JPH0244662A - Electric terminal extending through sealed container - Google Patents

Electric terminal extending through sealed container

Info

Publication number
JPH0244662A
JPH0244662A JP19415988A JP19415988A JPH0244662A JP H0244662 A JPH0244662 A JP H0244662A JP 19415988 A JP19415988 A JP 19415988A JP 19415988 A JP19415988 A JP 19415988A JP H0244662 A JPH0244662 A JP H0244662A
Authority
JP
Japan
Prior art keywords
cable
container
electrical terminal
closed container
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19415988A
Other languages
Japanese (ja)
Inventor
Mitsuaki Mochizuki
光明 望月
Kazuhide Okazaki
一英 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okazaki Manufacturing Co Ltd
Original Assignee
Okazaki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okazaki Manufacturing Co Ltd filed Critical Okazaki Manufacturing Co Ltd
Priority to JP19415988A priority Critical patent/JPH0244662A/en
Publication of JPH0244662A publication Critical patent/JPH0244662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Connections Arranged To Contact A Plurality Of Conductors (AREA)

Abstract

PURPOSE:To prevent cracks from occurring in an airtightly sealed portion by extending an MI cable, having an aluminum sheath whose both ends or one end is airtightly sealed and insulated with powder member, through a sealed aluminum container and welding therebetween. CONSTITUTION:An MI cable 3, in which ceramics powder member is used as an insulator for an aluminum sheath, is extended through a vacuum sealed container 1 formed of aluminum, and the container 1 and the cable 3 are welded together airtightly by a laser. The difference between the thermal expansion coefficients occurring at that time is absorbed by the powder member as the insulator, because the thermal expansion coefficients are nearly equal, so that cracks will never produced in the airtightly sealed portion. Further, airtight sealing is effected at both ends or one end of the cable 3 by ceramics which chemically reacts with the insulating powder member so that the stress due to the expansion of the container 1 is not transmitted hence cracks will never occur. Thus, the cracks in the airtightly sealed portion due to the difference between the thermal expansion of the container and the cable is prevented from occurring.

Description

【発明の詳細な説明】 r gi M上の利用分野」 本発明は真空容器や圧力容器などの密閉容器をfT通す
る密閉容器貫通電気端子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application on r gi M] The present invention relates to a closed container penetrating electrical terminal that passes fT through a closed container such as a vacuum vessel or a pressure vessel.

[従来の技術」 真空容器や圧力容器などの密閉容器に用いられる密封電
気端子としては、アルミナなどのセラミックスやガラス
の絶縁体と、この絶縁体と熱膨張係数の近いコバールな
どの金属を組み合わせたハーメチック端子が用いられて
いる。ハーメチック端子でコバールなどの金属を用いた
のは1通常の金属ではセラミックスやガラスの絶縁体と
熱膨張係数が非常に異なるため、温度変化によって熱膨
張差が絶縁体と金属との間に発生し、接合部において割
れが発生してしまうからである。
[Conventional technology] Sealed electrical terminals used in closed containers such as vacuum vessels and pressure vessels are made by combining ceramic or glass insulators such as alumina with metals such as Kovar, which have a coefficient of thermal expansion similar to that of the insulators. Hermetic terminals are used. The reason why metals such as Kovar are used in hermetic terminals is 1. Normal metals have very different thermal expansion coefficients from ceramic or glass insulators, so a difference in thermal expansion occurs between the insulator and the metal due to temperature changes. This is because cracks will occur at the joint.

