JPH0244557A - Capstan servo device - Google Patents

Capstan servo device

Info

Publication number
JPH0244557A
JPH0244557A JP63194089A JP19408988A JPH0244557A JP H0244557 A JPH0244557 A JP H0244557A JP 63194089 A JP63194089 A JP 63194089A JP 19408988 A JP19408988 A JP 19408988A JP H0244557 A JPH0244557 A JP H0244557A
Authority
JP
Japan
Prior art keywords
signal
output
frequency
capstan
frequency division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63194089A
Other languages
Japanese (ja)
Other versions
JP2723545B2 (en
Inventor
Masaru Hashirano
柱野 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63194089A priority Critical patent/JP2723545B2/en
Publication of JPH0244557A publication Critical patent/JPH0244557A/en
Application granted granted Critical
Publication of JP2723545B2 publication Critical patent/JP2723545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the limitation of a gear from being received by executing the integer number-dividing or non-integer number-dividing of a capstan FG signal, defining an output as a comparing signal, detecting a phase error signal with phase comparison to a reference signal and controlling the phase error signal. CONSTITUTION:An FG signal S1 to be obtained from a capstan (F2) 2 by the rotation of a capstan motor 1 is inputted to a dividing means 4 and a speed comparing means 6. In the means 4, the frequency of the signal S1 is divided by an integer or a noninteger so as to obtain a frequency which is equal to the frequency of a reference signal S2, and a PG signal S3 is prepared. The signal S3 is inputted to a phase comparing means 5 together with the signal S2 and the phase comparison is executed. Then, a phase error signal S4 is detected. On the other hand, the means 6 detects a speed error signal S5 by executing frequency discrimination for the signal S1. Then, the signals S4 and S5 are mixed by a mixing means 7 and a mixed output S6 is obtained. The rotating speed and phase of a motor 1 are controlled by this output S6. Thus, a servo device can be realized not to receive the limitation for the shaft diameter and tooth number of the gear at all.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、キャプスタンサーボ装置に関し、キャプスタ
ンFG信号を整数分周または非整数分周できる分周手段
を用いることにより、FG倍信号位相比較の基準信号の
周波数の整数倍で得られない場合にあっても、基準信号
と同一周波数の分周出力を得て位相比較できるキャプス
タンサーボ装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a capstan servo device, and it is possible to perform FG multiplied signal phase comparison by using frequency dividing means capable of integer frequency division or non-integer frequency division of a capstan FG signal. To provide a capstan servo device that can obtain a divided output of the same frequency as a reference signal and compare the phases even when the frequency cannot be obtained at an integral multiple of the frequency of the reference signal.

従来の技術 磁気記録再生装置のキャプスタンサーボ装置では、記録
時における位相サーボを具現するために、キャプスタン
モータの回転数を検出する周波数発電機(以下FGと呼
ぶ)の出力(以下FG倍信号呼ぶ)を分周手段により分
周して用いている。この分周出力を通称PG倍信号呼ん
でいる。キャプスタンサーボ装置ではこのPG倍信号位
相サーボの比較信号として用い、基準信号(例えば垂直
フレーム同期信号30Hz)との位相比較によりキャプ
スタンサーボを具現している。これは従来公知の技術で
あり説明するまでもない。
In the conventional capstan servo device of a magnetic recording/reproducing device, in order to realize phase servo during recording, the output of a frequency generator (hereinafter referred to as FG) that detects the rotational speed of the capstan motor (hereinafter referred to as FG multiplied signal) is used to realize phase servo during recording. ) is divided by frequency dividing means and used. This frequency divided output is commonly called a PG multiplied signal. In the capstan servo device, this PG double signal is used as a comparison signal for phase servo, and the capstan servo is implemented by comparing the phase with a reference signal (for example, a vertical frame synchronization signal of 30 Hz). This is a conventionally known technique and need not be explained.

発明が解決しようとする課題 しかしながら上記のような構成では、分周手段が整数分
周しかできないものであったため、基準信号と同一周波
数のPG倍信号得るためにはFG倍信号基準信号の整数
倍に選定する必要があると言う問題点があった。
Problems to be Solved by the Invention However, in the above configuration, the frequency dividing means can only perform integer frequency division, so in order to obtain a PG multiplied signal with the same frequency as the reference signal, the FG multiplied signal must be an integer multiplied by the reference signal. There was a problem in that it was necessary to select the

一般に、キャプスタンモータで磁気テープを直接駆動す
る場合のテープ速度Vtは次式(1)で計算される。
Generally, the tape speed Vt when a magnetic tape is directly driven by a capstan motor is calculated by the following equation (1).

Vt= π ・ D−N−FPG/Z        
    (1)但し、πは円周率、Dはキャプスタン軸
の直径、Nは分周比、FPGはPG倍信号周波数、Zは
FGの歯数である。なお、N・F’PGはFG倍信号周
波数FFGである。
Vt=π・D-N-FPG/Z
(1) However, π is pi, D is the diameter of the capstan shaft, N is the frequency division ratio, FPG is the PG multiplied signal frequency, and Z is the number of teeth of the FG. Note that N·F'PG is FG times the signal frequency FFG.

(1)式において、vtは磁気記録再生装置のテープフ
ォーマットから特定の値をとる。またPG倍信号特定さ
れるから、(2)式に示すようにDとNの積をZで除し
た値が一定となるように、D。
In equation (1), vt takes a specific value based on the tape format of the magnetic recording/reproducing device. Also, since the PG multiplied signal is specified, D is adjusted so that the value obtained by dividing the product of D and N by Z is constant as shown in equation (2).

N、Zを選定しなければならない。N and Z must be selected.

D@N/Z=一定          (2)通常、キ
ャプスタン軸には標準品を用いる方が経済的であるが、
N、Zが整数に限定されるため、場合によっては特殊品
を用いざるを得ない。運よく標準品を用いることができ
れば問題ないが、そうでない場合にどうしても標準品以
外は用いることができないと言うのであれば、PG倍信
号周波数FPCを30H2とは異なる周波数にせざるを
得ない。この場合、垂直フレーム同期信号を基準信号と
して用いることはできない。叢って、基準信号発生器に
より内部基準信号を発生して用いるしかなかった。
D@N/Z = constant (2) Normally, it is more economical to use a standard product for the capstan shaft, but
Since N and Z are limited to integers, special products must be used in some cases. If you are lucky enough to use a standard product, there will be no problem, but if that is not the case and you cannot use anything other than a standard product, you will have to set the PG double signal frequency FPC to a frequency different from 30H2. In this case, the vertical frame synchronization signal cannot be used as a reference signal. Therefore, there was no choice but to generate and use an internal reference signal using a reference signal generator.

以上の説明から明らかなように、従来のキャプスタンサ
ーボ装置では分周手段が整数分周しかできないものであ
ったため、装置の設計において制約の多いものであった
As is clear from the above explanation, in the conventional capstan servo device, the frequency dividing means was capable of only integer frequency division, and therefore there were many restrictions in the design of the device.

本発明は上記の問題点を解決するもので、設計上の制約
がなく、FG倍信号ら所望とする周波数のPG倍信号得
ることができる分周手段を備えたキャプスタンサーボ装
置を提供することを目的とするものである。
The present invention solves the above-mentioned problems, and provides a capstan servo device equipped with frequency dividing means that can obtain a PG multiplied signal of a desired frequency from an FG multiplied signal without any design restrictions. The purpose is to

課題を解決するための手段 この目的を達成するために本発明のキャプスタンサーボ
装置は、キャプスタンFG信号を整数分周または非整数
分周する分周手段と、前記分周手段の出力を比較信号と
して基県信号との位相比較により位相誤差信号を検出す
る位相比較手段とを具備し、前記位相誤差信号によりキ
ャプスタンモータを制御する構成とし、前記分周手段は
前記キャプスタンFG信号を可変分周する可変分周手段
と、前記可変分周手段の出力に同期して演算する演算手
段と、前記演算手段の出力に応じて前記可変分周手段の
出力のタイミングを補正する補正手段と、前記演算手段
の出力に応じて前記可変分周手段の分周比を切り換える
切換手段とを具備し、前記補正手段の出力を分周出力と
するようにした構成を有している。
Means for Solving the Problems To achieve this object, the capstan servo device of the present invention includes frequency dividing means for dividing a capstan FG signal by an integer frequency or a non-integer frequency, and comparing the output of the frequency dividing means. and a phase comparison means for detecting a phase error signal by phase comparison with a base signal as a signal, the capstan motor is controlled by the phase error signal, and the frequency dividing means varies the capstan FG signal. a variable frequency dividing means for frequency division; a calculating means for calculating in synchronization with the output of the variable frequency dividing means; and a correcting means for correcting the timing of the output of the variable frequency dividing means in accordance with the output of the calculating means; and switching means for switching the frequency division ratio of the variable frequency division means in accordance with the output of the calculation means, and the output of the correction means is configured to be a frequency division output.

本発明はまた、上記の構成に加えてキャプスタンFG信
号を周波数弁別して速度誤差信号を検出する速度比較手
段と、前記速度誤差信号と前記位相誤差信号とを混合す
る混合手段を具備し、前記混合手段の出力によりキャプ
スタンモータを制御するようにした構成を有している。
In addition to the above-described configuration, the present invention also includes speed comparison means for frequency-discriminating the capstan FG signal to detect a speed error signal, and mixing means for mixing the speed error signal and the phase error signal, It has a configuration in which the capstan motor is controlled by the output of the mixing means.

作用 本発明は上記した構成により、分周手段において、切換
手段により演算手段で得られる演算出力に応じて可変分
周手段の分周比を切り換え、かつ演算出力により補正手
段を制御して可変分周手段の出力のタイミングを補正で
きるようにしたため、整数分周または非整数分周が可能
となり、キャプスタンFG信号を所望の周波数に分周す
ることができる。しかるに、補正手段より得られる出力
を分周手段の分周出力とすることにより、設計上の制約
が全くないキャプスタンサーボ装置を具現することがで
きる。
Effect The present invention has the above-described configuration, in which the switching means switches the frequency division ratio of the variable frequency dividing means according to the calculation output obtained by the calculation means, and the correction means is controlled by the calculation output to perform variable division. Since the timing of the output of the frequency means can be corrected, integer frequency division or non-integer frequency division is possible, and the capstan FG signal can be frequency divided to a desired frequency. However, by using the output obtained from the correction means as the divided output of the frequency dividing means, it is possible to realize a capstan servo device with no design restrictions.

