JPH024535B2 - - Google Patents

Info

Publication number
JPH024535B2
JPH024535B2 JP2957981A JP2957981A JPH024535B2 JP H024535 B2 JPH024535 B2 JP H024535B2 JP 2957981 A JP2957981 A JP 2957981A JP 2957981 A JP2957981 A JP 2957981A JP H024535 B2 JPH024535 B2 JP H024535B2
Authority
JP
Japan
Prior art keywords
iron oxide
oxide
powder
iron
hexagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2957981A
Other languages
Japanese (ja)
Other versions
JPS57145034A (en
Inventor
Tadayoshi Karasawa
Katsumi Kono
Katsuji Uchama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magune Co Ltd
Original Assignee
Magune Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magune Co Ltd filed Critical Magune Co Ltd
Priority to JP2957981A priority Critical patent/JPS57145034A/en
Publication of JPS57145034A publication Critical patent/JPS57145034A/en
Publication of JPH024535B2 publication Critical patent/JPH024535B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

通常、顔料やフエライト磁性体などに用いてい
る酸化鉄は、硫酸鉄、塩化鉄、ミルスケールなど
を加熱処理して酸化鉄とするが、鉄イオン溶液に
アルカリを投じて水酸化物とし、次いで焙焼する
か或いは黄鉄鉱を焙焼して酸化鉄とする方法など
によつて供給されている。これらの酸化鉄中、ミ
ルスケールを焙焼酸化後粉砕したものは、密度の
高い良い粉体特性をもつが、粒形は不定形で活性
が若干低い。そのため粒形をなるべく小さくする
必要がある。しかし、高密度で硬い物質を1μ以
下の粒径まで粉砕することは困難である。また、
硫酸鉄、塩化鉄を分解して得た酸化鉄は、脱酸根
処理を十分に行ない、かつ、粉体特性を調整しな
いと使用上不利なことが多く発生する。例えば、
酸根の残存は添加物質と反応し、フエライト化の
妨害又は組成変化の原因となり、粉体特性の不適
性は粉体の成形時にクラツクの発生、縮率が適正
値より逸脱し、成形密度の低下、機械的強度の低
下などの欠陥が生ずる。そのため、或る一定の規
格の下に調整して安定化を図り、その規格に対応
する製品が市場に供給されている。このように、
酸化鉄の供給源は多岐多様であるが、この通常の
酸化鉄の粉子形状は、不定形のものが多く、ま
た、磁気記録用として針状形のものがある。 また、通常の酸化鉄によるフエライト用とし
て、特にBa,Sr,La系磁石に使用する例を示す
と、酸化鉄約5〜6モル%に対し炭酸バリユウム
1モル%を混合する。この混合法は、湿式又は乾
式の何れでもよいが、密混する必要のある場合
は、湿式法が好ましい結果を得る。次いで、この
混合物を加熱すれば、ここで初めて六方晶系強磁
性体となる。この磁性体の結晶軸方向は、規則性
はなく、いわゆる等方性となる。若し、この混合
粉末を仮焼前に、磁界中に仮成形しても、印加磁
界の効果は殆どなく配向されない。 ここにおいて本発明者等は、酸化鉄粉末の一次
粒子が、ほぼ六方晶系結晶構造又は劈開面を有す
る特長をもち、かつ、微弱ながら強磁性を有する
物を創ることによつて、活性度の高い酸化鉄を得
ることに成功したものである。而して、本発明に
おける製造法は、先ず、通常の酸化鉄粉末に対
し、主添加物A群としてCa,Mg,Be,Cd,
Co,Cr,Cu,Mn,Zn,Sなどの成分酸化物を
0.02%〜6%(成分酸化物を0.02%以下では効果
が小さいので、0.02%以上とし、6%を超すと活
性の低下及び最終成品の磁性特性の特長がなくな
るので、6%以下とした。)、多い物では10%以下
で混合する。これらの酸化物は、一種又は二種以
上の多種混合体でもよいが、総合計として10%を
超えない(総合計として10%を超えた量を混合す
ると、特長ある磁性体を造ることが困難となるの
で、10%以下とする。)。さらに、これに対しB群
として、SiO20.05%〜10%(SiO2は0.1%以下で
は焼結密度が上がらないので、0.1%以上とし、
6%を超すと磁気特性が劣化するので、6%以下
とした。)、Al2O30.1〜4%(Al2O3は0.1%以下で
は保持力の上昇には効果が小さいので、0.1%以
上とし、4%を超すと磁束密度が減少するので、
4%とした。)を添加し、これらをよく混合する。
この混合粉末を母体とし、これに結晶生成の種結
晶である六方晶系酸化物がPbFe7.5Mn3.5Al0.5
Ti0.5O19或いはM2+O・6Fe2O3(ここにM2+はBa,
Sr,Pb,Caを示す。)を添加する。六方晶系種
酸化物の添加量は、多量であつても差し支えない
が、0.5%以下では六方晶系への結晶化に効果が
小さいので0.5%以上とし、最高4%以下とする。
強磁性亜鉛ナマリ酸塩に関しては、前述と同様な
理由で0.5%以上としたが、Ba,Sr,Pb,Ca,
の各金属イオン独特の特性を現わすために、又は
汎用性のために10%以下に留めたい。 以上説明した各酸化物中M2+O・6Fe2O3は、
六方晶系結晶構造をもち、強磁性を示す。一般
に、これらを強磁性亜ナマリ酸塩(magnet
plumbite マグネツトプラムバイト)という。 以上のようにA,B群が必要とする成分と、種
結晶酸化物との混合物を仮焼すれば、本発明によ
り活性の高い酸化鉄が得られる。 次に、上記各添加成分の添加量の限界について
述べると、若しA群添加物を10%以上に増加する
と、六方晶、三方晶又は等軸晶系その他の磁性を
もつ各種の混成物が形成され易くなる。そして、
添加物の組合せ及びその量の選択で生成された物
質の性質が著しく異なり、これを他のフエライト
に応用するときに支障を来すことになる。また、
その添加量は0.02%以下であると結晶構造による
効果が少なくなるので、下方の限界とした。酸化
鉄へ添加するA群又はB群の添加物は、その成分
の選択並びに組合せは自由で、その添加量は種結
晶酸化物によつて調整する。例えば、種結晶酸化
物に含まれるSiO2又はこれらに対するTiOと、
Al2O3又はこれらに対する二価金属M2+の量が多
く。更に、これらに添加される酸化鉄中のそのも
のと合計が多いときには、A群又はB群の添加物
量は軽減し、全含有量は、0.02%まで減少しても
よく、少量であるときは6%までの間で適宜増加
して混合する。この比率は、概略の数値であつ
て、厳密に規制する必要はない。以上の注意の下
に調整された混合粉末は、そのまま造粒して仮焼
してもよいが、磁界中で配向しつつ仮成形し仮焼
すれば、より好ましい結果が得られる。湿式法で
は、混合粉末をスラリーとし、磁界中で圧縮脱水
して適当な形状の塊状物にして仮焼する。 湿式調整法は、通常知られるように、鉄イオン
溶液及び添加成分イオン溶液に、アルカリを投じ
て中和し濾過水洗する。この水洗が不十分である
と、例えばSO4イオンとBaCO3が反応し、BaSO4
となつて磁気特性を劣化するので十分水洗し、こ
れに種結晶酸化物を添加混合する。この混合物を
磁界中、圧縮脱水後仮焼して調整する。ここで、
使用原料中にはCr2O3,As2O3,PbO,CdO,
MnO,NiO2などが含有する場合があるが、これ
らのものは、不溶性にするように十分注意を払
い、仮焼や本焼の際にガスとして飛散しないよう
に注意をする必要もある。また、焼結後の研磨粉
及び洗浄液の処理も十分に管理することを必要と
する。 次に、反応工程を示すと、加熱温度は700℃付
近から1450℃の間で行なわれるが、低加熱温では
加熱時間を長くする必要があり、高い加熱温では
短時間で結晶が生長する。しかし、1450℃以上で
は、FeOの生成が多くなるので、それを限界とし
た。ただし、湿式法では高温側焼成温度は、1200
℃で十分である。また、種結晶酸化物の添加量が
多いときは、比較的に低い加熱温でもよいが、高
加熱温であると短時間ですむ。しかし、種結晶酸
化物の添加量が少ないときは、低温で加熱時間を
長くする必要がある。若し、高温で加熱すると、
種結晶酸化物によつて六方晶系結晶に生長し、あ
るいはそれを熟成する間に残余の酸化鉄部分がそ
のまま焼結してしまう恐れがある。 粉砕は、通常用いられる粉砕機により、成るべ
く衝撃作用を主とした粉砕法を採るのがよい。こ
れは裂開し易くし、その劈開面の活性を多くし
て、その保護も兼ねるためである。そのため、分
級機を付けて、過粉砕による活性と粒度分布の劣
化を防止するとよい。粒径に就いて述べると、通
常の酸化鉄では1μ程度、又はそれ以下のものが
用いられるが、本発明の活性酸化鉄をフエライト
原料に使用する場合、2〜4μの粒径でも優良な
特性を得ることができ、十分に添加元素が酸化鉄
に拡散してフエライト化する。それは、この酸化
鉄の粒子が基本的には六方晶系の構造をもち、そ
の結晶の劈開面より裂開させることにより、活性
が高まるために起こる現象と認められる。この粉
粒体を更に粉砕して微粉にした場合、粒子形は板
状形から不定形の粒子と見られるものとなるが、
基本的には劈開面をもつ微粉である。 以上述べたように、調整された本発明の酸化鉄
には、一般的には不純物とみなされる物質が多く
含有されているのであるが、これらの成分が反応
の過程において前記物質の結晶化に役立ち、冷却
過程で析出することも考えられ、結局は、過剰成
分又は夾雑物として存在しても、本酸化鉄は、そ
れらの持つ活性が優勢で不純物としての毒性作用
を抑制するので、不純物とはみない。このこと
は、組成を厳密にする必要がないことを示し、工
業上至便である。 次に、仮焼品磁性体の製造について述べるに、
仮焼品磁性体は、本酸化鉄と主成分とを混合して
そのまま又は加圧し、或いは磁界中で加圧して仮
焼するが、この工程は一般に知られている方法で
よい。先ず、本酸化鉄とBa,Sr,Laなどの炭酸
塩を5.0〜6.0対1モルの比率で混合し、等方性用
材料の場合は1050〜1200℃、異方性では1100〜
1300℃の温度で加熱する。この等方性仮焼品では
約2μ程度、異方性では0.6μ程度に調整して用い
る。前者の等方性磁性粉の粒径は、通常のフエラ
イト原料粉末の0.5〜1μに比し異常に大きいが、
粉体の流動性、これに伴う金型への充填率、成形
性などがよい。さらに、焼結温度は、一般の材料
より低いのにかかわらず、高密度となり、かつ、
特性が良好である。また、焼結時の縮率が一般的
な数値は15%であるが、本発明のものは10%でか
なり低い。このことは、焼成炉への充填量の増加
ができるし、焼成後の寸法の精度向上などの利点
がある。若し、既存の金型を利用する場合は、こ
の強磁性粉の粒径を2μより1μ程度まで紛砕を進
めると、最適焼結温度は更に1180℃付近まで下が
り、縮率は上昇して14〜17%程度の値を示し、焼
結密度も同様に高く磁気特性もよい。このような
特記すべき特長は、製造技術上頗る有利である。
また、酸化鉄に含有する成分の前記A,B両群の
総和が次に示すような最小値のものであつても、
なお本目的の結晶構造と、弱いながらも強磁性体
である特長を有しているので、磁界配向効果があ
る。即ち、この発明による酸化鉄と通常の酸化鉄
の両者を用意し、これらにBaCO3及びSiO2をそ
れぞれ添加し混合の後、両者をそれぞれ磁界中で
本成形してから本焼成を行なつた結果であり、仮
焼工程を省いている。この発明による酸化鉄の組
成は次のとおりであり、ちなみにこの酸化鉄の磁
性は、0.8emuを示した。 SiO2 0.4、Al2C3 0.5、CaO 0.05、CoO 0、
MgO 0.03、MnO 0.02、TiO2 0.04、Fe2O3 Bal この酸化鉄と、鉄鋼酸洗の副成品の酸化鉄を用
いて造つた磁性材料の比較を下表に示す。
Iron oxide, which is normally used in pigments and ferrite magnetic materials, is made by heat-treating iron sulfate, iron chloride, mill scale, etc., but it is made into hydroxide by pouring an alkali into an iron ion solution, and then It is supplied by roasting or by roasting pyrite to produce iron oxide. Among these iron oxides, mill scale obtained by roasting, oxidizing, and pulverizing has good powder characteristics with high density, but the grain shape is irregular and the activity is slightly low. Therefore, it is necessary to make the grain size as small as possible. However, it is difficult to crush dense and hard materials to particle sizes of 1μ or less. Also,
Iron oxide obtained by decomposing iron sulfate and iron chloride is often disadvantageous in use unless it is sufficiently deoxidized and its powder characteristics are adjusted. for example,
Remaining acid radicals react with additives and cause ferrite conversion or composition changes, and unsuitable powder properties can cause cracks to occur during powder molding, shrinkage ratio to deviate from the appropriate value, and a decrease in molded density. , defects such as a decrease in mechanical strength occur. Therefore, products that are stabilized by adjusting according to certain standards are supplied to the market. in this way,
Although there are a wide variety of sources for supplying iron oxide, the shape of the powder of this normal iron oxide is often amorphous, and there is also a needle-shaped powder for magnetic recording. Further, for use in ferrite using ordinary iron oxide, particularly for use in Ba, Sr, and La magnets, 1 mol % of barium carbonate is mixed with about 5 to 6 mol % of iron oxide. This mixing method may be either wet or dry, but if intimate mixing is required, the wet method yields preferable results. Next, when this mixture is heated, it becomes a hexagonal ferromagnetic material for the first time. The crystal axis direction of this magnetic material has no regularity and is so-called isotropic. Even if this mixed powder is temporarily formed in a magnetic field before calcination, the applied magnetic field has almost no effect and is not oriented. Here, the present inventors have developed a product in which the primary particles of iron oxide powder have an almost hexagonal crystal structure or cleavage plane, and have weak ferromagnetism, thereby increasing the activity. This method succeeded in obtaining high iron oxide. Therefore, in the production method of the present invention, first, Ca, Mg, Be, Cd,
Component oxides such as Co, Cr, Cu, Mn, Zn, S etc.
0.02% to 6% (If the component oxide is less than 0.02%, the effect is small, so it is set to 0.02% or more, and if it exceeds 6%, the activity decreases and the final product loses its magnetic properties, so it was set to 6% or less. ), if there is a large amount, mix at 10% or less. These oxides may be one type or a mixture of two or more types, but the total amount does not exceed 10% (if the total amount exceeds 10%, it will be difficult to create a distinctive magnetic material) Therefore, it should be 10% or less.) Furthermore, as group B, SiO 2 0.05% to 10% (SiO 2 does not increase the sintered density if it is less than 0.1%, so it should be 0.1% or more,
If it exceeds 6%, the magnetic properties will deteriorate, so it is set to 6% or less. ), Al 2 O 3 0.1 to 4% (Al 2 O 3 has little effect on increasing coercive force if it is less than 0.1%, so it should be made to be 0.1% or more, and if it exceeds 4%, the magnetic flux density will decrease, so
It was set at 4%. ) and mix them well.
This mixed powder is used as a matrix, and the hexagonal oxide that is the seed crystal for crystal formation is PbFe 7.5 Mn 3.5 Al 0.5
Ti 0.5 O 19 or M 2+ O・6Fe 2 O 3 (here M 2+ is Ba,
Indicates Sr, Pb, and Ca. ) is added. The amount of hexagonal seed oxide added may be large, but if it is less than 0.5%, the effect on crystallization into a hexagonal system will be small, so it should be 0.5% or more, and the maximum is 4% or less.
Regarding ferromagnetic zinc namarate, it was set at 0.5% or more for the same reason as mentioned above, but Ba, Sr, Pb, Ca,
In order to express the unique characteristics of each metal ion, or for versatility, we want to keep it below 10%. M 2+ O・6Fe 2 O 3 in each oxide explained above is
It has a hexagonal crystal structure and exhibits ferromagnetism. Generally these are ferromagnetic namalites (magnet
plumbite (magnetic plumbite). By calcining the mixture of the components required by Groups A and B and the seed crystal oxide as described above, highly active iron oxide can be obtained according to the present invention. Next, regarding the limits of the amount of each of the above additive components, if the amount of Group A additives is increased to 10% or more, various hybrids with hexagonal, trigonal, equiaxed crystal system, and other magnetic properties will be generated. more likely to form. and,
Depending on the combination of additives and the selection of their amounts, the properties of the resulting material vary significantly, which poses a problem when applied to other ferrites. Also,
If the amount added is 0.02% or less, the effect of the crystal structure will be reduced, so the lower limit was set. The additives of group A or group B added to iron oxide can be freely selected and combined, and the amount added is adjusted by the seed crystal oxide. For example, SiO 2 contained in the seed crystal oxide or TiO for these,
Large amount of Al 2 O 3 or divalent metal M 2+ for these. Furthermore, when the total content of iron oxides added to these is large, the amount of group A or group B additives is reduced, and the total content may be reduced to 0.02%, and when it is a small amount, it is 6%. % and mix accordingly. This ratio is a rough value and does not need to be strictly regulated. The mixed powder prepared with the above precautions may be granulated and calcined as it is, but more preferable results can be obtained if the powder is preformed and calcined while being oriented in a magnetic field. In the wet method, a mixed powder is made into a slurry, compressed and dehydrated in a magnetic field, and then calcined into a lump of an appropriate shape. In the wet preparation method, as is generally known, an alkali is added to the iron ion solution and the additive component ion solution to neutralize the solution, followed by filtration and washing with water. If this water washing is insufficient, for example, SO 4 ions and BaCO 3 will react, and BaSO 4
Since this deteriorates the magnetic properties, the material is thoroughly washed with water, and a seed crystal oxide is added and mixed therein. This mixture is compressed and dehydrated in a magnetic field and then calcined to prepare the mixture. here,
The raw materials used include Cr 2 O 3 , As 2 O 3 , PbO, CdO,
It may contain MnO, NiO 2, etc., but care must be taken to make these substances insoluble and to prevent them from scattering as gas during calcination and final firing. Furthermore, the treatment of polishing powder and cleaning liquid after sintering also needs to be adequately controlled. Next, the reaction process is shown. The heating temperature is from around 700°C to 1450°C. At low heating temperatures, it is necessary to increase the heating time, and at high heating temperatures, crystals grow in a short time. However, above 1450°C, more FeO is produced, so this was set as the limit. However, in the wet method, the firing temperature on the high-temperature side is 1200
°C is sufficient. Further, when a large amount of seed crystal oxide is added, a relatively low heating temperature may be used, but a high heating temperature will require only a short time. However, when the amount of seed crystal oxide added is small, it is necessary to increase the heating time at a low temperature. If heated at high temperature,
There is a risk that the remaining iron oxide portion may grow into a hexagonal crystal due to the seed crystal oxide, or may be sintered as it is while the hexagonal crystal is matured. The pulverization is preferably carried out using a commonly used pulverizer, preferably using a pulverization method mainly based on impact action. This is to make it easier to cleave, increase the activity of the cleavage plane, and also serve to protect it. Therefore, it is recommended to install a classifier to prevent deterioration of activity and particle size distribution due to over-pulverization. Regarding the particle size, for ordinary iron oxide, particles of about 1 μm or less are used, but when the activated iron oxide of the present invention is used as a ferrite raw material, excellent properties can be obtained even with a particle size of 2 to 4 μm. can be obtained, and the added elements are sufficiently diffused into iron oxide to form ferrite. This is recognized to be a phenomenon that occurs because the iron oxide particles basically have a hexagonal crystal structure, and their activity increases when they are split from the cleavage plane of the crystal. When this granular material is further crushed into fine powder, the particle shape changes from plate-like to what appears to be irregularly shaped particles.
Basically, it is a fine powder with cleavage planes. As mentioned above, the prepared iron oxide of the present invention contains many substances that are generally considered to be impurities, but these components cause the crystallization of the substances during the reaction process. It is thought that iron oxides are useful and may precipitate during the cooling process, and even if they exist as excess components or impurities, the present iron oxides have a predominant activity and suppress the toxic effects of impurities, so they are not treated as impurities. I don't see it. This shows that there is no need to make the composition strict, which is industrially convenient. Next, we will discuss the production of calcined magnetic material.
The calcined magnetic material is calcined by mixing the present iron oxide and the main component and calcining the mixture as it is or by pressurizing it, or by pressurizing it in a magnetic field, and this step may be performed by a generally known method. First, this iron oxide and carbonates such as Ba, Sr, and La are mixed at a ratio of 5.0 to 6.0 to 1 mole, and heated to 1050 to 1200°C for isotropic materials and 1100 to 1100°C for anisotropic materials.
Heat at a temperature of 1300℃. For this isotropic calcined product, it is adjusted to about 2μ, and for anisotropic, it is adjusted to about 0.6μ. The particle size of the former isotropic magnetic powder is abnormally large compared to 0.5 to 1μ of normal ferrite raw material powder,
Powder fluidity, mold filling rate, moldability, etc. are good. Furthermore, although the sintering temperature is lower than that of general materials, it has a high density, and
Good characteristics. Furthermore, the shrinkage ratio during sintering is generally 15%, but the shrinkage ratio of the present invention is 10%, which is quite low. This has the advantage of increasing the amount of filling into the firing furnace and improving the accuracy of dimensions after firing. If an existing mold is used, if the particle size of this ferromagnetic powder is reduced from 2μ to around 1μ, the optimal sintering temperature will further drop to around 1180℃, and the shrinkage rate will increase. It shows a value of about 14 to 17%, the sintered density is similarly high, and the magnetic properties are good. These noteworthy features are extremely advantageous in terms of manufacturing technology.
Furthermore, even if the sum of both groups A and B of the components contained in iron oxide is the minimum value as shown below,
It should be noted that since it has the desired crystal structure and the feature of being a weak ferromagnetic material, it has a magnetic field orientation effect. That is, both iron oxide according to the present invention and ordinary iron oxide were prepared, BaCO 3 and SiO 2 were added to them, and after mixing, both were formed in a magnetic field and then fired. As a result, the calcination process is omitted. The composition of the iron oxide according to this invention is as follows, and the magnetism of this iron oxide was 0.8 emu. SiO 2 0.4, Al 2 C 3 0.5, CaO 0.05, CoO 0,
MgO 0.03, MnO 0.02, TiO 2 0.04, Fe 2 O 3 Bal The table below shows a comparison of magnetic materials made using this iron oxide and iron oxide, a by-product of pickling steel.

【表】 上表に示すように、本品においては、直径と高
さの方向に僅かに差が生じて本品の特質を表わし
ている。 叙述の如く、この発明によつて得た酸化鉄は、
従来品には見られない多種の特長がある。 次に、この発明の実施例を示す。 実施例 1 FeO3 96%、CaCO3 1%、SiO2 1%、
BaCO3 1%、Al2O3 1%を密混し、これに種結
晶酸化物として六方晶系物質であるBaO・
5.2Fe2O3粉末を30容量%混入し、ペレツト状にな
して1100℃に加熱し冷却後、アトマイザーで粉砕
して六方晶系酸化鉄とする。これをΘ酸化鉄
(ΘFe2O3)と呼称する。 このΘ酸化鉄粉をバリウム磁石製造に応用する
ときは、ΘFe2O3 89.5%、BaCO3 10%、CaCO3
0.5%を密混し、仮焼の後、粉砕して約0.9μの粉
末とし磁界中で成形して、これを1240℃で焼成す
る。 本成品の特性は、次のとおりである。
[Table] As shown in the table above, there are slight differences in the diameter and height of this product, which represent the characteristics of this product. As described, the iron oxide obtained by this invention is
It has a variety of features not found in conventional products. Next, examples of this invention will be shown. Example 1 FeO 3 96%, CaCO 3 1%, SiO 2 1%,
BaCO 3 1% and Al 2 O 3 1% are mixed closely, and BaO, a hexagonal crystal substance, is added as a seed crystal oxide.
5.2 Mix 30% by volume of Fe 2 O 3 powder, make it into a pellet, heat it to 1100℃, cool it, and then crush it with an atomizer to make hexagonal iron oxide. This is called Θiron oxide (ΘFe 2 O 3 ). When applying this Θ iron oxide powder to barium magnet production, ΘFe 2 O 3 89.5%, BaCO 3 10%, CaCO 3
0.5% is intimately mixed, calcined, and then ground into a powder of approximately 0.9μ, compacted in a magnetic field, and fired at 1240°C. The characteristics of this product are as follows.

【表】 上記において、特性の大きな差は、本発明のΘ
酸化鉄が既に強磁性を有し、かつ、高密度である
ためである。 実施例 2 Fe2O3 95.5%、SiO2 0.2%、MnO 0.1%、
MgO 0.1%、Al2O3 0.1%の物質に対し、種結晶
酸化物の微粉を50%添加密混し、1100℃で加熱し
て冷却後、粒径2μ以下に粉砕する。これに、
BaCO3を20%添加混合し、仮焼粉砕して所要の
形状の金型に充填し加圧形成後、1180℃に加熱放
冷する。 本成品の特性は、次のとおりである。
[Table] In the above, the large difference in characteristics is the Θ of the present invention.
This is because iron oxide already has ferromagnetism and is highly dense. Example 2 Fe 2 O 3 95.5%, SiO 2 0.2%, MnO 0.1%,
To a substance containing 0.1% MgO and 0.1% Al 2 O 3 , 50% fine powder of seed crystal oxide is added and mixed closely, heated at 1100°C, cooled, and pulverized to a particle size of 2μ or less. to this,
20% BaCO 3 is added and mixed, calcined and pulverized, filled into a mold of the desired shape, formed under pressure, and then heated to 1180°C and allowed to cool. The characteristics of this product are as follows.

【表】 実施例 3 Fe2O3 98.2%、SrCO3 1%、CaCO3 0.5%、
SiO2 0.2%、Al2O3 0.1%の合計の80%に対し、
SrO・5.4Fe2O3粉末20%を添加し、1200℃にて20
分加熱し冷却後、粉砕してΘ酸化鉄粉とする。 上記Θ酸化鉄を応用したストロンチウム磁石
は、Θ酸化鉄に対しSrCO3を15%、SiO2 0.3%を
加えて、よく密混し適宜な形状に固め、1100℃で
加熱、冷却して2μ以下の粒径に粉砕し、これを
所要の金型で圧縮成形して1200℃で焼結する。 本成品の特性は、次のとおりである。
[Table] Example 3 Fe 2 O 3 98.2%, SrCO 3 1%, CaCO 3 0.5%,
For 80% of the total of SiO 2 0.2% and Al 2 O 3 0.1%,
Added 20% SrO・5.4Fe 2 O 3 powder and heated at 1200℃ for 20
After heating for several minutes and cooling, it is crushed to obtain Θ iron oxide powder. Strontium magnets using the above Θ iron oxide are made by adding 15% SrCO 3 and 0.3% SiO 2 to Θ iron oxide, mixing well and solidifying it into an appropriate shape, heating it at 1100°C, and cooling it to a size of 2μ or less. The powder is crushed to a particle size of , compression molded in the required mold, and sintered at 1200℃. The characteristics of this product are as follows.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 酸化鉄を主体とし、該酸化鉄に対し、Ca,
Mg,Ti,Ni,Cd,Mn,Co,Cr,Cu,Zn,S
及びBeの酸化物、又はBaCO3,SrCO3など加熱
によつて酸化物となる一種以上の物質を重量比で
0.02%〜6%、SiO2を0.1%〜10%及びAl2O3
0.1%〜4%含ませた混合物に、さらに六方晶系
種酸化物、強磁性亜ナマリ酸塩の何れかを、又は
両者の混合物を重量比で0.5%〜50%混合したも
のを、700℃〜1450℃の温度範囲に加熱したのち
冷却し、これを衝撃作用により粉砕することから
なる、劈開面を有する六方晶系の結晶構造をもつ
磁性鉱石粉の製造法。
1 Mainly composed of iron oxide, with respect to the iron oxide, Ca,
Mg, Ti, Ni, Cd, Mn, Co, Cr, Cu, Zn, S
and Be oxide, or one or more substances that become oxides when heated, such as BaCO 3 and SrCO 3 , in weight ratio.
0.02% ~ 6%, SiO2 0.1%~10% and Al2O3
A mixture containing 0.1% to 4% of hexagonal seed oxide, ferromagnetic namalite, or a mixture of both at a weight ratio of 0.5% to 50% was heated at 700°C. A method for producing magnetic ore powder having a hexagonal crystal structure with cleavage planes, which comprises heating to a temperature range of ~1450°C, cooling, and pulverizing it by impact action.
JP2957981A 1981-03-02 1981-03-02 Cleavable magnetic iron oxide and its production Granted JPS57145034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2957981A JPS57145034A (en) 1981-03-02 1981-03-02 Cleavable magnetic iron oxide and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2957981A JPS57145034A (en) 1981-03-02 1981-03-02 Cleavable magnetic iron oxide and its production

Publications (2)

Publication Number Publication Date
JPS57145034A JPS57145034A (en) 1982-09-07
JPH024535B2 true JPH024535B2 (en) 1990-01-29

Family

ID=12280006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2957981A Granted JPS57145034A (en) 1981-03-02 1981-03-02 Cleavable magnetic iron oxide and its production

Country Status (1)

Country Link
JP (1) JPS57145034A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122605A (en) * 1984-07-10 1986-01-31 Daido Steel Co Ltd Oxide permanent magnet
JPS63186402A (en) * 1987-01-28 1988-08-02 Sumitomo Special Metals Co Ltd Ferrite magnet
JP5160129B2 (en) * 2007-04-05 2013-03-13 関東電化工業株式会社 Flaky iron oxide fine particles, flaky Fe-based metal fine particles, and methods for producing them

Also Published As

Publication number Publication date
JPS57145034A (en) 1982-09-07

Similar Documents

Publication Publication Date Title
CN112624750A (en) Preparation method of Z-shaped hexaferrite material
JPH024535B2 (en)
US6761830B1 (en) Method for making m- type hexaferrite powders or wafers
JPH0766027A (en) Manufacture of strontium ferrite magnet
JPH01112705A (en) Manufacture of oxide permanent magnet
JPH05182820A (en) Manufacture of anisotropic ferrite magnet
CN112321292A (en) Method for manufacturing sintered ferrite pre-sintering material
JPH03108302A (en) Manufacture of magnetic ferrite powder for bonded magnet
JPS6217841B2 (en)
JPH03242908A (en) Manufacture of raw material for ferrite magnet
JPH11307331A (en) Ferrite magnet
JPS58156575A (en) Manufacture of oxide permanent magnet
JPH06290923A (en) Manufacture of ferrite magnet
JPH03177002A (en) Manufacture of strontium ferrite magnet having high residual flux density and coercive force
KR100428559B1 (en) Simple fabrication method of hard ferrite powder using mill scale
JPH0438807A (en) Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force
JPH0543248A (en) Method for controlling density of raw oxides for ferrite
JPH05217729A (en) Production of magnetic powder for sr-ferrite magnet
JPS6313324B2 (en)
CN109133903A (en) A kind of Br has the high-performance permanent-magnet ferrite and preparation method thereof of excessive temperature stability
JPH0555024A (en) Manufacture of hard ferrite
JPH07211533A (en) Method of manufacturing oxide magnetic material
JPS59213105A (en) Manufacture of oxide permanent magnet material
JPH0529122A (en) Production of magnetic powder for ferrite magnet
JPH0653020A (en) Oxide permanent magnet