第7図に従来のハーメチック端子の例を示す。ステンレ
ス容器101の開口にコバールなどの金属の電気端子+
02を挿通させてコバールなどの筒体103を嵌め電気
的に絶縁するためのセラミックスやガラスの絶縁体+0
4を介在させて密封する。電気端子102と絶縁体10
4、絶縁体+04と筒体103とをそれぞれろう材+0
5 106で接合する。ここで使用するろう材105・
106は、金ろう、銀ろう、接合すべきセラミックスや
ガラスにメタライズ処理を施す必要のないろう材などで
ある。さらに、筒体103を容器+01に溶接する。こ
こで電気端子102、絶縁体104.筒体103は互い
に熱膨張係数が近いので、温度が変化しても電気端子+
02と絶縁体104、絶縁体104と筒体103との間
に割れは生じない。また、筒体103と容器101は、
弾性を有するので、温度が変化しても熱膨張差を吸収し
て割れは生じない、このようにして温度が変化しても気
密性を保持する貫通ハーメチック電気端子が形成されて
いる。
FIG. 7 shows an example of a conventional hermetic terminal. Connect a metal electrical terminal such as Kovar to the opening of the stainless steel container 101.
An insulator made of ceramics or glass for electrically insulating +0 by inserting 02 into it and fitting the cylinder 103 such as Kovar.
4 and seal. Electrical terminal 102 and insulator 10
4. Insulator +04 and cylindrical body 103 are each filled with brazing material +0
5 Join at 106. Brazing filler metal 105 used here
Reference numeral 106 indicates gold solder, silver solder, or a brazing material that does not require metallization treatment on the ceramics or glass to be joined. Furthermore, the cylindrical body 103 is welded to the container +01. Here, an electric terminal 102, an insulator 104. Since the cylindrical bodies 103 have similar coefficients of thermal expansion, even if the temperature changes, the electrical terminal +
No cracks occur between 02 and the insulator 104, and between the insulator 104 and the cylinder 103. Moreover, the cylinder 103 and the container 101 are
Because it has elasticity, it absorbs the difference in thermal expansion and does not crack even when the temperature changes.In this way, a through-hermetic electrical terminal that maintains airtightness even when the temperature changes is formed.

「発明が解決しようとする課題」 ところで最近、超高真空容器としてガスが発生しにくい
アルミニウムもしくはアルミニウム合金の容器を用いる
ことが多くなってきた。アルミニウムもしくはアルミニ
ウム合金はコバールに比して融点が大変低くゆっくり接
合するとアルミニラ11もしくはアルミニウム合金は融
けてしまう。
"Problem to be Solved by the Invention" Recently, containers made of aluminum or aluminum alloy, which are less likely to generate gas, have been increasingly used as ultra-high vacuum containers. Aluminum or aluminum alloy has a much lower melting point than Kovar, and if joined slowly, Aluminum 11 or aluminum alloy will melt.

このように、アルミニウムとコバールは融点が非常に異
なるが、急速加熱、急速冷却できて接合が急速に完了す
るレーザ溶接によると溶接できる。しかしながら、急速
加熱、急速冷却に伴って発生する熱応力に起因した凝固
割れが生じやすく、気密洩れをひきおこしやすい、一方
、第8図に示すアルミニウムもしくはアルミニウム合金
の容器il+の開口にコバールなどの金属の電気端j’
−112を挿通させ、アルミナなどのセラミックスやガ
ラスの絶縁体+13を介在させて、電気端/’ +12
と絶縁体113、絶縁体11:3と容器II+ とをろ
う材114 ・115で接合したとする。
As described above, although aluminum and Kovar have very different melting points, they can be welded by laser welding, which can rapidly heat and cool and quickly complete the bond. However, solidification cracks are likely to occur due to the thermal stress that occurs with rapid heating and rapid cooling, and airtight leaks are likely to occur. electric end j'
-112 is inserted, an insulator made of ceramics such as alumina or glass +13 is interposed, and the electrical end /' +12 is inserted.
It is assumed that the insulator 113 and the insulator 11:3 and the container II+ are joined by brazing materials 114 and 115.

すると、このアルミニウムもしくはアルミニウム合金の
容器111 と絶縁体113とでは熱膨張差が大きく温
度が変化すると両各の間に割れが生じてしまう。
Then, there is a large difference in thermal expansion between the aluminum or aluminum alloy container 111 and the insulator 113, and cracks occur between the two when the temperature changes.

このように第7図に示すステンレス容/、JIOI を
そのまま第8図に示す使用が望まれているアルミニウム
もしくはアルミニウム合金の容器II+に置き替えるこ
とは凝固割れの点で不可能である。
In this way, it is impossible to directly replace the stainless steel container/JIOI shown in FIG. 7 with the aluminum or aluminum alloy container II+ shown in FIG. 8, which is desired to be used, in view of solidification cracking.

「課題を解決するための手段」 そこで、本発明はヒ述の欠点を無くするため、アルミニ
ウムまたはアルミニウム合金により形成された真空容器
等密閉容器に、アルミニウムまたはアルミニウム合金の
シースに、酸化アルミニウム、酸化マグネシウム、ボロ
ンナイトライドなどのセラミックス等の粉体を絶縁体と
した構成のMIケーブルを17通させ、 II:いを、
レーザ溶接、 TIG溶接、ろう付は等によって気密に
接合する、この場合に発生する熱膨張差は絶縁体の粉体
が吸収して割れが生じない。
"Means for Solving the Problems" Therefore, in order to eliminate the above-mentioned drawbacks, the present invention provides a sealed container such as a vacuum container formed of aluminum or an aluminum alloy, a sheath of aluminum or an aluminum alloy, and an aluminum oxide, aluminum oxide, etc. 17 MI cables with insulators made of ceramic powder such as magnesium and boron nitride were passed through.
Laser welding, TIG welding, brazing, etc. are used to form an airtight joint, and the difference in thermal expansion that occurs in this case is absorbed by the insulating powder and no cracking occurs.

気密封止はMIケーブルの両端または片端に、ガラス、
エポキシ等のプラスチックス、酸化マグネシウム等、M
Iケーブルの絶縁体の粉体と、水和反応等の化学反応を
生じるセラミックス等によって、なされるために、気密
封止部が真空容器から場所的に離れていて、真空容器の
熱膨張による応力が伝わらず気密封止部に割れ等が生じ
ない、封+1部が仮に外力の印可により壊れるようなこ
とがあっても、M1ケーブルの両端が封止されている場
合、一方が壊れても他方が残り真空は破れない、またす
べての封+lz部が壊れてもMIケーブル内の粉体を空
気が通るには時間がかかるためゆっくり工′(空は破れ
、その間に。
Hermetic sealing is done by sealing the MI cable with glass, glass,
Plastics such as epoxy, magnesium oxide, etc.
Since the I cable's insulating powder is made of ceramics that undergo chemical reactions such as hydration, the hermetic seal is located at a distance from the vacuum vessel, and stress due to thermal expansion of the vacuum vessel is generated. If both ends of the M1 cable are sealed, even if the seal +1 part were to break due to the application of external force, even if one breaks, the other will not break. The remaining vacuum cannot be broken, and even if all the seals and lz parts are broken, it takes time for the air to pass through the powder in the MI cable, so work slowly.

必要な保護装置を働かせる等措置がif能であるよって
真空容器の保護のうえで極めて有効である。
Measures such as activating necessary protective devices are extremely effective in protecting the vacuum container.

真空容器をベーキングして、脱ガスをおこさせ、超高真
空を得る場合も真空容器とM1ケーブル封止部は離れて
いて、ベーキングの熱が気密封止部には伝わりにくく気
密封止部は容易に壊れることがない。
Even when baking a vacuum container to cause degassing and obtain an ultra-high vacuum, the vacuum container and the M1 cable sealing part are separated, making it difficult for the baking heat to be transmitted to the hermetically sealed part. Does not break easily.

「作  川」 両端または片端を気密封止し、粉体を絶縁体としたアル
ミニウムまたはアルミニウム合金のシースをもつMIケ
ーブル(ミネラル・インシュレイテッド・メタル・シー
ス・ケーブル)をアルミニウムまたはアルミニウム合金
でできた密閉容器を貫通させ、密閉容器壁とMIケーブ
ルシースを溶接により接合し真空容器等の密閉容器の気
密封■ヒを完全にした電気端子である。
``Sakukawa'' MI cable (mineral insulated metal sheath cable) is an MI cable (mineral insulated metal sheath cable) that is hermetically sealed at both ends or one end and has an aluminum or aluminum alloy sheath with powder as an insulator. This is an electrical terminal that penetrates the airtight container and connects the wall of the airtight container and the MI cable sheath by welding to completely airtightly seal the airtight container such as a vacuum container.

「実 施 例」 以下1本発明を実施例に基いて詳細に説明する。第1図
において、アルミニウムまたはアルミニウム合金のシー
スを有するMIケーブル3は、コネクタ(SMΔ−Il
NCタイプ・Nシリーズ・S T−I V・多ピンコネ
クタ)4と接続され、アルミニウムまたはアルミニウム
合金の板2と、電子ビーム溶接、TTG溶接、ろう付は
等で気密接合される。板2はアルミニウムまたはアルミ
ニウム合金の真空容器lと電子ビーム溶接等で気密接合
される。
"Example" The present invention will be described in detail below based on an example. In FIG. 1, an MI cable 3 having an aluminum or aluminum alloy sheath is connected to a connector (SMΔ-Il
It is connected to the NC type, N series, ST-I V, multi-pin connector) 4, and hermetically joined to the aluminum or aluminum alloy plate 2 by electron beam welding, TTG welding, brazing, etc. The plate 2 is hermetically joined to a vacuum vessel l made of aluminum or aluminum alloy by electron beam welding or the like.

第2図にはM1ケーブル3の両端5・6が気密封止され
ており、第3図は第2図の××断面図である。
In FIG. 2, both ends 5 and 6 of the M1 cable 3 are hermetically sealed, and FIG. 3 is a cross-sectional view of FIG. 2.

第4図にはシース10の両端5・6の気密封止の状況図
を示す即ち、ガラス、エポキシ等のプラスチックスを溶
かし混んで形成した気密封止部15.または酸化アルミ
ニウムや酸化マグネシウム、ボロンナイトライド等の粉
体の絶縁体12に、水和等の化学反応を生ずるセラミッ
クス等を、シース10と芯線11の間に挿入して形成し
た気密封止、である。
FIG. 4 shows an airtight sealing state of both ends 5 and 6 of the sheath 10, that is, an airtight sealing portion 15 formed by melting and mixing plastics such as glass and epoxy. Alternatively, an airtight seal is formed by inserting ceramics or the like that causes chemical reactions such as hydration into the insulator 12 of powder such as aluminum oxide, magnesium oxide, or boron nitride between the sheath 10 and the core wire 11. be.

第5図には絶縁材を用いたパツキン23を介してねじ2
2でMIケーブル3の端部に設けたねじ21を締めるよ
うにして機械的に気密封止をする。
In Figure 5, the screw 2 is inserted through the packing 23 made of insulating material.
In step 2, the screw 21 provided at the end of the MI cable 3 is tightened to mechanically seal it airtight.

第6図には、あらかじめシース10の外側または真空容
器1の貫通穴の内面の少なくとも一方の表面にニッケル
等の層3a、3sをメツキ等の方法で形成して+8接す
るものである。この方法によって、例えばレーザ溶接し
やすくなり、溶接部に凝固割れ等が生じなくなる。MI
ケーブル3の端5から芯線11を伝わり、端6を通じて
コネクタ4に直流交流または高周波電流を通すまた逆に
4−6−11−5と通してもよい、それによって、真空
容器内の計測信号等を真空容器外へ伝えたり、逆に外部
の制御信号等を内部へ伝えたりする。特に、高周波電流
の場合は10・11・12が高周波同軸導波管を形成す
る。
In FIG. 6, layers 3a and 3s of nickel or the like are formed in advance on at least one surface of the outside of the sheath 10 or the inside of the through hole of the vacuum vessel 1 by a method such as plating, so that they are in +8 contact. This method makes laser welding easier, for example, and prevents solidification cracks from occurring in the welded portion. M.I.
A core wire 11 is passed from the end 5 of the cable 3 to the connector 4 through the end 6, and direct current or high frequency current may be passed through the connector 4 or vice versa. to the outside of the vacuum chamber, and conversely, to transmit external control signals, etc. to the inside. In particular, in the case of high frequency current, 10, 11, and 12 form a high frequency coaxial waveguide.

M1ケーブル3のシース10.芯線11等MIケーブル
全体を非磁性にすることにより例えばシンクロトロン放
射光施設の超高真空容器のように真空容器に高磁場がか
けられる場合もその磁場により引き寄せられて、形状に
歪等が生じたりしない貫通電気端子を得ることができる
のである。
M1 cable 3 sheath 10. By making the entire core wire 11 grade MI cable non-magnetic, even when a high magnetic field is applied to a vacuum container, such as an ultra-high vacuum container in a synchrotron radiation facility, it will be attracted by the magnetic field, causing distortions in the shape. Therefore, it is possible to obtain a through-hole electrical terminal that does not cause any damage.

[発明の効果」 本発明は取上のように構成したので 1ジ(空芥器と、MIケーブルの絶縁体とが熱膨張差が
あっても、絶縁体が粉体のため、熱応力による割れが生
じたりしない。
[Effects of the Invention] Since the present invention is configured as mentioned above, even if there is a difference in thermal expansion between the waste container and the insulator of the MI cable, since the insulator is a powder, it will not be caused by thermal stress. No cracks will occur.

2、MIケーブルの気密封止部は、真空容器から戚れた
所にあるため、真空容器のベーキングによる熱膨張の応
力によって気密封止部が割れたりしない3、MIケーブ
ルのシースはアルミニウムまたはアルミニウム合金のた
め、アルミニウムまたはアルミニウム合金の超高真空容
器と溶接しやすい両者の間に熱膨張差も無いので、ベー
キング等によって両者の接合部に割れが生じたりしない
2. The hermetic sealing part of the MI cable is located in a place close to the vacuum container, so the hermetic sealing part will not crack due to the stress of thermal expansion caused by baking the vacuum container. 3. The sheath of the MI cable is made of aluminum or aluminum. Since it is an alloy, there is no difference in thermal expansion between the ultra-high vacuum container made of aluminum or aluminum alloy and the two, which are easy to weld, so cracks do not occur at the joint between the two due to baking or the like.

4、MIケーブルの気密封止部は1〜2ケ所あり、しか
もMIケーブルの絶縁体の粉体は固く充填されている為
、気密封止部が壊れても、急に真空が破れたりしにくい
、極めて信頼性がある。
4. The MI cable has one or two airtight seals, and the MI cable is tightly filled with insulating powder, so even if the airtight seal breaks, the vacuum is unlikely to suddenly break. , extremely reliable.

以上のように真空容器の気密封止が非常に良好であり極
めてたかい信頼が得られるものである。
As described above, the airtight sealing of the vacuum container is very good and extremely reliable.

21 ・ 2;3 ・・・・・・・−・シース ・・・・・・・・芯 線 ・・・・・・・・・絶縁体の粉体 ・・・・・・・・・気密封止部 22・・・ね じ ・・・・・・・・・パツキン ・34・・・ 層21・ 2;3 ・・・・・・・・・・Sheath ・・・・・・・・・Core wire ・・・・・・・・・Insulating powder ・・・・・・・・・Hermetic sealing part 22... Neji ・・・・・・・・・Patsukin ・34... layer

【図面の簡単な説明】[Brief explanation of the drawing]

第1@は本発明の具体的一実施例の一部の所面図第2図
は他の実施例で一部の断面図、第3図は第2図のXX線
断面図、第4図、第5図、第6図は別の実施例で一部の
断面図である。 ■ ・・・・・・真空容器 2 ・・・・・・アルミニウムまたはアルミニウム合金
の板 3 ・・・・・・MIケーブル 4 ・・・・・・コネクタ 5・6・・・M1ケーブルの封止端
Fig. 1 is a partially sectional view of a specific embodiment of the present invention; Fig. 2 is a sectional view of a part of another embodiment; Fig. 3 is a sectional view taken along the line XX of Fig. 2; Fig. 4 , FIG. 5, and FIG. 6 are partial cross-sectional views of another embodiment. ■ ... Vacuum container 2 ... Aluminum or aluminum alloy plate 3 ... MI cable 4 ... Connectors 5 and 6 ... Sealing of M1 cable end

Claims (1)

【特許請求の範囲】 (1)密閉容器にMIケーブルを貫通して設ける電気端
子であって、容器の開口に、容器と熱膨張係数の同じか
、または近い熱膨張係数を有するMIケーブルを挿通さ
せ、前記容器とMIケーブルを接合した密閉容器貫通電
気端子 (2)MIケーブルが非磁性である第1請求項記載の密
閉容器貫通電気端子 (3)密閉容器とMIケーブルがアルミニウムまたはア
ルミニウム合金である第1請求項記載の密閉容器貫通電
気端子 (4)密閉容器の壁とMIケーブルのシースの接合がろ
う付またはレーザ溶接、或はTIG溶接である第1請求
項、第2請求項記載の密閉容器貫通電気端子 (5)MIケーブルの絶縁体が粉体である第1請求項記
載の密閉容器貫通電気端子 (6)上記粉体が酸化アルミニウムまたは酸化マグネシ
ウム或はボロンナイトライドである第5請求項記載の密
閉容器貫通電気端子 (7)MIケーブルの芯線がアルミニウムまたはアルミ
ニウム合金である第1請求項記載の密閉容器貫通電気端
子 (8)MIケーブルの両端または片端を気密封止した第
1請求項記載の密閉容器貫通電気端子 (9)上記気密封止がガラス封止またはプラスチックス
封止である第8請求項記載の密閉容器貫通電気端子 (10)上記気密封止がパッキン等を介した機械的封止
である第8請求項記載の密閉容器貫通電気端子(11)
上記気密封止がMIケーブルの絶縁粉体と化学反応を生
じるセラミックスによる封止である第8請求項記載の密
閉容器貫通電気端子 (12)MIケーブルの表面もしくは密閉容器の貫通孔
の内面の少なくとも一方に層を形成した第1請求項記載
の密閉容器貫通電気端子 (13)上記層がニッケルである、又はメッキにより形
成された記載の密閉容器貫通電気端子 (14)MIケーブルの片端または両端に電気コネクタ
を電気的に接続した第1請求項記載の密閉容器貫通電気
端子 (15)上記電気コネクタがSMAコネクタまたはBN
Cコネクタ又はNシリーズ、又はSHV又は多ピンコネ
クタである第14請求項記載の密閉容器貫通電気端子 (16)密閉容器が真空容器である第1請求項記載の密
閉容器貫通電気端子
[Scope of Claims] (1) An electrical terminal provided through an MI cable in a closed container, wherein an MI cable having a thermal expansion coefficient that is the same as or close to that of the container is inserted into the opening of the container. (2) A closed container penetrating electrical terminal according to claim 1, wherein the MI cable is non-magnetic (3) The sealed container and the MI cable are made of aluminum or an aluminum alloy. The electrical terminal (4) penetrating the sealed container according to the first claim, wherein the wall of the sealed container and the sheath of the MI cable are joined by brazing, laser welding, or TIG welding. Closed container penetrating electrical terminal (5) Closed container penetrating electrical terminal according to claim 1, wherein the insulator of the MI cable is a powder (6) Fifth claim, wherein the powder is aluminum oxide, magnesium oxide, or boron nitride A sealed container penetrating electrical terminal (7) according to the first claim, in which the core wire of the MI cable is made of aluminum or an aluminum alloy; A closed container penetrating electric terminal (9) according to claim 8. A closed container penetrating electric terminal (10) according to claim 8, wherein the hermetic seal is glass sealing or plastic sealing. The closed container penetrating electrical terminal (11) according to claim 8, which is mechanically sealed.
The hermetically sealed electrical terminal (12) according to claim 8, wherein the hermetic sealing is a ceramic sealing that causes a chemical reaction with the insulating powder of the MI cable. A closed container penetrating electrical terminal (13) according to claim 1, in which a layer is formed on one end; (14) a closed container penetrating electrical terminal (14) in which the layer is made of nickel or formed by plating; A closed container penetrating electrical terminal (15) according to claim 1, electrically connected to an electrical connector, wherein the electrical connector is an SMA connector or a BN connector.
The closed container penetrating electrical terminal according to claim 14, which is a C connector or N series, or SHV or multi-pin connector (16) The closed container penetrating electrical terminal according to claim 1, wherein the sealed container is a vacuum container.
JP19415988A 1988-08-03 1988-08-03 Electric terminal extending through sealed container Pending JPH0244662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19415988A JPH0244662A (en) 1988-08-03 1988-08-03 Electric terminal extending through sealed container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19415988A JPH0244662A (en) 1988-08-03 1988-08-03 Electric terminal extending through sealed container

Publications (1)

Publication Number Publication Date
JPH0244662A true JPH0244662A (en) 1990-02-14

Family

ID=16319904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19415988A Pending JPH0244662A (en) 1988-08-03 1988-08-03 Electric terminal extending through sealed container

Country Status (1)

Country Link
JP (1) JPH0244662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533025A (en) * 2015-11-06 2018-11-08 ローズマウント インコーポレイテッド Process variable measurement system with secondary seal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533025A (en) * 2015-11-06 2018-11-08 ローズマウント インコーポレイテッド Process variable measurement system with secondary seal
US10620056B2 (en) 2015-11-06 2020-04-14 Rosemount Inc. Process variable measurement system with secondary seal

Similar Documents

Publication Publication Date Title
EP0522687B1 (en) Hermetic Connector
US5041019A (en) Transition joint for microwave package
US5109594A (en) Method of making a sealed transition joint
US6111198A (en) Duplex feedthrough and method therefor
US2756374A (en) Rectifier cell mounting
US20040135510A1 (en) Hermetical lamp sealing techniques and lamp having uniquely sealed components
US3988825A (en) Method of hermetically sealing an electrical component in a metallic housing
US6465729B2 (en) Surface trace electrical feedthru for conducting electricity across a pressure envelope
US4292464A (en) Glass pass through with an additional insulator for lengthening leakage path
JPH0244662A (en) Electric terminal extending through sealed container
JP2544031B2 (en) How to eliminate cracks in alumina substrates
US3379823A (en) Hermetic enclosure for electronic devices
US4757292A (en) Microwave window
US7683264B2 (en) High pressure, high current, low inductance, high reliability sealed terminals
US11993547B2 (en) Termination feedthrough unit with ceramic insulator for vacuum and corrosive applications
JP3283692B2 (en) Airtight insulation terminal
US20050035092A1 (en) Method of making a hybrid housing and hybrid housing
US20240049415A1 (en) Control device and manufacturing method
JPH0215259Y2 (en)
JPS6226779A (en) High voltage introduction terminal
JPS61281500A (en) Manufacture of current introduction terminal of nuclear fuser
CA2067667C (en) Laser weldable hermetic connector
JPH02133379A (en) Bonding method
JPH0216586B2 (en)
JP2003188304A (en) Airtightly sealed package and lead sealing member used therefor