実施例 以下本発明の実施例について、図面を参照しながら説明
する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は本発明の実施例に於けるキャプスタンサーボ装
置のブロック図を示すものである。第1図において、1
はキャプスタンモー タ、2はキャプスタンモータ1の
回転数を検出しキャプスタンFG信号Slを得るFGl
 3は基準信号S2が入力される入力端子、4はFG信
号Slを整数分周または非整数分周する分周手段、5は
基準信号S2と分周手段4の出力であるPG信号S3を
比較信号として位相比較し位相誤差信号S4を検出する
位相比較手段、6はFG信号S+を周波数弁別して速度
誤差信号S5を検出する速度比較手段、7は位相誤差信
号S4と速度誤差信号S5を混合する混合手段であり、
キャプスタンモータ1は混合手段7の出力S6により制
御される。また、8〜11は分周手段4の内部構成手段
であり、8はFG信号Slを可変分周する可変分周手段
、9は可変分周手段8の可変分周出力S7に同期して演
算する演算手段、IOは演算手段9の演算出力S8に応
じて可変分周手段8の可変分周出力S7のタイミングを
補正する補正手段、11は演算手段9の演算出力S8に
応じて切換信号S9を作成し可変分周手段8の分周比を
切り換える切換手段であり、補正手段lOより分周手段
4の分周出力すなわちPG信号S3を得ている。
FIG. 1 shows a block diagram of a capstan servo device in an embodiment of the present invention. In Figure 1, 1
2 is a capstan motor, and 2 is an FGl that detects the rotation speed of capstan motor 1 and obtains a capstan FG signal Sl.
3 is an input terminal into which the reference signal S2 is input; 4 is a frequency dividing means for dividing the FG signal Sl by an integer or a non-integer; and 5 is a comparison between the reference signal S2 and the PG signal S3 which is the output of the frequency dividing means 4. Phase comparison means for comparing the phases as signals and detecting a phase error signal S4; 6 a speed comparison means for frequency-discriminating the FG signal S+ and detecting a speed error signal S5; 7 mixing the phase error signal S4 and the speed error signal S5. is a mixing means,
The capstan motor 1 is controlled by the output S6 of the mixing means 7. Further, 8 to 11 are internal configuration means of the frequency dividing means 4, 8 is a variable frequency dividing means that variably divides the frequency of the FG signal Sl, and 9 is a calculation operation in synchronization with the variable frequency dividing output S7 of the variable frequency dividing means 8. IO is a correction means for correcting the timing of the variable frequency division output S7 of the variable frequency division means 8 according to the calculation output S8 of the calculation means 9; IO is a correction means for correcting the timing of the variable frequency division output S7 of the variable frequency division means 8; This is a switching means for creating a frequency division ratio of the variable frequency division means 8 and obtaining the frequency division output of the frequency division means 4, ie, the PG signal S3, from the correction means 1O.

以上のように構成された本実施例のキャプスタンサーボ
装置について、以下その動作について説明する。
The operation of the capstan servo device of this embodiment configured as described above will be described below.

キャプスタンモータ1の回転によりFG2から得られる
FG信号Stは、分周手段4と速度比較手段6に入力さ
れる。分周手段4ではFG信号Stを基準信号S2の周
波数に等しくなるように整数分周または非整数分周し、
分周出力すなわちPG信号S3を作成する。このPG信
号S3は基準信号S2と共に位相比較手段5に入力され
、位相比較されて位相誤差信号S4を検出する。一方、
速度比較手段6はFG信号Slを周波数弁別することに
より速度誤差信号S5を検出する。位相誤差信号S4と
速度誤差信号S5は混合手段7において混合し、混合出
力S6を得る。そして、この混合出力S6によりキャプ
スタンモータ1の回転速度と位相が制御される。なお、
速度比較手段6はキャプスタンモータ1に直流モータを
用いる場合は必要であるが、速度制御が不要なモータ例
えば同期モータを用いる場合などでは不要である。この
場合混合手段7も不要であり、位相誤差出力S4により
直接キャプスタンモータ1を制御することができる。
The FG signal St obtained from the FG 2 by the rotation of the capstan motor 1 is input to the frequency dividing means 4 and the speed comparing means 6. The frequency dividing means 4 divides the FG signal St by an integer or a non-integer so that it becomes equal to the frequency of the reference signal S2,
A frequency divided output, that is, a PG signal S3 is created. This PG signal S3 is input to the phase comparison means 5 together with the reference signal S2, and the phases are compared to detect a phase error signal S4. on the other hand,
The speed comparison means 6 detects the speed error signal S5 by frequency-discriminating the FG signal Sl. The phase error signal S4 and the speed error signal S5 are mixed in the mixing means 7 to obtain a mixed output S6. The rotation speed and phase of the capstan motor 1 are controlled by this mixed output S6. In addition,
The speed comparison means 6 is necessary when a DC motor is used as the capstan motor 1, but is not necessary when a motor that does not require speed control, such as a synchronous motor, is used. In this case, the mixing means 7 is also unnecessary, and the capstan motor 1 can be directly controlled by the phase error output S4.

以上はキャプスタンサーボ装置の動作説明であり、本発
明は特に分周手段4に特徴を有するものであり、以下分
周手段4の動作について説明する。
The above is an explanation of the operation of the capstan servo device, and the present invention is particularly characterized by the frequency dividing means 4. The operation of the frequency dividing means 4 will be explained below.

可変分周手段8はFG信号Slを可変分周する。The variable frequency dividing means 8 variably divides the frequency of the FG signal Sl.

可変分周手段8の可変分周出力S7は演算手段9と補正
手段IOに入力する。演算手段9は可変分周出力S7に
同期して必要な演算を行ない、演算出力S8を作成する
。補正手段10は演算出力S8に応じて可変分周出力S
7のタイミングを補正する。切換手段!■は演算出力S
8に応じて切換信号S9を作成し、可変分周手段8の分
周比を切り換える。そして、補正手段IOから分周手段
4の分周出力であるPG信号S3を得ている。
The variable frequency division output S7 of the variable frequency division means 8 is input to the calculation means 9 and the correction means IO. The calculation means 9 performs necessary calculations in synchronization with the variable frequency division output S7, and creates a calculation output S8. The correction means 10 outputs a variable frequency division output S according to the calculation output S8.
Correct the timing of step 7. Switching means! ■ is the calculation output S
A switching signal S9 is created in accordance with 8, and the frequency division ratio of the variable frequency dividing means 8 is switched. Then, the PG signal S3, which is the frequency-divided output of the frequency dividing means 4, is obtained from the correction means IO.

ここで、可変分周手段8による分周が整数分周でよい場
合は演算手段9による演算は行なわず、切換手段11に
よる分周比の切り換えも行なわない。
Here, if the frequency division by the variable frequency dividing means 8 is sufficient to be an integer frequency division, the calculation means 9 does not perform the calculation, and the switching means 11 does not switch the frequency division ratio.

言うまでもなく、この場合には手段9〜tiは不要であ
る。すなわち、分周手段4は琲整数分周の時、その特徴
を遺憾なく発揮するものであり、整数分周も併せてでき
ると言うものである。これにより、整数分周と非整数分
周とができる分周手段4を具現できる。
Needless to say, in this case, means 9 to ti are unnecessary. That is, the frequency dividing means 4 fully exhibits its characteristics when performing integer frequency division, and can also perform integer frequency division. Thereby, the frequency dividing means 4 capable of integer frequency division and non-integer frequency division can be realized.

第2図は本発明における分周手段4の動作例を示す波形
図である。ここで、可変分周手段8は分周用のカウンタ
にアップカウンタを用いた例を示し、PG信号S3は周
期がFG倍信号lの3.7倍である例を示す。また、補
正手段10は補正の細かさをFG倍信号lの周期の1/
10とした例を示す。従って、補正手段10ではFG倍
信号10倍の周波数のクロックを用いてタイミング補正
すればよく、これはディジタル遅延回路を用いて容易に
実現できる。
FIG. 2 is a waveform diagram showing an example of the operation of the frequency dividing means 4 in the present invention. Here, the variable frequency dividing means 8 shows an example in which an up counter is used as a frequency dividing counter, and the PG signal S3 shows an example in which the period is 3.7 times that of the FG times signal l. Further, the correction means 10 adjusts the fineness of the correction to 1/1 of the period of the FG multiplied signal l.
An example is shown in which the value is set to 10. Therefore, the correcting means 10 only needs to correct the timing using a clock having a frequency ten times the frequency of the FG multiplied signal, and this can be easily realized using a digital delay circuit.

なお、PG信号S3とFG倍信号tの周期比3.7 は
、クロックのパルス数に換算すれば37である。また、
演算手段には9〜0までの計数が繰り返しできるダウン
カウンタを用い、可変分周出力S7に同期して3だけ減
算する例を示した。この減算値は40から37を引いた
値であり、FG倍信号整数倍の周期に対する差分である
。ここでもし、O〜9まで繰り返し計数するアップカウ
ンタを用いるのであれば、37から30を引いた差分値
7を加算するようにすればよい。演算手段9の演算速度
は補正手段IOが補正値を必要とする直前までに終了し
ていればよい。また、図示の時刻tQ−t12はFG倍
信号tの 3.7倍の周期すなわちPG倍信号周期を刻
んだものである。
Note that the period ratio of 3.7 between the PG signal S3 and the FG multiplied signal t is 37 when converted to the number of clock pulses. Also,
An example is shown in which a down counter that can repeatedly count from 9 to 0 is used as the calculation means, and 3 is subtracted in synchronization with the variable frequency division output S7. This subtraction value is a value obtained by subtracting 37 from 40, and is a difference with respect to the period of an integral multiple of the FG signal. Here, if an up counter that repeatedly counts from 0 to 9 is used, the difference value 7 obtained by subtracting 30 from 37 may be added. The calculation speed of the calculation means 9 only needs to be completed immediately before the correction means IO requires the correction value. Further, the illustrated time tQ-t12 is a period that is 3.7 times the period of the FG times signal t, that is, the period of the PG times signal.

第2図において、波形AはFG倍信号tを、波形Bは可
変分周手段8の分周動作を、波形CN、CIは可変分周
手段8の計数値N、1をデコードした出力(可変分周出
力S7N、S71 )を、波形りは演算手段9の演算動
作すなわち3を減算する動作を、波形Eは切換手段11
において演算出力S8を所定値(ここでは3)と大小比
較した出力(所定値以上なら「H」、未溝なら「L」)
を、波形Fはこの比較出力を可変分周出力S7Nの立ち
下がりでラッチした出力すなわち切換信号S9を、波形
Gは補正手段1Gにおいて可変分周出力S7Nの立ち上
がりを演算手段9の演算出力S8により補正した出力(
パルスの幅が補正量を現わす)を、波形Hはこの補正出
力の立ち下がりにより作成したパルスすなわちPG信号
S3を示す。
In FIG. 2, waveform A is the FG multiplied signal t, waveform B is the frequency dividing operation of the variable frequency dividing means 8, and waveforms CN and CI are the outputs (variable The waveform E corresponds to the operation of the calculation means 9, that is, the operation of subtracting 3, and the waveform E corresponds to the operation of the switching means 11.
Output obtained by comparing the calculated output S8 with a predetermined value (3 in this case) (“H” if the predetermined value or more, “L” if there is no groove)
The waveform F is the output obtained by latching this comparison output at the falling edge of the variable frequency division output S7N, that is, the switching signal S9. Corrected output (
The width of the pulse indicates the amount of correction), and the waveform H shows the pulse created by the falling edge of this correction output, that is, the PG signal S3.

今、PG信号S3の周期はFG信号S+の周期の3.7
倍であるから、その前後の整数分周の値4.3に比べて
−0,3、+0.7の差分がある。これはクロックパル
ス数に換算すると−3、+7である。
Now, the period of PG signal S3 is 3.7 of the period of FG signal S+.
Since it is a double, there is a difference of -0, 3, and +0.7 compared to the integer frequency division value of 4.3 before and after that. This is -3, +7 when converted into the number of clock pulses.

従って、単純に整数分周したのではPG信号S3の周波
数より低い、高い分周出力が得られ、タイミングが位相
遅れ、進みの方向へどんどんずれていき、結局、PG倍
信号同一周波数の分周出力を得ることはできない。
Therefore, if the frequency is simply divided by an integer, a high frequency division output lower than the frequency of the PG signal S3 will be obtained, and the timing will be delayed in phase and shifted further and further in the direction of advance.In the end, the frequency division of the PG multiplied signal with the same frequency will be obtained. I can't get any output.

そこで、本発明は可変分周手段において切換信号S9(
波形F)により3と4(ロウのとき3分周、ハイのとき
4分周)の分周比切り換えをおこない、tO〜t12の
各時刻より早めに可変分周出力S7N (波形CN)を
得て、これを補正手段10で演算出力S8(波形D)に
より補正することにより、10−112と同タイミング
の出力信号S3 (波形H)を得るようにしたものであ
る。
Therefore, the present invention provides a switching signal S9(
The frequency division ratio is switched between 3 and 4 (divided by 3 when low, divided by 4 when high) using waveform F), and a variable frequency divided output S7N (waveform CN) is obtained earlier than each time from tO to t12. By correcting this using the calculation output S8 (waveform D) in the correction means 10, an output signal S3 (waveform H) having the same timing as 10-112 is obtained.

今、説明の都合上10の時刻がFG倍信号t(波形A)
の立ち上がりに一致しているとして説明する。実際には
どの時刻からスタートしても構わず、それは演算出力S
8によって決定される。時刻t。
For convenience of explanation, time 10 is the FG multiplied signal t (waveform A).
This will be explained by assuming that it coincides with the rise of . Actually, it doesn't matter what time it starts, it is the calculation output S
8. Time t.

の演算出力S8はOである。演算手段9は減算する場合
(波形D)を示した。補正手段IOは補正の細かさを1
71Oとしたから、10通りの補正ができればよい。従
って、演算手段9は9〜Oまでの10通りの値が出力で
きればよく、これが波形りに示す減算に対応している。
The calculation output S8 is O. The calculating means 9 shows the case of subtraction (waveform D). The correction means IO has a correction fineness of 1
Since it is set to 71O, it is only necessary to perform ten different corrections. Therefore, the calculation means 9 only needs to be able to output ten different values from 9 to O, which correspond to the subtraction shown in the waveform.

波形図から判るように、tO〜tl、t3〜t4.tG
〜t7.tlO〜tllの間では3分周とし、tl−t
2.t2〜t3.t4〜t5.t5〜tG。
As can be seen from the waveform diagram, tO~tl, t3~t4. tG
~t7. Between tlO and tll, the frequency is divided by 3, and tl-t
2. t2-t3. t4-t5. t5~tG.

t7〜t 8. t 8〜t9.t9〜t 10. t
 11− t 12の間では4分周とすれば、各時刻t
O〜t12より早めに可変分周出力S7N  (m形C
M)を得ることができる。
t7-t8. t8-t9. t9-t10. t
If the frequency is divided by 4 between 11-t12, each time t
Variable frequency division output S7N (m type C
M) can be obtained.

このとき、可変分周出力S7Nの立ち上がりと各時刻と
の差は、10〜t12でそれぞれ0. 7.4.1.8
.5.2.9.6.3.0.7.4である。従って、こ
の値を補正値として用いれば、所望とするタイミングの
PG信号S3を得ることができる。
At this time, the difference between the rising edge of the variable frequency division output S7N and each time is 0.0 from 10 to t12. 7.4.1.8
.. 5.2.9.6.3.0.7.4. Therefore, by using this value as a correction value, it is possible to obtain the PG signal S3 at the desired timing.

波形Gはその補正量を示すが、各補正量は一つ前の値か
ら3だけ減算した値になっている。これは、前記した差
分−3に相当する。そして、この演算をした値が波形り
に示す演算出力S8である。ここで、演算手段による演
算は、各時刻より後で、かつ次の補正が始まる前までの
間に行なえばよい。
The waveform G shows the correction amount, and each correction amount is a value obtained by subtracting 3 from the previous value. This corresponds to the above-mentioned difference -3. The value obtained by this calculation is the calculation output S8 shown in the waveform. Here, the calculation by the calculation means may be performed after each time and before the next correction starts.

回倒では波形図CIに示す可変分周出力S71を用い、
この信号の立ち下がりに同期して演算している。
For rotation, use the variable frequency division output S71 shown in the waveform diagram CI,
Calculations are performed in synchronization with the falling edge of this signal.

ご方、可変分周手段8における分周比の切り換えは、一
つ前の演算出力S8が3以上のとき4分周、3未溝のと
き3分周とすればよい。これは、切換手段11において
演算出力S8を所定値(ここでは3)と大小比較して出
力を得、この大小比較出力を可変分周出力S7Nの立ち
下がりでラッチして切換信号S9を作成し、この切換信
号S9で切り換えればよい。
The frequency dividing ratio in the variable frequency dividing means 8 may be switched by dividing the frequency by 4 when the previous calculation output S8 is 3 or more, and by dividing by 3 when the previous calculation output S8 is 3 or more. This is done by comparing the calculated output S8 with a predetermined value (3 in this case) in the switching means 11 to obtain an output, and latching this magnitude comparison output at the falling edge of the variable frequency division output S7N to create the switching signal S9. , it is sufficient to switch using this switching signal S9.

回倒では波形Fに示す切換信号S3がロウのとき分周比
N=3、ハイのときN=4としている。ここで、大小比
較に用いた所定値は前記した差分−3に対応している。
In rotation, when the switching signal S3 shown in waveform F is low, the frequency division ratio N=3, and when it is high, the frequency division ratio is N=4. Here, the predetermined value used for the magnitude comparison corresponds to the above-mentioned difference -3.

これは、一つ前の補正値が3未満の場合は次の補正値が
7以上であること、即ち、次の分周比が小さくなること
を現わしている。
This means that if the previous correction value is less than 3, the next correction value will be 7 or more, that is, the next frequency division ratio will be smaller.

以上の如くして、可変分周手段8の可変分周出力S7に
同期して演算手段9で演算し、その演算出力S8に応じ
て可変分周手段8における分周比の切り換えと、補正手
段IOにおけるタイミング補正とを行ない、補正手段I
Oより所望とする周波数のPG信号S3を得ることがで
きる。この信号S3が分周手段4の分周出力である。
As described above, the calculation means 9 performs calculations in synchronization with the variable frequency division output S7 of the variable frequency division means 8, and the frequency division ratio in the variable frequency division means 8 is switched according to the calculation output S8, and the correction means The correction means I performs timing correction in IO.
A PG signal S3 of a desired frequency can be obtained from O. This signal S3 is the frequency divided output of the frequency dividing means 4.

なお、上記の説明では可変分周手段8の可変分周出力S
7Nの立ち上がりをタイミング補正し、可変分周出力S
71の立ち上がりに同期して演算する場合について示し
たが、これに限定されるものではない。また、演算手段
9はハード的に構成する場合はダウンカウンタで減算器
を構成すればよく、ソフト的に構成する場合はマイクロ
コンピュータで減算のプログラムを実行させることで可
能である。
In addition, in the above explanation, the variable frequency division output S of the variable frequency division means 8
7N rise timing is corrected and variable frequency division output S
Although the case where calculation is performed in synchronization with the rising edge of signal 71 has been described, the present invention is not limited to this. Further, when the calculation means 9 is configured in hardware, it is sufficient to configure a subtracter using a down counter, and when configured in software, it is possible to execute a subtraction program with a microcomputer.

以上は、本発明における分周手段4の実施動作例を数値
を交えて説明したものであるが、より一般的な説明をす
ると、 (1) まず、PG信号S3の周波数fPGに対するF
G倍信Slの周波数fFGの倍率f FG/ f PG
を求める。これが前記の3.7倍である。
The above is an explanation of the operational example of the frequency dividing means 4 in the present invention using numerical values, but a more general explanation is as follows: (1) First, the frequency fPG of the PG signal S3 is
Frequency of G doubler Sl f FG magnification f FG/ f PG
seek. This is 3.7 times the above value.

(2)  f+a/fpaの小数位を切り上げたときの
整数値Nlと、切り捨てたときの整数値N2を求める。
(2) Find an integer value Nl when f+a/fpa is rounded up and an integer value N2 when rounded down.

これが可変分周手段8での分周比であり、前記の値に対
応させればN1=4.  N2=3 (N1=N2+1
)である。
This is the frequency division ratio in the variable frequency division means 8, and if it corresponds to the above value, N1=4. N2=3 (N1=N2+1
).

(3)  N1.N2からf FG/ f PGを引い
た差分に、FG倍信Slの周波数fFGに対する補正手
段10で用いるクロック周波数fCKの倍率f CK/
 f FGを掛けて、クロックパルス数に換算した差分
M−1M’を求める。M−= (f FG/ f PG
−N I)・f CK/ f FG。
(3) N1. The difference obtained by subtracting f FG/ f PG from N2 is the multiplication factor f CK/ of the clock frequency fCK used in the correction means 10 for the frequency fFG of the FG doubler Sl.
Multiply by fFG to find the difference M-1M' converted into the number of clock pulses. M-= (f FG/ f PG
-N I)・f CK/ f FG.

M″″= (f FG/ f PG−N2)  ・f 
CK/ f FGであり、前記の値に対応させれば、M
−= −3、M”=+7であり、演算手段9における減
算値、加算値である。
M″″= (f FG/ f PG-N2) ・f
CK/f FG, and if it corresponds to the above value, M
-=-3, M''=+7, which are the subtraction value and addition value in the calculation means 9.

以上、本発明の要部をなす分周手段4の説明を行なった
が、本発明は係る分周手段を用いることにより、キャプ
スタンFG信号Stが位相比較の基準信号S2の周波数
の整数倍で得られない場合でも、基準信号S2と同一周
波数のPG信号S3を得ることができる。これにより、
キャプスタンの軸径りおよびFGの歯数Zを任意に選定
することのできるキャプスタンサーボ装置を具現するこ
とができる。
The frequency dividing means 4, which constitutes the main part of the present invention, has been explained above, but the present invention uses such a frequency dividing means so that the capstan FG signal St is an integral multiple of the frequency of the reference signal S2 for phase comparison. Even if this is not possible, a PG signal S3 having the same frequency as the reference signal S2 can be obtained. This results in
It is possible to realize a capstan servo device in which the shaft diameter of the capstan and the number of teeth Z of the FG can be arbitrarily selected.

なお、第1図における位相比較手段5、速度比較手段6
、混合手段7、演算手段9、補正手段101切換手段I
fはマイクロコンピュータによるプログラム処理(ソフ
トウェア処理)で実現できることは言うまでもない。
In addition, the phase comparison means 5 and the speed comparison means 6 in FIG.
, mixing means 7, calculation means 9, correction means 101 switching means I
It goes without saying that f can be realized by program processing (software processing) by a microcomputer.

発明の効果 以上のように本発明は、整数分周または非整数分周でき
る分周手段 を用いることにより、従来不可能であった
キャプスタンの軸径りおよびFGの歯数Zを任意に選定
することが可能となり、軸径りおよび歯数Zの制約を全
く受けないキャプスタンサーボ装置を具現することがで
き、その実用的効果は大きい。
Effects of the Invention As described above, the present invention makes it possible to arbitrarily select the shaft diameter of the capstan and the number of teeth Z of the FG, which was previously impossible, by using a frequency dividing means capable of integer frequency division or non-integer frequency division. Therefore, it is possible to realize a capstan servo device that is not restricted by the shaft diameter and the number of teeth Z, and the practical effects thereof are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるキャプスタンサーボ装
置のブロック図、第2図は本発明の要部である分周手段
の動作例を示す波形図である。 4009分周手段、  5110位相比較手段、  6
.。 、速度比較手段、  713.混合手段、  803.
可変分周手段、  9.、、演算手段、  10.、、
補正手段、11、、、切換手段。 代理人の氏名 弁理士 粟野 重孝 ほか1名1−’e
ヤフ″スダンf−9 −Fcr
FIG. 1 is a block diagram of a capstan servo device according to an embodiment of the present invention, and FIG. 2 is a waveform diagram showing an example of the operation of frequency dividing means, which is a main part of the present invention. 4009 Frequency division means, 5110 Phase comparison means, 6
.. . , speed comparison means, 713. mixing means, 803.
variable frequency dividing means; 9. ,, calculation means, 10. ,,
Correction means, 11,...Switching means. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1-'e
Yahoo "Sudan F-9 -Fcr

Claims (4)

【特許請求の範囲】[Claims] (1)キャプスタンFG信号を整数分周または非整数分
周する分周手段と、前記分周手段の出力を比較信号とし
て基準信号との位相比較により位相誤差信号を検出する
位相比較手段とを具備し、前記位相誤差信号によりキャ
プスタンモータを制御する構成とし、前記分周手段は前
記キャプスタンFG信号を可変分周する可変分周手段と
、前記可変分周手段の出力に同期して演算する演算手段
と、前記演算手段の出力に応じて前記可変分周手段の出
力のタイミングを補正する補正手段と、前記演算手段の
出力に応じて前記可変分周手段の分周比を切り換える切
換手段とを具備し、前記補正手段の出力を分周出力とす
ることを特徴とするキャプスタンサーボ装置。
(1) Frequency dividing means that divides the capstan FG signal by integer or non-integer frequency, and phase comparison means that detects a phase error signal by phase comparison with a reference signal using the output of the frequency dividing means as a comparison signal. The capstan motor is controlled by the phase error signal, and the frequency dividing means includes variable frequency dividing means for variably frequency dividing the capstan FG signal, and calculation in synchronization with the output of the variable frequency dividing means. a calculation means for correcting the timing of the output of the variable frequency division means according to the output of the calculation means; and a switching means for switching the division ratio of the variable frequency division means according to the output of the calculation means. A capstan servo device, characterized in that the output of the correction means is a frequency-divided output.
(2)位相比較手段、演算手段、補正手段および切換手
段はマイクロコンピュータを用いて構成したことを特徴
とする特許請求の範囲第1項記載のキャプスタンサーボ
装置。
(2) The capstan servo device according to claim 1, wherein the phase comparison means, calculation means, correction means, and switching means are constructed using a microcomputer.
(3)キャプスタンFG信号を周波数弁別して速度誤差
信号を検出する速度比較手段と、キャプスタンFG信号
を整数分周または非整数分周する分周手段と、前記分周
手段の出力を比較信号として基準信号との位相比較によ
り位相誤差信号を検出する位相比較手段と、前記速度誤
差信号と前記位相誤差信号とを混合する混合手段とを具
備し、前記混合手段の出力によりキャプスタンモータを
制御する構成とし、前記分周手段は前記キャプスタンF
G信号を可変分周する可変分周手段と、前記可変分周手
段の出力に同期して演算する演算手段と、前記演算手段
の出力に応じて前記可変分周手段の出力のタイミングを
補正する補正手段と、前記演算手段の出力に応じて前記
可変分周手段の分周比を切り換える切換手段とを具備し
、前記補正手段の出力を分周出力とすることを特徴とす
るキャプスタンサーボ装置。
(3) A speed comparison means for frequency-discriminating the capstan FG signal to detect a speed error signal, a frequency division means for dividing the capstan FG signal by an integer or a non-integer, and a signal for comparing the output of the frequency division means. and a mixing means for mixing the speed error signal and the phase error signal, the capstan motor being controlled by the output of the mixing means. The frequency dividing means has a configuration in which the capstan F
variable frequency dividing means for variably frequency-dividing the G signal; calculating means for calculating in synchronization with the output of the variable frequency dividing means; and correcting the timing of the output of the variable frequency dividing means in accordance with the output of the calculating means. A capstan servo device comprising a correction means and a switching means for switching the frequency division ratio of the variable frequency division means according to the output of the calculation means, and the output of the correction means is a frequency division output. .
(4)位相比較手段、速度比較手段、混合手段、演算手
段、補正手段および切換手段はマイクロコンピュータを
用いて構成したことを特徴とする特許請求の範囲第3項
記載のキャプスタンサーボ装置。
(4) The capstan servo device according to claim 3, wherein the phase comparison means, speed comparison means, mixing means, calculation means, correction means, and switching means are constructed using a microcomputer.
JP63194089A 1988-08-03 1988-08-03 Frequency divider and capstan servo device Expired - Fee Related JP2723545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63194089A JP2723545B2 (en) 1988-08-03 1988-08-03 Frequency divider and capstan servo device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63194089A JP2723545B2 (en) 1988-08-03 1988-08-03 Frequency divider and capstan servo device

Publications (2)

Publication Number Publication Date
JPH0244557A true JPH0244557A (en) 1990-02-14
JP2723545B2 JP2723545B2 (en) 1998-03-09

Family

ID=16318769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63194089A Expired - Fee Related JP2723545B2 (en) 1988-08-03 1988-08-03 Frequency divider and capstan servo device

Country Status (1)

Country Link
JP (1) JP2723545B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578968A (en) * 1991-10-17 1996-11-26 Shinsaku Mori Frequency converter, multistage frequency converter and frequency synthesizer utilizing them
JP2012185106A (en) * 2011-03-08 2012-09-27 Ricoh Co Ltd Position detection device and motor drive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750001A (en) * 1980-09-10 1982-03-24 Toshiba Corp Phase adjustment system
JPS5928267A (en) * 1982-08-09 1984-02-14 Nec Corp Compressing and extending device of program play time
JPS6262462A (en) * 1985-09-12 1987-03-19 Sharp Corp Magnetic recording and reproducing device
JPS62208451A (en) * 1986-03-10 1987-09-12 Hitachi Ltd Capstan servo device
JPS6315517A (en) * 1986-07-08 1988-01-22 Nec Corp Clock generating circuit
JPS6359216A (en) * 1986-08-29 1988-03-15 Yokogawa Electric Corp Frequency division circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750001A (en) * 1980-09-10 1982-03-24 Toshiba Corp Phase adjustment system
JPS5928267A (en) * 1982-08-09 1984-02-14 Nec Corp Compressing and extending device of program play time
JPS6262462A (en) * 1985-09-12 1987-03-19 Sharp Corp Magnetic recording and reproducing device
JPS62208451A (en) * 1986-03-10 1987-09-12 Hitachi Ltd Capstan servo device
JPS6315517A (en) * 1986-07-08 1988-01-22 Nec Corp Clock generating circuit
JPS6359216A (en) * 1986-08-29 1988-03-15 Yokogawa Electric Corp Frequency division circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578968A (en) * 1991-10-17 1996-11-26 Shinsaku Mori Frequency converter, multistage frequency converter and frequency synthesizer utilizing them
JP2012185106A (en) * 2011-03-08 2012-09-27 Ricoh Co Ltd Position detection device and motor drive

Also Published As

Publication number Publication date
JP2723545B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
US5616996A (en) Model reference following commutation circuit and adjusting method thereof
JPH11191991A (en) Phase-switching synchronization circuit in dc motor drive
US7109769B2 (en) PWM signal generator
JPH0244557A (en) Capstan servo device
US20040027181A1 (en) Clock multiplying PLL circuit
JP3348296B2 (en) Drive device for sensorless motor
JPH02165055A (en) Speed detector
JP2561887B2 (en) Servo motor rotation speed counting circuit
JPH11178380A (en) Motor speed controller
JPH0219021A (en) Digital pulse width modulation circuit
JP2986881B2 (en) Frequency divider for phase difference pulse signal
JPH02101663A (en) Capstan servo device
JP3353353B2 (en) Motor driving method and circuit
JPH0286326A (en) Frequency divider
JPH07110062B2 (en) Slow motion servo system
JPH06152347A (en) Multi-phase clock generating circuit
JP3609891B2 (en) Microcomputer
JPH0654580A (en) Method and circuit for driving motor
JPH06253568A (en) Reference signal generator
JP3445389B2 (en) VTR servo circuit
KR0155858B1 (en) Capston servo circuit
JPS6318897B2 (en)
JPS62281795A (en) Pulse motor step-out detection device
JPH0286327A (en) Frequency divider
JPH0731171A (en) Speed control circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees