを提供することを目的とするものである。
【0008】
【課題を解決するための手段】
即ち、上記目的に適合する本発明は、請求項1によればスパンボンド法で得られたポリエステル長繊維の繊維層とポリエステル短繊維の繊維層が熱融着性繊維で接着されてなる不織布であって、該不織布の最大ポアサイズが150μm以下で剥離強力が20.0N/cm以上であるキャニスターフィルタ用不織布である。
【0009】
請求項2は、前記不織布において最大ポアサイズが150μm以下で少なくとも95パーセントの捕集効率と150Pa以下 の圧損を有すると共に、剥離強力が20.0N/cm以上であるキャニスターフィルタ用不織布である。
これによって燃料蒸気の回収が高まると共に放出が好適となる。
【0010】
請求項3〜7は上記不織布の構成に用いる長繊維及び短繊維のポリエステル繊維の繊度,短繊維の太細混繊比率,熱融着性繊維,接着樹脂の好適な態様であり、請求項3はスパンボンド法で得られたポリエステル長繊維の繊度は1.0デシテックスから6.0デシテックスの範囲で、かつ、繊維層目付は20g/mから100g/mの範囲が好適であること、請求項4はポリエステル短繊維の繊維層が細繊度と太繊度からなり、細繊度は1.0デシテックスから5.0デシテックスの範囲で、太繊度は5.0デシテックスから10.0デシテックスの範囲であり、かつ細/太繊維の混繊比率が30/70質量%から50/50質量%で、かつ、目付が150g/mから600g/mの範囲であること、請求項5はポリエステル短繊維の繊維層は混繊短繊維ウエブを交絡し、更に、樹脂接着してなること、請求項6は上記ポリエステル短繊維の繊維層を構成する接着樹脂がアクリル系の樹脂であり、付着量が繊維層に対して5質量%から20質量%の範囲であること、請求項7は熱融着性繊維が低融点ポリエステル樹脂からなり、融点が120℃〜200℃で、かつホットメルトシート状で、その目付が10g/mから100g/mの範囲であることで、これらによって好ましい本発明のキャニスターフィルタ用不織布を得ることができる。
【0011】
【発明の実施の形態】
以下、更に本発明不織布の具体的な実施の形態を詳述する。
【0012】
図1は本発明不織布の断面構造の略図であり、スパンボンド法で得られたポリエステル長繊維の繊維層1とポリエステル短繊維からなる繊維層2が熱融着性繊維3によって接着されることによって本発明不織布は構成されている。
そして、本発明はこの不織布をキャニスターフィルタ用不織布として有効ならしめるための各特性について考究し、先ず、該不織布は外気の塵埃を濾過すること、また燃料蒸気を回収し放出すること、即ち、燃料蒸気の通気性,初期圧,活性炭微粒子を外部に出さないこと、即ち、ポアサイズ(活性炭の粘度分布)及びガソリン耐油性などの役割を有することが必要であるとの観点から、ポアサイズ,耐ガソリン性,濾過性能,ガソリン透過性,寸法安定性,剥離強力などの各特性を検討し、活性炭の漏れを阻止する上から、ポアサイズは150μm以下(5.0μm通過量)、また濾過性能の面より捕集効率95%以上、圧損150Pa以下、更に加工性の面より剥離強力20.0N/cm以上、更に耐ガソリン性を良好ならしめるためには強度が20N/5cm以上、寸法変動1.0%以下、ならびに寸法安定性が1.3%以下の各特性が好適であることを見出すに至った。
なかでも特に最大ポアサイズが150μm以下で、剥離強力が20.0N/cm以上であることは本発明不織布として最も基本的な最小限の必要要件である。
【0013】
不織布のポアサイズが150μmを越えると活性炭中の微粒子成分が通過してエンジンを傷める問題がある。
また、不織布の剥離強力が20.0N/cm未満では成形時に容易に長繊維繊維層と、短繊維繊維層が分離して加工性を悪くし、また使用中に層の分離を起こし、フィルタの性能を阻害するので好ましくない。
【0014】
本発明不織布の構成は上述した各特性にもとづいてこれを具現すべく形成したものであり、長繊維層を構成する長繊維の繊度,目付、及び短繊維層を構成する短繊維の繊度,目付,一体化手段ならびに両繊維層の接合手段などが以下の如く特定されるものである。
【0015】
先ず、融着される長繊維層と短繊維層のうちスパンボンド法で得られたポリエステル長繊維の繊維層を構成する長繊維はその繊度が1.0デシテックス〜6.0デシテックスの範囲であることが好ましく、また、繊維層の目付は20g/m〜100g/mであることが効果的である。
長繊維の繊度が1デシテックス未満では不織布のポアサイズを小さくするのには非常に有効であるが、却って初期圧の増加になるので好ましくない、
一方、6.0デシテックスを越えると逆に不織布のポアサイズを大きくし過ぎるので好ましくない。
また、長繊維繊維層の目付は20g/m未満では不織布が薄くなり、初期圧についてはよいが、ポアサイズを小さくするのが難しくなる。
一方、100g/mを越えると、不織布のポアサイズを小さくするにはよいが、初期圧が高くなって好ましくない。
【0016】
次にポリエステル短繊維からなる繊維層は細繊度の繊維と太繊度の繊維を混繊して構成するのが効果的であり、細繊度は1.0デシテックス〜5.0デシテックスの範囲が好ましく、太繊度は5.0デシテックス〜10.0デシテックスの範囲であることが好ましい。
太繊度の繊維繊度が5.0デシテックス未満、細繊度の繊維繊度が1.0デシテックス未満であると濾材の粗層の役目が十分に果たされず、初期圧の増加を招く。
一方、太繊度が10.0デシテックスを越え、細繊度が5.0デシテックスを越えると、濾材の中層の役目を十分に果たさず、初期圧の増加を招くので好ましくない。
【0017】
そして、上記太繊度,細繊度の繊維混合に際しては細/太の混繊で、質量%が30/70〜50/50の範囲であることが好ましく、太繊度の配合比率が50質量%未満であると、濾材の粗層の役目が不十分となり、一方、太繊度の配合が70質量%を越えると細繊度の役目である濾材の中層の役目が不十分となるので何れも好ましくない。
この細/太繊度の混繊からなる短繊維繊維層の目付は150〜600g/mが有効てあり、より好ましくは200〜400g/mである。
150g/m未満では濾過容量が少なく濾過性能の低下を来たし、600g/mを越えると濾過性能が過剰となる。
なお、上記細/太繊維の混合による繊維層の形成は、同混合繊維のウエブを既知のニードル加工によって互いに繊維を交絡一体化するが、ニードル加工だけでは実際の濾過状態において繊維間の固定が充分でないため、更に樹脂により接着固定することが肝要である。
樹脂は既知の接着樹脂が使用可能であるが、アクリル酸系樹脂が最も好適であり、付着量は短繊維層に対して5〜20重量%がよく、5重量%未満では繊維間の接着固定が充分でなく、また、20重量%を越えると繊維間の細孔を潰し、濾過性能を低下するので好ましくない。
以上のように形成された上記長繊維繊維層1と、短繊維繊維層2は熱融着性繊維3によって層間接着がなされ、図1に示す形態の不織布に構成される。
長繊維繊維層1と、短繊維繊維層2の層間接着はニードル加工だけでは濾過性能の内、ポアサイズのコントロールが困難となり、200μm以上の大きな孔径が出来て好ましくないため、熱融着性繊維の使用が重要である。
【0018】
通常の樹脂接着や、ニードル加工と、該樹脂接着との併用も可能であるが、剥離強力と濾過性能の低下をもたらすので好ましくない。
使用する熱融着性繊維は、融点が120〜200℃の低融点ポリエステル樹脂が有効であり、120℃未満では耐熱性に問題があり、200℃を越えると加工時に繊維の特性を変えるため好ましくない。
【0019】
この熱融着性繊維は、通常、くもの巣状の如き薄層のシートとして層間に配置され、加熱することによって層間を融着する。
なお、熱融着性繊維の付与量は、目付で10〜100g/mの範囲が好ましい。10g/m未満では両繊維層の層間接着が不十分となり、一方、100g/mを越えると接着量が過剰となり、濾過性能を低下させるので好ましくない。
【0020】
かくして上記両層の接着による本発明不織布は、長繊維繊維層で最大ポアサイズをコントロールし、短繊維繊維層で粗い塵を取り、スパンボンド層で細かい塵を取ると同時に活性炭の抜けを防ぐことによってキャニスターフィルタの目的を達成することができる。
【0021】
以下、更に本発明の実施例を比較例と対比し、具体的に説明する。
【0022】
【実施例】
実施例1
繊度3.3デシテックス(dtex)で繊維長51mmと繊度6.6デシテックスで繊維長51mmのポリエステル繊維を30質量%と70質量%の混繊比率で均一混合した後、カーディング加工して目付約350g/mの短繊維繊維層を得た。
引き続き、この短繊維繊維層をニードルパンチ機により針深さ10.0mm,打ち込み本数20本/cmのニードル加工により繊維間の交絡処理をした。
更に、引き続きこの交絡処理された短繊維繊維層をアクリル酸エステルを主成分とするバインダーに浸漬し、絞り比100質量%にしてバインダー付着量を短繊維繊維層に対して12.5質量%付与した。得られた短繊維繊維層は目付約400g/mであった。
この短繊維繊維層とスパンボンド法で得られた平均繊度1.6デシテックスで目付50g/mのポリエステル長繊維層を低融点ポリエステル長繊維(融点140℃)のホットメルトシート目付20g/mでローラ温度160℃,ローラ間の隙間6mm,処理速度5m/minで熱融着して本発明の加工性とフィルタ性に優れたキャニスターフィルタ用不織布を得た。
【0023】
実施例2
実施例1と同じ短繊維繊維層(交絡処理バインダー付与処理済)を用い、スパンボンド法で得られた平均繊度1.6デシテックスのポリエステル長繊維層の目付を20g/mにした。
短繊維繊維層とスパンボンド法の長繊維繊維層の接着は実施例1と全く同じ処理を行い、本発明のキャニスターフィルタ用不織布を得た。
【0024】
実施例3
繊度3.3デシテックス(dtex)で繊維長51mmと繊度6.6デシテックスで繊維長51mmのポリエステル繊維を30質量%と70質量%の混繊比率で均一混合した後、カーディング加工して目付約350g/mの短繊維繊維層を得た。
引き続きこの短繊維繊維層をニードルパンチ機により針深さ10.0mm,打ち込み本数20本/cmのニードル加工により繊維間の交絡処理をした。
更に、引き続きこの交絡処理された短繊維繊維層をアクリル酸エステルを主成分とするバインダーに浸漬し、絞り比100質量%にしてバインダー付着量を短繊維繊維層に対して18.6質量%付与した。得られた短繊維繊維層は目付約430g/mであった。
この短繊維繊維層とスパンボンド法で得られた平均繊度1.6デシテックスで目付50g/mのポリエステル長繊維層を低融点ポリエステル長繊維(融点140℃)のホットメルトシート目付20g/mでローラ温度160℃,ローラ間の隙間6mm,処理速度5m/minで熱融着して本発明の加工性とフィルタ性に優れたキャニスターフィルタ用不織布を得た。
【0025】
実施例4
実施例1と同じ短繊維繊維層(交絡処理バインダー付与処理済)を用い、スパンボンド法で得られた平均繊度1.6デシテックスのポリエステル長繊維層の目付50g/mを同様に用いて、短繊維繊維層とスパンボンド法の繊維層の接着に用いるポリエステル長繊維層を低融点ポリエステル長繊維(融点140℃)のホットメルトシート目付80g/mとした以外は実施例1と同様にローラ温度160℃ローラ間の隙間6mm,処理速度5m/minで熱融着して本発明の加工性とフィルタ性に優れたキャニスターフィルタ用不織布を得た。
【0026】
比較例1
繊度3.3デシテックス(dtex)で繊維長51mmと、繊度6.6デシテックスで、繊維長51mmのポリエステル繊維を30質量%と70質量%の混繊比率で均一混合した後、カーディング加工して目付約350g/mの短繊維繊維層を得た。
引き続きこの短繊維繊維層をスパンボンド法で得られた平均繊度1.6デシテックスで目付50g/mのポリエステル長繊維層に積層してニードルパンチ機により針深さ10.0mm,打ち込み本数20本/cmのニードル加工により繊維間の交絡処理をした。
引き続き、この長繊維層に交絡処理された短繊維繊維層との積層繊維層をアクリル酸エステルを主成分とするバインダーに浸漬し、絞り比100質量%にしてバインダー付着量を積層繊維層に対して12.5質量%付与した。得られた積層繊維層は目付約457g/mの比較キャニスターフィルタ用不織布を得た。
【0027】
比較例2
実施例1と同じ短繊維繊維層(交絡処理バインダー付与処理済)を用い、スパンボンド法で得られた平均繊度1.6デシテックスのポリエステル長繊維層の目付を110g/mにした。短繊維繊維層とスパンボンド法の繊維層の接着は実施例1と全く同じ処理を行い、比較キャニスターフィルタ用不織布を得た。
【0028】
かくして、以上の実施例1〜4、及び比較例1〜2で得られた各不織布について、その性能を対比すべく濾過性能,加工性及び活性炭透過性の各評価を行った。その結果は下記表1の通りであった。
表中の目付量,厚さ,剥離強力(垂直剥離強力)及びポアサイズの各測定ならびに濾過性能,加工性及び活性炭透過性の各評価は下記方法に従って行った。
【0029】
(1)目付量 ;JIS L1906の5.2に記載の方法に準拠して求めた。
(2)厚さ ;JIS L1906の5.1に記載の方法に従って荷重2Kpaで測定した。
(3)剥離強力;試験片を5cm角にカットした後、両面に両面接着テープ(日東電工製,NO523)を貼り、貼り付け治具に取り付けてテンシロン引張り試験機にて垂直方向に200mm/minのスピードで引張り、最大点を測定し、その平均値で現す。(整数位まで)n=3
(4)ポアサイズの測定;コールター社製コールターポロメータ− ASTMF−361−80のバブルポイント法に基づき測定した。
(5)濾過性能の評価;JIS D1612自動車用エアクリーナー試験法に基づき、初期圧損(ΔP)及び塵埃保持量(DHC)について評価した。
【0030】
(実験条件)
a)JIS 8種塵埃(JIS Z8901)塵埃濃度は6g/m
b)試験用のエアクリーナーのエレメントは有効面積1000cmの円板濾材
c)試験風速;25cm/sec
d)最終圧損;98Pa〔10mmAg〕
(評価)
ΔP ;試料セット前後の初期圧力差
DHC;増加抵抗300mmAq時における塵埃保持量
【0031】
(6)加工性評価試験
油圧クリッカー(打ち抜き機)HMO−10型(堀鉄工所)
プレス圧 3.5ton(350mm×500mm)
550mm×1000mm×20mmポリエチレン製板
トムソン刃(50mm×100mm・5個)
(評価)
試料をポリエチレン製板の上に載せ、その上にトムソン刃をおいて油圧クリッカーで打ち抜く
打ち抜き5個全部が層間剥離しないこと ○
打ち抜き1個でも層間剥離があること ×
【0032】
(7)活性炭透過性評価試験
計数法濾過試験器
試験片;130mmφ(90mmφ)
流速 ;18.1m/min 5.0cm/sec
供給粒径;大気
ダストカウンター;2台
区間粒径;0.3〜0.5μ,0.5〜1.0μ,10.〜20μ,2.0〜5.0μ,5.0μ以上
(評価)
通過粒径の5.0μm以上の通過,50個以上の中
1個も通過しない 0/50 ○
1個以上通過した >1/50 ×
【0033】
上記測定,評価にもとづいて下記の如く表1を作成した。
【0034】
【表1】

Figure 2004305853
【0035】
上記表1よりみて本発明の実施例に係る不織布は特に塵埃保持量と共に加工性,活性炭透過性において比較例の不織布に平均して一段と優れていることが分かる。
【0036】
【発明の効果】
以上のように本発明は長繊維繊維層と短繊維繊維層を熱融着性繊維で互いに接着したもので、少なくとも150μm以下のポアサイズで20.0N/cm以上の剥離強力を有するように構成した不織布であり、長繊維層で細かい塵を取ると同時に活性炭の抜けを防いで活性炭の微粒子が抜けにくく、かつ、ダスト等による目詰まりを起こしにくい特性を具備して、キャニスターフィルタ用として極めて優れた実用的効果を奏する。
特に短繊維層と長繊維層の接着はニードル加工を介して接着すると最終レジンボンドでもスパンボンドにニードルであけられた孔は小さくすることが難しくキャニスターフィルタ用としての機能を阻害するが、熱融着性繊維により接着したことによりポアサイズのコントロールを良好にし、活性炭微粒子を外部に出さない効用を発揮すると共に、短繊維層の形成にあたってニードルパンチと樹脂接着を併用することにより、毛抜け,繊維間ズレをなくし、寸法安定性を良好ならしめる効果を有する。
【図面の簡単な説明】
【図1】本発明に係る不織布の断面概要図である。
【符号の説明】
1 長繊維層
2 短繊維層
3 熱融着性繊維[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an adsorption filter for an internal combustion engine, and more particularly to a nonwoven fabric suitable for use in a so-called canister filter, which is a fuel vapor collector for preventing fuel vapor leaking through an intake system from diffusing into the outside air.
[0002]
[Prior art]
Gasoline vapor evaporated from a gasoline tank of an automobile or a gas station where the engine is stopped has conventionally been released into the atmosphere without being recovered.
In recent years, a collector filled with an adsorbent (canister) has been installed in the middle of the discharge pipe to prevent the fuel vapor leaking through the intake system from flowing out to the atmosphere due to the request for environmental purification, and evaporating. An air cleaner is provided with an adsorbent that adsorbs gasoline that has been adsorbed and then desorbs and supplies air to the engine in the opposite direction during the next run.
[0003]
Then, as a method of arranging an adsorbent for preventing the fuel vapor leaking through the intake system from flowing out to the atmosphere, a sheet in which the adsorbent is sandwiched between two layers of filter paper or a nonwoven fabric is made, and an air cleaner is formed. There is proposed a configuration for fixing the inside. (For example, see Patent Document 1)
However, since the element and the element provided with the adsorbent are provided in parallel, there is a risk that fuel vapor may leak to the atmosphere through the element.
Further, the nonwoven fabric of the element is easily clogged with dust, and as a result, there is a problem that the airflow resistance of the element provided with the adsorbent is greatly increased, and the adsorbing power of the fuel vapor is greatly reduced.
[0004]
Therefore, on the internal combustion engine side of the filter element, a sheet-shaped adsorption filter in which granular activated carbon is sandwiched between a heat-resistant net and a nonwoven fabric is arranged, and when the engine stops, gasoline vapor attached to the engine enters the air cleaner. Since the gasoline vapor is adsorbed by the granular activated carbon, an air cleaner for an internal combustion engine has been proposed which does not flow out to the atmosphere and has a heat-resistant net so as to withstand a backfire. (For example, see Patent Document 2)
[0005]
[Patent Document 1] Japanese Utility Model Application Laid-Open No. Sho 60-14269 [Patent Document 2] Japanese Patent Application Laid-Open No. 2002-276486
[Problems to be solved by the invention]
However, even if the above-mentioned one also has the effect of heat resistance, the non-woven fabric filter is clogged by activated carbon particles and dust particles, and as a result, the airflow resistance is greatly increased and the fuel vapor adsorption capacity is greatly increased. There is a problem that it decreases.
[0007]
The present invention has been made in view of the above situation, and in order to deal with this, in a non-woven fabric filter of a so-called canister, a fuel vapor collector for preventing the diffusion of fuel vapor leaking through the intake system to the outside air, the granular activated carbon is used. An object of the present invention is to provide a nonwoven fabric filter in which fine particles are hardly removed and clogging with dust or the like is less likely to occur.
[0008]
[Means for Solving the Problems]
That is, the present invention, which meets the above object, is a non-woven fabric comprising a polyester fiber layer and a polyester staple fiber layer obtained by a spunbond method and bonded by a heat-fusible fiber. A nonwoven fabric for a canister filter, wherein the nonwoven fabric has a maximum pore size of 150 µm or less and a peel strength of 20.0 N / cm 2 or more.
[0009]
Claim 2 is a nonwoven fabric for a canister filter, wherein the nonwoven fabric has a maximum pore size of 150 μm or less, has a collection efficiency of at least 95% and a pressure loss of 150 Pa or less, and has a peel strength of 20.0 N / cm 2 or more.
This increases the recovery of the fuel vapor and makes it more suitable for release.
[0010]
Claims 3 to 7 are preferred embodiments of the fineness of the polyester fibers of the long fibers and short fibers, the ratio of short and thick fibers mixed, the heat-fusible fiber, and the adhesive resin used in the construction of the nonwoven fabric. it fineness of polyester filament obtained by the spunbond method in the range of 6.0 dtex to 1.0 dtex, and the fiber layer basis weight is preferably in the range from 20 g / m 2 of 100 g / m 2, According to a fourth aspect of the present invention, the fiber layer of the polyester short fiber has a fine fineness and a fine fineness, and the fine fineness is in a range from 1.0 decitex to 5.0 decitex, and the fine fineness is in a range from 5.0 decitex to 10.0 decitex. There, and in 50/50 wt% mixed fiber ratio from 30/70 wt% fine / thick fibers, and it basis weight in the range of 150 g / m 2 of 600 g / m 2, claim 5 polyester staple Fiber The fiber layer of the fiber is obtained by entanglement of the mixed short fiber web and further by resin bonding. Claim 6 is that the adhesive resin forming the fiber layer of the polyester short fiber is an acrylic resin, The heat-fusible fiber is made of a low-melting polyester resin, has a melting point of 120 ° C. to 200 ° C., and is in the form of a hot melt sheet. When the basis weight is in the range of 10 g / m 2 to 100 g / m 2 , a preferable nonwoven fabric for a canister filter of the present invention can be obtained.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the nonwoven fabric of the present invention will be described in detail.
[0012]
FIG. 1 is a schematic view of a cross-sectional structure of the nonwoven fabric of the present invention, in which a fiber layer 1 made of polyester long fibers and a fiber layer 2 made of polyester short fibers obtained by a spunbond method are bonded by heat-fusible fibers 3. The nonwoven fabric of the present invention is constituted.
Then, the present invention considers various characteristics for making this nonwoven fabric effective as a nonwoven fabric for a canister filter.First, the nonwoven fabric filters external air dust, and also collects and discharges fuel vapor, that is, a fuel From the viewpoint that it is necessary to have a role of steam permeability, initial pressure, and not to emit activated carbon fine particles to the outside, that is, to have a role of pore size (viscosity distribution of activated carbon) and gasoline oil resistance, pore size and gasoline resistance Each characteristic such as filtration, filtration performance, gasoline permeability, dimensional stability, and peel strength was examined to prevent activated carbon from leaking. The pore size was 150 μm or less (amount of 5.0 μm passage), and from the viewpoint of filtration performance. collecting efficiency of 95% or more, pressure loss 150Pa or less, even more workability surface peel strength 20.0N / cm 2 or more, the makes it even better gasoline resistance The strength of 20 N / 5 cm or higher, dimensional change of 1.0% or less, and dimensional stability have found that the individual properties of 1.3% or less is preferable.
Among these, the most basic minimum requirements for the nonwoven fabric of the present invention are that the maximum pore size is 150 μm or less and the peel strength is 20.0 N / cm 2 or more.
[0013]
If the pore size of the nonwoven fabric exceeds 150 μm, there is a problem that fine particles in the activated carbon pass through and damage the engine.
Further, if the peel strength of the nonwoven fabric is less than 20.0 N / cm 2 , the long fiber fiber layer and the short fiber fiber layer are easily separated at the time of molding to deteriorate the processability, and the layers are separated during use, so that the filter is removed. This is not preferred because it hinders the performance of
[0014]
The structure of the nonwoven fabric of the present invention is formed based on each of the above-described characteristics to realize the same. The fineness and basis weight of the long fibers constituting the long fiber layer and the fineness and basis weight of the short fibers constituting the short fiber layer are provided. The means for integration, the means for joining the two fiber layers, and the like are specified as follows.
[0015]
First, among the long fiber layer and the short fiber layer to be fused, the long fiber constituting the fiber layer of the polyester long fiber obtained by the spun bond method has a fineness in a range of 1.0 dtex to 6.0 dtex. it is preferable, also, the basis weight of the fibrous layer, it is effective is 20g / m 2 ~100g / m 2 .
When the fineness of the long fiber is less than 1 dtex, it is very effective to reduce the pore size of the nonwoven fabric, but it is not preferable because the initial pressure is rather increased.
On the other hand, if it exceeds 6.0 decitex, on the contrary, the pore size of the nonwoven fabric becomes too large, which is not preferable.
If the basis weight of the long fiber layer is less than 20 g / m 2 , the nonwoven fabric becomes thin and the initial pressure is good, but it is difficult to reduce the pore size.
On the other hand, if it exceeds 100 g / m 2 , the pore size of the nonwoven fabric can be reduced, but the initial pressure is undesirably high.
[0016]
Next, it is effective that the fiber layer made of polyester short fibers is formed by mixing fine-fiber fibers and thick-fiber fibers, and the fineness is preferably in the range of 1.0 dtex to 5.0 dtex. The fineness is preferably in the range of 5.0 dtex to 10.0 dtex.
If the fiber fineness of the thick fineness is less than 5.0 decitex and the fiber fineness of the fine fineness is less than 1.0 decitex, the role of the coarse layer of the filter medium is not sufficiently fulfilled, and the initial pressure is increased.
On the other hand, when the fineness exceeds 10.0 decitex and the fineness exceeds 5.0 decitex, the medium does not sufficiently serve as the middle layer of the filter medium, and the initial pressure is increased.
[0017]
When mixing the above fine and fine fibers, it is preferable to use a fine / thick mixed fiber in which the mass% is in the range of 30/70 to 50/50, and the mixing ratio of the fine fineness is less than 50% by mass. If it is present, the role of the coarse layer of the filter medium becomes insufficient. On the other hand, if the fineness is more than 70% by mass, the role of the middle layer of the filter medium, which is the role of fineness, becomes insufficient.
The basis weight of the short fiber layer made of the mixed fiber having the fineness / thickness is 150 to 600 g / m 2 , and more preferably 200 to 400 g / m 2 .
If it is less than 150 g / m 2 , the filtration capacity will be small and the filtration performance will decrease, and if it exceeds 600 g / m 2 , the filtration performance will be excessive.
In the formation of the fiber layer by mixing the fine / thick fibers, the webs of the mixed fibers are entangled and integrated with each other by a known needle processing. Since it is not sufficient, it is important to further fix and adhere with a resin.
As the resin, known adhesive resins can be used, but acrylic resin is most preferable, and the amount of adhesion is preferably 5 to 20% by weight with respect to the short fiber layer. Is not sufficient, and if it exceeds 20% by weight, pores between fibers are crushed, and the filtration performance is undesirably reduced.
The long-fiber fiber layer 1 and the short-fiber fiber layer 2 formed as described above are bonded to each other by the heat-fusible fibers 3 to form a nonwoven fabric having the form shown in FIG.
The interlayer bonding between the long fiber layer 1 and the short fiber layer 2 is difficult to control the pore size in the filtration performance only by needle processing, and a large pore diameter of 200 μm or more is not preferable. Use is important.
[0018]
It is also possible to use ordinary resin bonding or needle processing together with the resin bonding, but this is not preferred because it results in a decrease in peel strength and filtration performance.
The heat-fusible fiber to be used is preferably a low-melting polyester resin having a melting point of 120 to 200 ° C. If the temperature is lower than 120 ° C, there is a problem in heat resistance. Absent.
[0019]
The heat-fusible fibers are usually arranged between the layers as a thin layered web-like sheet, and the layers are fused by heating.
The amount of the heat fusible fiber to be applied is preferably in the range of 10 to 100 g / m 2 in terms of basis weight. If it is less than 10 g / m 2 , the interlayer adhesion between the two fiber layers will be insufficient, while if it exceeds 100 g / m 2 , the amount of adhesion will be excessive and the filtration performance will be undesirably reduced.
[0020]
Thus, the nonwoven fabric of the present invention by bonding the above two layers controls the maximum pore size in the long fiber layer, removes coarse dust in the short fiber layer, and removes fine dust in the spun bond layer while preventing the activated carbon from coming off. The purpose of the canister filter can be achieved.
[0021]
Hereinafter, examples of the present invention will be specifically described in comparison with comparative examples.
[0022]
【Example】
Example 1
After uniformly mixing polyester fibers having a fiber length of 51 mm with a fineness of 3.3 dtex and a fiber length of 51 mm with a fineness of 6.6 decitex at a mixing ratio of 30% by mass and 70% by mass, carding is performed and the basis weight is reduced. A short fiber layer of 350 g / m 2 was obtained.
Subsequently, the staple fiber layer was entangled with a needle by a needle punch machine at a needle depth of 10.0 mm and a number of shots of 20 / cm 2 .
Further, the entangled short fiber layer is successively immersed in a binder containing acrylate ester as a main component, and the squeezing ratio is set to 100% by mass to give a binder adhesion amount of 12.5% by mass to the short fiber layer. did. The obtained short fiber layer had a basis weight of about 400 g / m 2 .
A polyester long fiber layer having a basis weight of 50 g / m 2 at an average fineness of 1.6 dtex obtained by a spun bond method and a short melt fiber sheet of low melting polyester long fiber (melting point 140 ° C.) 20 g / m 2 were obtained. At a roller temperature of 160 ° C., a gap between rollers of 6 mm, and a processing speed of 5 m / min to obtain a nonwoven fabric for a canister filter of the present invention having excellent workability and filterability.
[0023]
Example 2
Using the same short fiber fiber layer (with the entanglement treatment binder applied) as in Example 1, the basis weight of the polyester long fiber layer having an average fineness of 1.6 dtex obtained by the spun bond method was set to 20 g / m 2 .
Adhesion between the short fiber fiber layer and the long fiber fiber layer by the spun bond method was performed in exactly the same manner as in Example 1 to obtain a nonwoven fabric for a canister filter of the present invention.
[0024]
Example 3
After uniformly mixing polyester fibers having a fiber length of 51 mm with a fineness of 3.3 dtex and a fiber length of 51 mm with a fineness of 6.6 decitex at a mixing ratio of 30% by mass and 70% by mass, carding is performed and the basis weight is reduced. A short fiber layer of 350 g / m 2 was obtained.
Subsequently, the staple fiber layer was entangled with fibers by a needle punching machine with a needle depth of 10.0 mm and a needle number of 20 pieces / cm 2 .
Further, the entangled short fiber layer is successively immersed in a binder mainly composed of an acrylate ester, and the squeezing ratio is set to 100% by mass to give a binder adhesion amount of 18.6% by mass to the short fiber layer. did. The obtained short fiber layer had a basis weight of about 430 g / m 2 .
A polyester long fiber layer having a basis weight of 50 g / m 2 at an average fineness of 1.6 dtex obtained by a spun bond method and a short melt fiber sheet of low melting polyester long fiber (melting point 140 ° C.) 20 g / m 2 were obtained. At a roller temperature of 160 ° C., a gap between rollers of 6 mm, and a processing speed of 5 m / min to obtain a nonwoven fabric for a canister filter of the present invention having excellent workability and filterability.
[0025]
Example 4
Using the same short fiber fiber layer as in Example 1 (with the entanglement treatment binder applied), using a basis weight of 50 g / m 2 of a polyester long fiber layer having an average fineness of 1.6 dtex obtained by a spun bond method, A roller similar to that of Example 1 except that the polyester long fiber layer used for bonding the short fiber fiber layer and the fiber layer of the spun bond method had a hot melt sheet basis weight of low melting polyester long fiber (melting point 140 ° C.) of 80 g / m 2. A nonwoven fabric for a canister filter having excellent workability and filterability of the present invention was obtained by heat fusion at a temperature of 160 ° C. with a gap between rollers of 6 mm and a processing speed of 5 m / min.
[0026]
Comparative Example 1
After uniformly mixing polyester fibers having a fiber length of 51 mm with a fineness of 3.3 decitex (dtex) and a fiber length of 51 mm with a fineness of 6.6 decitex at a mixing ratio of 30% by mass and 70% by mass, carding is performed. A short fiber layer having a basis weight of about 350 g / m 2 was obtained.
Subsequently, this short fiber layer was laminated with a polyester long fiber layer having a basis weight of 50 g / m 2 at an average fineness of 1.6 dtex obtained by a spun bond method, and a needle punch machine was used to obtain a needle depth of 10.0 mm and the number of punching was 20. The fibers were entangled with each other by needle processing at a density of / cm 2 .
Subsequently, the laminated fiber layer of the long fiber layer and the short fiber fiber layer that has been entangled is immersed in a binder mainly composed of acrylate, the drawing ratio is set to 100% by mass, and the amount of the binder adhering to the laminated fiber layer is adjusted. 12.5% by mass. The obtained laminated fiber layer gave a nonwoven fabric for a comparative canister filter having a basis weight of about 457 g / m 2 .
[0027]
Comparative Example 2
Using the same short fiber fiber layer (with the entanglement treatment binder applied) as in Example 1, the basis weight of the polyester long fiber layer having an average fineness of 1.6 dtex obtained by the spun bond method was 110 g / m 2 . Adhesion between the short fiber layer and the fiber layer by the spun bond method was performed in exactly the same manner as in Example 1 to obtain a nonwoven fabric for a comparative canister filter.
[0028]
Thus, each of the nonwoven fabrics obtained in Examples 1 to 4 and Comparative Examples 1 and 2 was evaluated for filtration performance, workability, and activated carbon permeability in order to compare the performance. The results were as shown in Table 1 below.
Each measurement of the basis weight, thickness, peel strength (vertical peel strength) and pore size in the table, and evaluation of filtration performance, workability and activated carbon permeability were performed according to the following methods.
[0029]
(1) Weight per unit area: determined according to the method described in 5.2 of JIS L1906.
(2) Thickness: Measured under a load of 2 Kpa according to the method described in 5.1 of JIS L1906.
(3) Peeling strength: After cutting the test piece into a 5 cm square, a double-sided adhesive tape (NO523, manufactured by Nitto Denko) was applied to both sides, attached to an attaching jig, and vertically moved at 200 mm / min by a Tensilon tensile tester. And the maximum point is measured and expressed as the average value. (Up to the integer position) n = 3
(4) Measurement of pore size: It was measured based on the bubble point method of Coulter porometer ASTMF-361-80 manufactured by Coulter Corporation.
(5) Evaluation of filtration performance: Initial pressure loss (ΔP) and dust retention (DHC) were evaluated based on JIS D1612 automotive air cleaner test method.
[0030]
(Experiment conditions)
a) JIS Class 8 dust (JIS Z8901) dust concentration is 6 g / m 3
b) The element of the air cleaner used for the test is a disk filter medium having an effective area of 1000 cm 2 c) The test wind speed: 25 cm / sec
d) Final pressure loss: 98 Pa [10 mmAg]
(Evaluation)
ΔP: Initial pressure difference before and after sample setting DHC; Dust holding amount at increasing resistance of 300 mmAq
(6) Workability evaluation test Hydraulic clicker (punching machine) HMO-10 type (Hori Iron Works)
Press pressure 3.5 ton (350mm × 500mm)
550mm x 1000mm x 20mm polyethylene Thomson blade (50mm x 100mm x 5)
(Evaluation)
Place the sample on a polyethylene plate, place a Thomson blade on it, and punch with a hydraulic clicker. All five punches do not delaminate.
Delamination should occur even in one punch ×
[0032]
(7) Activated carbon permeability evaluation test counting method filtration tester test piece; 130 mmφ (90 mmφ)
Flow velocity: 18.1 m / min 5.0 cm / sec
10. Particle size supplied; air dust counter; particle size in two sections; 0.3-0.5μ, 0.5-1.0μ, -20μ, 2.0-5.0μ, 5.0μ or more (evaluation)
0/50 ○ No particle passing through 5.0 μm or more of passing particle size, and none of 50 or more passing
> 1/50 × passed one or more
[0033]
Table 1 was prepared as follows based on the above measurements and evaluations.
[0034]
[Table 1]
Figure 2004305853
[0035]
From Table 1 above, it can be seen that the nonwoven fabric according to the example of the present invention is more excellent on average than the nonwoven fabric of the comparative example in terms of workability and activated carbon permeability as well as the amount of retained dust.
[0036]
【The invention's effect】
As described above, the present invention is obtained by bonding a long fiber layer and a short fiber layer to each other with a heat-fusible fiber, and has a pore size of at least 150 μm and a peel strength of 20.0 N / cm 2 or more. It is a non-woven fabric that has the property of removing fine dust in the long fiber layer and preventing the activated carbon from coming off, preventing the fine particles of the activated carbon from coming off, and being less likely to be clogged by dust, etc., and is extremely excellent for canister filters. It has a practical effect.
In particular, if the short fiber layer and long fiber layer are bonded through needle processing, it is difficult to reduce the size of the hole formed by the needle in the spun bond even in the final resin bond, which hinders the function as a canister filter. Adhesion with adhesive fibers improves pore size control and exerts the effect of not exposing activated carbon fine particles to the outside. At the same time, needle punching and resin adhesion are used in combination to form short fiber layers, resulting in hair loss and It has the effect of eliminating displacement and improving dimensional stability.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a nonwoven fabric according to the present invention.
[Explanation of symbols]
1 long fiber layer 2 short fiber layer 3 heat-fusible fiber

Claims (7)

スパンボンド法で得られたポリエステル長繊維の繊維層とポリエステル短繊維の繊維層が熱融着性繊維で接着されてなる不織布であって、該不織布の最大ポアサイズが150μm以下で剥離強力が20.0N/cm以上であることを特徴とする加工性とフィルタ性に優れたキャニスターフィルタ用不織布。21. A nonwoven fabric in which a fiber layer of polyester long fibers and a fiber layer of polyester short fibers obtained by a spunbond method are bonded with heat-fusible fibers, wherein the maximum pore size of the nonwoven fabric is 150 μm or less and the peel strength is 20. 0N / cm 2 or more in processability and filter excellent in canister nonwoven filter, characterized in that. スパンボンド法で得られたポリエステル長繊維の繊維層と、ポリエステル短繊維からなる繊維層が熱融着性繊維により接着されてなる不織布であって、該不織布のポアサイズは最大ポアサイズが150μm以下で、少なくとも95%の捕集効率及び150Pa以下の圧損を有すると共に、剥離強力が20.0N/cm以上であることを特徴とする加工性とフィルタ性に優れたキャニスターフィルタ用不織布。A fiber layer of polyester long fibers obtained by a spunbond method and a nonwoven fabric in which a fiber layer made of polyester short fibers are bonded by a heat-fusible fiber, and the maximum pore size of the nonwoven fabric is 150 μm or less, A nonwoven fabric for a canister filter excellent in workability and filterability, having a collection efficiency of at least 95% and a pressure loss of 150 Pa or less, and having a peel strength of 20.0 N / cm 2 or more. スパンボンド法で得られたポリエステル長繊維の繊度が1.0デシテックスから6.0デシテックスの範囲で、かつ、目付が20g/mから100g/mの範囲である請求項1または2記載の加工性とフィルタ性に優れたキャニスターフィルタ用不織布。 3. The polyester filament according to claim 1, wherein the fineness of the polyester filament obtained by the spun bond method is in a range from 1.0 dtex to 6.0 dtex, and a basis weight is in a range from 20 g / m 2 to 100 g / m 2 . Nonwoven fabric for canister filters with excellent processability and filterability. ポリエステル短繊維の繊維層の構成繊度が細繊度と太繊度からなり、細繊度は1.0デシテックスから5.0デシテックスの範囲で、太繊度は5.0デシテックスから10.0デシテックスの範囲であり、細/太繊維の混繊比率が30/70質量%から50/50質量%で、かつ、目付が150g/mから600g/mの範囲である請求項1,2または3記載の加工性とフィルタ性に優れたキャニスターフィルタ用不織布。The constituent fineness of the fiber layer of the polyester short fiber is composed of fine fineness and large fineness, the fine fineness ranges from 1.0 decitex to 5.0 decitex, and the fine fineness ranges from 5.0 decitex to 10.0 decitex. , mixed fiber percentage of fine / thick fibers is 50/50 wt% to 30/70 wt%, and, processing basis weight according to claim 1, wherein in the range of 150 g / m 2 of 600 g / m 2 Nonwoven fabric for canister filters with excellent properties and filterability. ポリエステル短繊維の繊維層が細繊度と太繊度の混繊からなる短繊維ウエブを交絡し、更に、樹脂接着してなる請求項1,2,3または4記載の加工性とフィルタ性に優れたキャニスターフィルタ用不織布。5. The processability and filterability according to claim 1, 2, 3 or 4, wherein the fiber layer of polyester short fibers is formed by entanglement of a short fiber web composed of a mixture of fineness and fineness and further by resin bonding. Non-woven fabric for canister filter. ポリエステル短繊維の繊維層を構成する接着樹脂がアクリル系の樹脂であり、付着量が繊維層に対して5質量%から20質量%の範囲である請求項5記載の加工性とフィルタ性に優れたキャニスターフィルタ用不織布。6. The processability and filterability according to claim 5, wherein the adhesive resin constituting the fiber layer of the polyester short fiber is an acrylic resin, and the amount of adhesion is in the range of 5% by mass to 20% by mass with respect to the fiber layer. Nonwoven fabric for canister filters. 熱融着性繊維が低融点ポリエステル樹脂からなり、融点が120℃から200℃の範囲で、かつ、ホットメルトシートに形成され、その目付が10g/mから100g/mの範囲である請求項1〜6の何れかの項に記載の加工性とフィルタ性に優れたキャニスターフィルタ用不織布。The heat-fusible fiber is made of a low-melting polyester resin, has a melting point in the range of 120 ° C. to 200 ° C., is formed into a hot melt sheet, and has a basis weight in the range of 10 g / m 2 to 100 g / m 2. Item 7. A nonwoven fabric for a canister filter having excellent workability and filterability according to any one of Items 1 to 6.
JP2003101151A 2003-04-04 2003-04-04 Nonwoven fabric for canister filter Expired - Fee Related JP4226372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101151A JP4226372B2 (en) 2003-04-04 2003-04-04 Nonwoven fabric for canister filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101151A JP4226372B2 (en) 2003-04-04 2003-04-04 Nonwoven fabric for canister filter

Publications (2)

Publication Number Publication Date
JP2004305853A true JP2004305853A (en) 2004-11-04
JP4226372B2 JP4226372B2 (en) 2009-02-18

Family

ID=33465039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101151A Expired - Fee Related JP4226372B2 (en) 2003-04-04 2003-04-04 Nonwoven fabric for canister filter

Country Status (1)

Country Link
JP (1) JP4226372B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104557A (en) * 2006-10-24 2008-05-08 Asahi Kasei Fibers Corp Deodorant and antibacterial sheet and filter material using the same
JP2008138580A (en) * 2006-12-01 2008-06-19 Kureha Ltd Nonwoven fabric for canister filter
JP2008144642A (en) * 2006-12-08 2008-06-26 Kureha Ltd Canister filter structure body
JP2008533348A (en) * 2005-02-04 2008-08-21 ドナルドソン カンパニー,インコーポレイティド Aerosol separator and method
JP2011045795A (en) * 2008-07-30 2011-03-10 Dynic Corp Adsorption filter material and air cleaner
US8404014B2 (en) 2005-02-22 2013-03-26 Donaldson Company, Inc. Aerosol separator
US8512435B2 (en) 2004-11-05 2013-08-20 Donaldson Company, Inc. Filter medium and breather filter structure
JP2014030825A (en) * 2007-11-14 2014-02-20 Nitto Denko Corp Filter member, method for manufacturing the same, and filter unit
CN107096300A (en) * 2016-02-22 2017-08-29 现代自动车株式会社 Air cleaner for fuel-cell vehicle
JP2018143993A (en) * 2017-03-08 2018-09-20 Jnc株式会社 Laminated unwoven fabric and vent filter
CN109435375A (en) * 2018-10-31 2019-03-08 江苏臻中滤料科技有限公司 A kind of dedusting filtering bag
USRE47737E1 (en) 2004-11-05 2019-11-26 Donaldson Company, Inc. Filter medium and structure

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512435B2 (en) 2004-11-05 2013-08-20 Donaldson Company, Inc. Filter medium and breather filter structure
US10610813B2 (en) 2004-11-05 2020-04-07 Donaldson Company, Inc. Filter medium and breather filter structure
US9795906B2 (en) 2004-11-05 2017-10-24 Donaldson Company, Inc. Filter medium and breather filter structure
USRE47737E1 (en) 2004-11-05 2019-11-26 Donaldson Company, Inc. Filter medium and structure
US11504663B2 (en) 2004-11-05 2022-11-22 Donaldson Company, Inc. Filter medium and breather filter structure
USRE49097E1 (en) 2004-11-05 2022-06-07 Donaldson Company, Inc. Filter medium and structure
US8641796B2 (en) 2004-11-05 2014-02-04 Donaldson Company, Inc. Filter medium and breather filter structure
JP2008533348A (en) * 2005-02-04 2008-08-21 ドナルドソン カンパニー,インコーポレイティド Aerosol separator and method
US8460424B2 (en) 2005-02-04 2013-06-11 Donaldson Company, Inc. Aerosol separator; and method
US8177875B2 (en) 2005-02-04 2012-05-15 Donaldson Company, Inc. Aerosol separator; and method
US8404014B2 (en) 2005-02-22 2013-03-26 Donaldson Company, Inc. Aerosol separator
JP2008104557A (en) * 2006-10-24 2008-05-08 Asahi Kasei Fibers Corp Deodorant and antibacterial sheet and filter material using the same
JP2008138580A (en) * 2006-12-01 2008-06-19 Kureha Ltd Nonwoven fabric for canister filter
JP2008144642A (en) * 2006-12-08 2008-06-26 Kureha Ltd Canister filter structure body
JP2014030825A (en) * 2007-11-14 2014-02-20 Nitto Denko Corp Filter member, method for manufacturing the same, and filter unit
JP2011045795A (en) * 2008-07-30 2011-03-10 Dynic Corp Adsorption filter material and air cleaner
US10220343B2 (en) 2016-02-22 2019-03-05 Hyundai Motor Company Air filter for fuel cell vehicle
CN107096300B (en) * 2016-02-22 2021-08-06 现代自动车株式会社 Air filter for fuel cell vehicle
CN107096300A (en) * 2016-02-22 2017-08-29 现代自动车株式会社 Air cleaner for fuel-cell vehicle
DE102016223214B4 (en) 2016-02-22 2023-08-03 Hyundai Motor Company Air filters for fuel cell vehicles and methods of manufacturing such air filters
JP2018143993A (en) * 2017-03-08 2018-09-20 Jnc株式会社 Laminated unwoven fabric and vent filter
CN109435375A (en) * 2018-10-31 2019-03-08 江苏臻中滤料科技有限公司 A kind of dedusting filtering bag

Also Published As

Publication number Publication date
JP4226372B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
US5948344A (en) Composite filter media
US6579350B2 (en) Air laid/wet laid gas filtration media
JP5434076B2 (en) Filter media and filter unit
US8282712B2 (en) Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
JP2009521305A (en) Air purification filter material and manufacturing method thereof
KR100952421B1 (en) Filter element for cleaning inlet air of internal combustion engine and process for preparing the same
JP3802839B2 (en) Nonwoven fabric for filters and filters for engines
US20070220852A1 (en) High Capacity Filter Medium
CN102935314A (en) Process for forming a laminate of a nanoweb and a substrate, and filters utilizing the laminate
JP4226372B2 (en) Nonwoven fabric for canister filter
CN102085437A (en) Filter material for air filtration and application thereof
KR100405318B1 (en) Engine intake air filtering and It&#39;s Manufacturing method
JP4882984B2 (en) Electret filter media and filter unit
KR101099377B1 (en) Complex media for air filter
JP4882985B2 (en) Electret filter media and filter unit
JP2008138580A (en) Nonwoven fabric for canister filter
CN111809307A (en) Filter media and method of making same
JPH06343809A (en) Filter material for air cleaner
JP3573861B2 (en) Filter material for air cleaner and method for producing the same
JP3653395B2 (en) Air cleaner filter media
JP2004270865A (en) Filter material for oil filter for automatic transmission
JP3169377U (en) Nonwoven fabric for canister filter
KR100712258B1 (en) Non-woven fabric for filter and filter for engine
JP2018140373A (en) Nonwoven fabric for air filter
JP7035345B2 (en) filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees