JPH024453A - Preparation of catalyst for nitrogen oxide contact reduction - Google Patents

Preparation of catalyst for nitrogen oxide contact reduction

Info

Publication number
JPH024453A
JPH024453A JP63153177A JP15317788A JPH024453A JP H024453 A JPH024453 A JP H024453A JP 63153177 A JP63153177 A JP 63153177A JP 15317788 A JP15317788 A JP 15317788A JP H024453 A JPH024453 A JP H024453A
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
transition metal
ratio
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63153177A
Other languages
Japanese (ja)
Inventor
Naomi Araya
荒谷 尚美
Takeshi Ebina
毅 蝦名
Masahiro Nitta
昌弘 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63153177A priority Critical patent/JPH024453A/en
Publication of JPH024453A publication Critical patent/JPH024453A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce preparation cost of a catalyst of superior resistance to poison by carrying gel solution of Al, Si, alkali metal or an alkali earth metal compound on the zeolite and carrying out water heat treatment. CONSTITUTION:Gel solution, having molar ratio of oxide composition as SiO2/ Al2O3=10-200, H2O/SiO2=20-120, transition metal salt to SiO2 as Si/M=5-50 (M is transition metal element) and 0.1-0.7 molar ratio/l of effective alkali concentration, is prepared. Said gel solution and zeolite and brought into contact, and water heat treatment is carried out to prepare a transition metal catalyst carrying on zeolite. As zeolite, moldenite, pentacyl type zeolite or the like is used. As the transition metal, hydrochloride and sulfate of a metal selected out of copper, iron, nickel, cobalt and vanadium can be used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒素酸化物接触還元用触媒の製造方法に係り、
特に排煙中の窒素酸化物(以下、NOxと記す)をアン
モニア(NH3)によって選択的に接触還元する反応に
供される触媒の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a catalyst for catalytic reduction of nitrogen oxides,
In particular, the present invention relates to a method for producing a catalyst for selectively catalytically reducing nitrogen oxides (hereinafter referred to as NOx) in flue gas with ammonia (NH3).

〔従来の技術〕[Conventional technology]

発電所、焼結炉、各種化学工場、自動車などから排出さ
れるNOxは、光化学メモ。7グの原因物質とされるた
め、その効果的な処理手段が望まれている。従来から多
く提案されている排煙脱硝方法のうち、NH3を還元剤
とするNOxの接触還元法は、排煙中に02が1容量%
以上含まれていても、NH3は選択的にNOxと反応す
るので、還元剤が少なくてすむという点で有利な方法と
されている。
NOx emitted from power plants, sintering furnaces, various chemical factories, automobiles, etc. is a photochemical memo. Since it is said to be the causative agent of 7-g, effective treatment means are desired. Among the flue gas denitrification methods that have been proposed in the past, the NOx catalytic reduction method uses NH3 as a reducing agent.
Even if the above amount is contained, NH3 selectively reacts with NOx, so it is considered to be an advantageous method in that it requires less reducing agent.

この方法で用いられる触媒としては、活性アルミナ、シ
リカゲル、アルミナ、ゼオライト、酸化チタンなどの担
体に遷移金属化合物を担持させたものが知られている。
As catalysts used in this method, catalysts in which a transition metal compound is supported on a carrier such as activated alumina, silica gel, alumina, zeolite, or titanium oxide are known.

これらのうち現在実用に供されているものは、特開昭5
0−51966号、特開昭52−122293号に開示
されている酸化チタンを主成分とし、これに遷移金属と
してバナジウム(■)、モリブデン(MO)、タングス
テン(W)などを添加したものである。これらの触媒は
、排ガス中の硫黄酸化物(SOx)によって劣化しにく
い特徴を有しており、優れたものである。しかしながら
、燃料中の鉱物から主に生成する揮発性の金Bm化物や
セレン、テルル、タリウム、ヒ素、アンチモンなどの酸
化物による劣化については考慮されていなかった。この
ため、鉱物質゛を多く含有する石炭や中国産原油が燃料
に用いられ、排煙中の前記揮発性物質濃度が高くなると
、上記触媒の活性が大幅に低下するという問題があった
Among these, those currently in practical use are
The main component is titanium oxide disclosed in No. 0-51966 and JP-A-52-122293, to which transition metals such as vanadium (■), molybdenum (MO), and tungsten (W) are added. . These catalysts are excellent in that they are resistant to deterioration due to sulfur oxides (SOx) in exhaust gas. However, no consideration was given to deterioration caused by volatile gold-Bmide and oxides such as selenium, tellurium, thallium, arsenic, and antimony, which are mainly produced from minerals in the fuel. For this reason, when coal or Chinese crude oil containing a large amount of mineral substances is used as fuel and the concentration of the volatile substances in the flue gas increases, there is a problem in that the activity of the catalyst decreases significantly.

このような劣化に対しては、前記揮発性酸化物質が拡散
しにくいミクロボア内に活性成分を導入できるゼオライ
ト系の触媒を使用することにより、劣化をある程度軽減
することができ、すでに幾つかの特許が出願されている
(特開昭51−11063号、特開昭59−23064
2号等)。また、本発明者の発明によるヒ素などの揮発
性酸化物質に対する耐久性が非常に高いゼオライト系脱
硝触媒も提案されている。
Such deterioration can be alleviated to some extent by using a zeolite-based catalyst that can introduce active ingredients into micropores where the volatile oxidizing substances are difficult to diffuse, and several patents have already been published. have been applied for (Japanese Patent Application Laid-open No. 51-11063, Japanese Patent Application Laid-open No. 59-23064)
No. 2, etc.). Furthermore, a zeolite-based denitrification catalyst that has extremely high durability against volatile oxidizing substances such as arsenic has been proposed, which was invented by the present inventors.

ゼオライト系触媒のうちシリカアルミナ比(以下、S 
i 02 /Aff203比と記す)が10未満の低い
ものは、石床中などに含まれる酸性物質(特に硫黄酸化
物、5Ox)により、触媒活性が低下するという問題が
あった。これは、酸性物質がゼオライト中のアルミニウ
ム化合物と反応し、その構造を破壊するためと考えられ
る。一方、5t02 /AI!203比の高い(10以
上)のものは、酸性物質による劣化は少ないため、Si
O2/A!!2 o3比が10以上のゼオライト、例え
ば3i02/Aβ203比の高いゼオライトとして比較
的容易に入手可能なモルデナイト、フェリエライト、モ
ーピルオイル社から発表されている公知のZSM−5(
ペンタシル型ゼオライト)等を用いる触媒の検討がなさ
れてきた。
The silica-alumina ratio (hereinafter referred to as S
Those with a low i 02 /Aff203 ratio (denoted as i 02 /Aff203 ratio) of less than 10 had a problem in that the catalytic activity decreased due to acidic substances (particularly sulfur oxides, 5Ox) contained in the stone bed. This is thought to be because the acidic substance reacts with the aluminum compound in the zeolite and destroys its structure. On the other hand, 5t02/AI! Those with a high 203 ratio (10 or more) are less susceptible to deterioration due to acidic substances, so Si
O2/A! ! Zeolites with a 2o3 ratio of 10 or more, such as mordenite and ferrierite, which are relatively easily available as zeolites with a high 3i02/Aβ203 ratio, and the well-known ZSM-5 published by Mopil Oil Co., Ltd.
Catalysts using pentasil-type zeolite) have been investigated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ゼオライトに遷移金属を担持する場合、−旦水熱合成に
よりゼオライトを合成し、得られたゼオライトを酸また
はアンモニウム塩水溶液で繰返しイオン交換処理し、合
成原料中のナトリウムイオン等のアルカリ金属イオンを
除去した後、触媒活性成分である遷移金属イオンをイオ
ン交換する方法が用いられる。この理由は、(1)水熱
合成直後のゼオライトは、大量のアルカリ金属イオンを
含むため、単に遷移金属塩の水溶液と混ぜた場合、水溶
液のpHが高くなりすぎて活性金属成分の加水分解が起
こり、−度加水分解した金属イオンはゼオライトに担持
されにくくなる。 (2)アルカリ金属イオンによるイ
オン交換の妨害があるため、そのままでは遷移金属イオ
ンをイオン交換により担持てきない、ためである。
When supporting transition metals on zeolite, first synthesize the zeolite by hydrothermal synthesis, and then repeatedly ion-exchange the resulting zeolite with an acid or ammonium salt aqueous solution to remove alkali metal ions such as sodium ions in the synthesis raw materials. After that, a method is used in which the transition metal ions, which are catalytically active components, are ion-exchanged. The reason for this is (1) Zeolite immediately after hydrothermal synthesis contains a large amount of alkali metal ions, so if it is simply mixed with an aqueous solution of transition metal salts, the pH of the aqueous solution will become too high and the active metal components will not be hydrolyzed. This occurs, and metal ions that have been hydrolyzed to a certain degree are less likely to be supported on zeolite. (2) Since ion exchange is interfered with by alkali metal ions, transition metal ions cannot be carried by ion exchange as it is.

ペンタシル型ゼオライト構造を有するメタロシリケート
合成においては、金属イオン、珪素成分およびアルカリ
金属イオンを混合した状態で水熱合成を行ない、結晶骨
格にアルミニウム以外の原子を取り込むことが可能であ
るが、この場合、(1)アルミニウムイオンを添加しな
いこと、および(2)テンプレート剤(第四級アンモニ
ウム塩、アミン等の有機物が用いられる)の使用が必要
不可欠である。テンプレート剤が存在しなければ、ペン
タシル型の結晶構造を有するゼオライトも、メタロシリ
ケートも生成し難いことが知られている。また、ゼオラ
イトの水熱合成条件は、pH10以上のアルカリ性溶液
であるため、アルミニウムが共存する条件では、アルミ
ニウムが優先的に取り込まれ、他の金属イオンは加水分
解により水酸化物の沈澱を生じ、交換性イオンとしても
ゼオライト結晶内に取り込まれないと考えられていた。
In the synthesis of metallosilicates having a pentasil-type zeolite structure, it is possible to perform hydrothermal synthesis in a state where metal ions, silicon components, and alkali metal ions are mixed, and incorporate atoms other than aluminum into the crystal skeleton. It is essential to (1) not add aluminum ions, and (2) use a template agent (an organic substance such as a quaternary ammonium salt or amine is used). It is known that in the absence of a template agent, it is difficult to produce zeolite having a pentasil type crystal structure or metallosilicate. In addition, since the hydrothermal synthesis conditions for zeolite are an alkaline solution with a pH of 10 or more, when aluminum coexists, aluminum is preferentially taken in, and other metal ions are hydrolyzed to form hydroxide precipitates. It was thought that it was not incorporated into the zeolite crystal as an exchangeable ion.

このため、ゼオライトの水熱合成においては、ゼオライ
ト類似の結晶構造にアルミニウム以外の金属成分を取り
込むメタロシリケートの合成研究以外に、活性金属成分
をゼオライト合成原料に直接添加して合成する試みはな
かった。
For this reason, in the hydrothermal synthesis of zeolite, there has been no attempt to synthesize active metal components by directly adding them to the raw materials for zeolite synthesis, other than research on the synthesis of metallosilicates, which incorporates metal components other than aluminum into a zeolite-like crystal structure. .

本発明の目的は、優れた耐毒性を有する遷移金属担持ゼ
オライト脱硝触媒を、従来よりも簡単な操作で合成する
ことにある。
An object of the present invention is to synthesize a transition metal-supported zeolite denitrification catalyst having excellent toxicity resistance using a simpler operation than conventional methods.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、反応組成物がアルミニウム、珪素、アル
カリ金属またはアルカリ土類金属の化合物および遷移金
属塩からなる合成原料を以下のように調整し、水熱合成
することによって達成される。
The above object is achieved by preparing synthetic raw materials in which the reaction composition consists of aluminum, silicon, an alkali metal or alkaline earth metal compound, and a transition metal salt as follows, and performing hydrothermal synthesis.

本発明は、遷移金属を担持したゼオライトを用い、排煙
中の窒素酸化物をアンモニアの存在下に接触還元する脱
硝触媒の製造方法において、アルミニウム、珪素、アル
カリ金属またはアルカリ土類金属の化合物および遷移金
属の塩を原料とし、その酸化物組成のモル比が5iOz
/Aβ203=10〜200、H20/S i 02 
=20〜120で、遷移金属塩がSiO2に対してSi
7M−5〜50(Mは遷移金属元素)であり、有効アル
カリ濃度が0.1〜Q、 7 m o It / lで
あるように調整されたゲル溶液を水熱処理することによ
り、遷移金属を担持しゼオライト触媒を製造することを
特徴とする。
The present invention relates to a method for producing a denitrification catalyst for catalytically reducing nitrogen oxides in flue gas in the presence of ammonia using zeolite supporting a transition metal. The raw material is a transition metal salt, and the molar ratio of its oxide composition is 5iOz
/Aβ203=10-200, H20/S i 02
= 20 to 120, and the transition metal salt is Si
7M-5 to 50 (M is a transition metal element) and the effective alkali concentration is 0.1 to Q, by hydrothermally treating a gel solution adjusted to have a transition metal element. It is characterized by producing a supported zeolite catalyst.

遷移金属担持モルデナイトを合成する場合は、酸化物組
成のモル比がS i02 /Al2O3=10〜100
、H20/SiO2 =20〜120、有効アルカリ濃
度が0.3〜0.7 m o f2 / lおよび遷移
金属塩がSi/M=5〜50 (Mは金属元素)である
ように調整されたゲル水溶液を水熱合成する。遷移金属
担持ZSM−5を合成する場合は、酸化物組成のモル比
がS i 02 /Al2O3= 30〜100、H2
0/S i02 =20〜120、有効アルカリ濃度が
0.1〜Q、3 m o l / lおよび遷移金属塩
がSi/M=5〜50 (Mは金属元素)であるように
調整されたゲル水溶液を水熱合成する。この場合の有効
アルカリ濃度は下式で表わされる。
When synthesizing transition metal-supported mordenite, the molar ratio of the oxide composition is S i02 /Al2O3 = 10 to 100.
, H20/SiO2 = 20-120, the effective alkali concentration was adjusted to be 0.3-0.7 m of f2/l, and the transition metal salt was adjusted so that Si/M = 5-50 (M is a metal element). Hydrothermally synthesize an aqueous gel solution. When synthesizing transition metal-supported ZSM-5, the molar ratio of the oxide composition is Si02/Al2O3=30-100, H2
0/Si02 = 20-120, the effective alkali concentration was adjusted to 0.1-Q, 3 mol/l, and the transition metal salt was adjusted to Si/M = 5-50 (M is a metal element). Hydrothermally synthesize an aqueous gel solution. The effective alkali concentration in this case is expressed by the following formula.

Ceff =Σ(rn X CBmヤ)−Σ(n X 
CAz−)m、nはそれぞれ1または2である。
Ceff = Σ(rn x CBmya) - Σ(n
CAz-)m and n are each 1 or 2.

なお、式中の記号は、特許請求範囲に記したものと同一
である。
Note that the symbols in the formula are the same as those described in the claims.

本発明によれば、これまでに用いられてきたゼオライト
水熱合成、塩アルカリ処理および遷移金属イオン交換の
プロセスを含む繁雑な方法をとらなくても、水熱合成だ
けの操作で優れた耐毒性を有する遷移金属担持ゼオライ
ト脱硝触媒を得ることができる。
According to the present invention, excellent toxicity resistance can be achieved using only hydrothermal synthesis without the need for complicated methods including zeolite hydrothermal synthesis, salt-alkali treatment, and transition metal ion exchange processes that have been used up to now. A transition metal-supported zeolite denitrification catalyst can be obtained.

本発明で用いられる原料は、従来のゼオライト製造原料
、例えば珪素原料として珪酸、珪酸ナトリウム、水性シ
リカゾル、無定形固体シリカ等、アルミニウム原料とし
て、アルミン酸ナトリウム、水酸化アルミニウム、硫酸
アルミニウム、塩化アルミニウム、硝酸アルミニウム等
である。これらの原料は、必要に応じて適当な前処理を
施し、アルカリ可溶性として用いることが必要である。
The raw materials used in the present invention include conventional zeolite manufacturing raw materials, such as silicic acid, sodium silicate, aqueous silica sol, amorphous solid silica, etc. as silicon raw materials, sodium aluminate, aluminum hydroxide, aluminum sulfate, aluminum chloride, etc. as aluminum raw materials, Aluminum nitrate, etc. These raw materials need to be subjected to appropriate pretreatment as necessary and used as alkali-soluble.

もちろん、初めから可溶性原料を用いる際は、このよう
な前処理は不要である。また、天然産の原料(1) を
用いることも可能であるが、そのまま用いると石英等の
不純物の混入または原料中に含まれる鉄分による製品の
着色が避けられないので、天然原料を用いる場合は、鉱
酸による洗浄とそれに続く充分なアルカリ処理による可
溶化が必要である。
Of course, when using soluble raw materials from the beginning, such pretreatment is not necessary. It is also possible to use natural raw materials (1), but if used as is, contamination with impurities such as quartz or coloring of the product due to iron contained in the raw materials cannot be avoided. , washing with mineral acids followed by sufficient alkaline treatment for solubilization is required.

本発明における触媒の活性金属成分としては、銅、鉄、
ニッケル、コバルトおよびバナジウムから選ばれた金属
の硝酸、酢酸、塩酸または硫酸塩等が用いられる。
The active metal components of the catalyst in the present invention include copper, iron,
Nitric acid, acetic acid, hydrochloric acid, or sulfate of a metal selected from nickel, cobalt, and vanadium is used.

本発明では、原料の反応系への添加順序は特に制■され
ないが、通常は水に、硫酸アルミニウムと硫酸の混合水
溶液、またはアルミン酸ナトリウム水溶液と水ガラス水
溶液もしくはシリカゾル等のシリカ源を攪拌しながら同
時に添加し、その後遷移金属塩を加えるのが望ましい。
In the present invention, the order in which the raw materials are added to the reaction system is not particularly limited, but usually a silica source such as a mixed aqueous solution of aluminum sulfate and sulfuric acid, an aqueous sodium aluminate solution and an aqueous water glass solution, or silica sol is stirred into water. However, it is preferable to add the transition metal salt at the same time, and then add the transition metal salt.

反応組成を酸化物の組成比として表わした場合、510
2の濃度はH20/S 1o2=20〜120が好まし
く、特にH20/S t02 =30〜70が好ましい
。遷移金属塩はSiO2の濃度に対してSi/M=5〜
50の範囲から選ばれるが、Si/M比を10以下にし
て遷移金属塩の量を増やしても、遷移金属塩の分散が悪
(なり脱硝率が増加しないという結果を生じるため、原
料を有効に用いるためにはSi/M=10〜30の範囲
が望ましい。また有効アルカリ濃度は、生成するゼオラ
イトがモルデナイトの場合0.3〜0.7 m o !
!/βに、またZSM−5の場合は0.1〜0.3 m
 。
When the reaction composition is expressed as a composition ratio of oxides, it is 510
The concentration of 2 is preferably H20/S 1o2 = 20 to 120, particularly preferably H20/S t02 = 30 to 70. The transition metal salt has a Si/M=5 to SiO2 concentration.
50, but even if the Si/M ratio is set to 10 or less and the amount of transition metal salt is increased, the dispersion of the transition metal salt will be poor (and the denitrification rate will not increase), so it is difficult to use the raw material effectively. In order to use the zeolite, it is desirable that Si/M is in the range of 10 to 30.The effective alkali concentration is 0.3 to 0.7 m o when the zeolite produced is mordenite!
! /β, and 0.1 to 0.3 m in the case of ZSM-5
.

R//lに調整することが望ましい。It is desirable to adjust it to R//l.

ここで有効アルカリ濃度は前述した式(1)のように定
義される。つまり反応成分から珪素およびアルミニウム
成分を除外すると、アルカリ金属またはアルカリ土類金
属とpHm整のため添加する鉱酸が残る。そして、鉱酸
により中和されて残ったアルカリ金属またはアルカリ土
類金属水酸化物から生じる水酸イオンの濃度を有効アル
カリ濃度と定義している。
Here, the effective alkali concentration is defined as in the above-mentioned equation (1). That is, when silicon and aluminum components are excluded from the reaction components, the alkali metal or alkaline earth metal and the mineral acid added to adjust the pH remain. The concentration of hydroxide ions generated from the alkali metal or alkaline earth metal hydroxide remaining after neutralization with mineral acid is defined as the effective alkali concentration.

反応組成物のS i 02 /Aj!203比は、生成
する遷移金属担持モルデナイトまたは遷移金属担持ZS
M−5のS i 02 /AA!203比にほとんど影
響しないため、モルデナイトの5iOz/AI!2 o
3比は10〜100、好ましくは20〜60の範囲、お
よびZSM−5での5t02/AI!203比は30〜
200、好ましくは40〜150の範囲から選ばれる。
S i 02 /Aj! of the reaction composition. 203 ratio is the transition metal-supported mordenite or transition metal-supported ZS produced.
M-5's S i 02 /AA! Since it has almost no effect on the 203 ratio, mordenite's 5iOz/AI! 2 o
3 ratio ranges from 10 to 100, preferably from 20 to 60, and 5t02/AI in ZSM-5! 203 ratio is 30~
200, preferably from the range of 40 to 150.

しかし、原料を有効に利用するためには、生成する遷移
金属担持ゼオライトに近い原料組成とする必要があり、
したがって予め有効アルカリ濃度と生成するゼオライト
のSiO2/A#203比関係を把握しておくのが望ま
しい。
However, in order to utilize raw materials effectively, it is necessary to have a raw material composition close to that of the transition metal-supported zeolite that will be produced.
Therefore, it is desirable to understand in advance the relationship between the effective alkali concentration and the SiO2/A#203 ratio of the zeolite produced.

以後はゼオライトの合成と同じく水熱処理を行なうが、
水熱処理は100℃から200℃、好ましくは150℃
から180℃、自生圧力下で5時間ないし400時間、
好ましくは20時間ないし200時間行なう。水熱処理
温度が100℃未満では結晶化が進みにくくなり、逆に
200℃を超えると石英等の副生が起こり易くなるため
好ましくない。また水熱処理時間が5時間未満では結晶
化が不充分であり、逆に400時間を超えると石英等が
副生し易くなるため好ましくない。
After that, hydrothermal treatment is performed as in the synthesis of zeolite.
Hydrothermal treatment is from 100℃ to 200℃, preferably 150℃
to 180℃ for 5 hours to 400 hours under autogenous pressure,
It is preferably carried out for 20 to 200 hours. If the hydrothermal treatment temperature is less than 100°C, crystallization will be difficult to proceed, whereas if it exceeds 200°C, by-products such as quartz will easily occur, which is not preferable. Further, if the hydrothermal treatment time is less than 5 hours, crystallization will be insufficient, and if it exceeds 400 hours, quartz etc. will be likely to be produced as by-products, which is not preferable.

生成物は濾別し充分に水洗する。水洗は、洗浄後の蒸留
水のpHが7.5以下になるまで行なうのが好ましい。
The product is filtered and thoroughly washed with water. It is preferable to wash with water until the pH of the distilled water after washing becomes 7.5 or less.

水洗後、濾別、乾燥するが、乾燥温度は80〜200℃
、好ましくは110〜150℃から選ばれる。
After washing with water, it is filtered and dried at a drying temperature of 80 to 200℃.
, preferably from 110 to 150°C.

上記の方法を用いると、これまでに用いられていた繁雑
な方法を用いなくても簡単に遷移金属を担持したゼオラ
イト触媒を合成することができる。
By using the above method, a zeolite catalyst supporting a transition metal can be easily synthesized without using the complicated methods used so far.

これまでの方法では、金属イオンがアルカリの存在下で
は加水分解することから遷移金属イオンがゼオライトの
ゲル溶液中で沈澱してしまい、七オライドに遷移金属イ
オンを担持できないと考えられていた。しかし、本方法
により製造する触媒は、以下の理由により遷移金属イオ
ンを担持したゼオライトであると考えられる。
In previous methods, it was thought that transition metal ions would precipitate in the zeolite gel solution because metal ions would be hydrolyzed in the presence of alkali, making it impossible to support transition metal ions on heptaolide. However, the catalyst produced by this method is considered to be a zeolite supporting transition metal ions for the following reasons.

(1)螢光X線の測定結果から生成物中に遷移金属原子
が存在している。
(1) The results of fluorescence X-ray measurements indicate that transition metal atoms are present in the product.

(2)得られた生成物を500℃で2時間焼成したが、
遷移金属の酸化物は析出しない。ゼオライトに担持した
遷移金属イオンも、この焼成条件では酸化物となること
はない。
(2) The obtained product was calcined at 500°C for 2 hours,
Transition metal oxides do not precipitate. The transition metal ions supported on the zeolite also do not become oxides under these firing conditions.

(3)焼成前の生成物のX線回折図に現れているピーク
はすべてゼオライトに基づ(ピークで、遷移金属化合物
に基づくピークは現れていない。
(3) All the peaks appearing in the X-ray diffraction diagram of the product before calcination are based on zeolite (peaks), and no peaks based on transition metal compounds appear.

(4)珪素と遷移金属イオンから生じる結晶性メタロシ
リケートの可能性を系統したところ、本発明者らが常法
(ZSM−5と同様の方法、吉村淳、難波征太部、へ嶋
建明:触媒、■、232(1981))により合成した
結晶性メタロシリケートを試験した結果では、1M塩酸
またはこれに相当する酸で処理すれば1日程度で遷移金
属の多くが脱離した。しかし、本発明による触媒では同
じ程度の脱離が起こるには1週間程度を要する。これは
遷移金属をイオン交換により担持したゼオライトと同等
の耐酸性である。この結果から、本発明による触媒は、
遷移金属が骨格に組み込まれて生じたメタロシリケート
ではないことがわかった。
(4) Systematizing the possibility of crystalline metallosilicates produced from silicon and transition metal ions, the present inventors discovered that a conventional method (method similar to ZSM-5, Jun Yoshimura, Seitabe Namba, Takeaki Hejima: The results of tests on crystalline metallosilicates synthesized by Catalyst, Volume 1, 232 (1981) showed that most of the transition metals were eliminated in about one day when treated with 1M hydrochloric acid or an equivalent acid. However, with the catalyst according to the present invention, it takes about one week for the same degree of desorption to occur. This has acid resistance equivalent to that of zeolite that supports transition metals through ion exchange. From this result, the catalyst according to the present invention
It was found that this is not a metallosilicate formed by incorporating a transition metal into the skeleton.

(5)また、遷移金属を担持した非晶質のシリカアルミ
ナ触媒の可能性について系統したところ、本発明者らの
試験結果では、銅を担持したシリカアルミナ触媒の脱硝
率はたかだか45%程度であることがわかった。
(5) Furthermore, when we investigated the possibility of using amorphous silica-alumina catalysts supporting transition metals, we found that the denitrification rate of silica-alumina catalysts supporting copper was only about 45%, according to our test results. I found out something.

(6)本触媒の脱硝率は90%以上にも達しており、こ
れは遷移金属をイオン交換により担持したゼオライトと
同等の脱硝率である。
(6) The denitrification rate of this catalyst has reached 90% or more, which is equivalent to that of zeolite supporting transition metals by ion exchange.

以上の実験事実および原料組成から、生成物は金属イオ
ンを担持したゼオライト以外にないことが明らかになっ
た。
From the above experimental facts and raw material composition, it became clear that the product was nothing other than zeolite supporting metal ions.

本発明の合成条件では、水熱合成前の原料は珪素、アル
ミニウム、遷移金属の水和化合物がゲル状になっており
、はぼ均一に分散している。水熱合成によりゼオライト
骨格が形成されると、ゼオライト格子上の負電荷を帯び
たサイトはその近傍の遷移金属水和物を強く吸着する。
Under the synthesis conditions of the present invention, the raw materials before hydrothermal synthesis are gel-like hydrated compounds of silicon, aluminum, and transition metals, and are dispersed almost uniformly. When a zeolite skeleton is formed by hydrothermal synthesis, negatively charged sites on the zeolite lattice strongly adsorb transition metal hydrates in their vicinity.

また、本発明の製造条件におけるアルカリ金属イオン濃
度は比較的低く、このためゼオライト負電荷サイトに吸
着された遷移金属イオンがアルカリ金属イオンと置換さ
れにくい。これが、水熱合成だけで遷移金属イオンを担
持したゼオライトが生成する理由と考えられる。
Furthermore, the concentration of alkali metal ions under the production conditions of the present invention is relatively low, and therefore transition metal ions adsorbed on the negatively charged sites of the zeolite are difficult to be replaced with alkali metal ions. This is thought to be the reason why zeolite supporting transition metal ions is produced only by hydrothermal synthesis.

〔実施例〕〔Example〕

以下、本発明の実施例について述べるが、実施例中の諸
性質の測定は下記のように行なった。
Examples of the present invention will be described below, and various properties in the examples were measured as follows.

(a)BET比表面積測定 比表面積は、乾燥した遷移金属担持ゼオライト約0.1
5 gをとり、Quantachrome社\Auto
sorb−1型ガス吸着試験装置を用いて測定した。比
表面積は、相対圧力(P/Po)が0.025から0.
3におけるB、E、T、多点法により算出した。
(a) BET specific surface area measurement The specific surface area of dry transition metal-supported zeolite is approximately 0.1
Take 5 g and use Quantachrome\Auto
It was measured using a SORB-1 type gas adsorption test device. The specific surface area has a relative pressure (P/Po) of 0.025 to 0.
B, E, and T in 3 were calculated by the multi-point method.

(b)粉末X線回折(X RD)測定 理学電機社の装置(RAD−Cシステム、12kW)を
用いた。
(b) Powder X-ray diffraction (X RD) measurement An apparatus manufactured by Rigaku Denki Co., Ltd. (RAD-C system, 12 kW) was used.

(c)S i02 /Af203比およびSi/M比測
定 理学電機社製螢光X線装置を用いた。
(c) Measurement of S i02 /Af203 ratio and Si/M ratio A fluorescent X-ray apparatus manufactured by Rigaku Denki Co., Ltd. was used.

(d)活性測定 実施例および比較例における触媒活性試験は、成型・焼
成し10〜20メツシユにふるい分けた触媒2mlに、
酸素3容量%、炭酸ガス12容量%、7に12容量%、
NOx  200ppm、アンモニア240ppm、残
部は窒素の混合ガスを空間速度200,0OOh−1で
流通させ、NOxを分解させる方法により実施した。
(d) Activity measurement In the catalyst activity test in Examples and Comparative Examples, 2 ml of the catalyst was molded, calcined, and sieved into 10 to 20 meshes.
Oxygen 3% by volume, carbon dioxide gas 12% by volume, 7 to 12% by volume,
The test was carried out by a method in which a mixed gas of 200 ppm of NOx, 240 ppm of ammonia, and the remainder nitrogen was passed through at a space velocity of 200.0 OOh-1 to decompose NOx.

なお、NOx含有量は、化学発光式NOxメータで測定
し、NOxの分解率(脱硝率)はNOxの濃度をアンモ
ニア添加前および後に測定し、下記式によゲて算出した
The NOx content was measured using a chemiluminescent NOx meter, and the NOx decomposition rate (NOx removal rate) was calculated by measuring the NOx concentration before and after adding ammonia, and using the following formula.

NOx  (入口)−NOx(出口) 脱硝率(%)=     、。8 い。、×100 実施例1 蒸留水33mA!に(a)水ガラス1号(Na20:1
8%、SiO2:36.5%含有)45gを、蒸留水8
3m1に熔解した溶液および(b)硫酸アルミニウム(
13,5水塩)5.0gと、98%硫酸3.56 gを
蒸留水69mffに溶解した溶液を攪拌しながら滴下混
合する。充分攪拌した後、混合溶液に硫酸銅5水和物を
4.51g加える。混合後のスラリに蒸留水を加え、全
量を250m/とじた後、300m!!のステンレスス
チール容器に移し、170℃で20時間、水熱処理する
。この反応溶液の酸化物組成は、H20/S i02 
=51、S i02 /A1203 =31、S i 
/M= 15.1、有効なNaOH濃度= 0.55 
m o I!/ 1である。
NOx (inlet) - NOx (outlet) Denitrification rate (%) = . 8 Yes. ,×100 Example 1 Distilled water 33mA! (a) Water glass No. 1 (Na20:1
8%, containing 36.5% SiO2), 45g of distilled water
solution and (b) aluminum sulfate (
A solution prepared by dissolving 5.0 g of 13,5 hydrate and 3.56 g of 98% sulfuric acid in 69 mff of distilled water is mixed dropwise with stirring. After sufficient stirring, 4.51 g of copper sulfate pentahydrate is added to the mixed solution. Distilled water was added to the slurry after mixing, and the total amount was 250m/300m after binding! ! Transfer to a stainless steel container and hydrothermally treat at 170°C for 20 hours. The oxide composition of this reaction solution is H20/S i02
=51, S i02 /A1203 =31, S i
/M = 15.1, effective NaOH concentration = 0.55
m o I! / 1.

水熱処理中は、約30Orpmで攪拌を続ける。Stirring is continued at about 30 rpm during the hydrothermal treatment.

水熱処理終了後、濾別し蒸留水約51で吸引濾過しなが
ら水洗する。その後120℃で5時間乾燥する。この一
部をとりXRDパターンを調べた結果を第1図に示すが
、生成物はモルデナイトであることが確認された。また
全屈化合物に基づくピ−クは確認されなかった。BET
比表面積は375rrr/gであった。また、螢光X線
装置を使用してSiO2/Aβ203比および347M
比を調べた結果と、この触媒を500℃で2時間焼成し
た後NOxの分解試験を行なった結果を第1表に示す。
After the hydrothermal treatment, it is filtered and washed with about 50 ml of distilled water while being filtered under suction. It is then dried at 120°C for 5 hours. A portion of this was taken and the XRD pattern was examined. The results are shown in FIG. 1, and it was confirmed that the product was mordenite. Furthermore, no peaks due to total bending compounds were observed. BET
The specific surface area was 375 rrr/g. In addition, using a fluorescent X-ray device, the SiO2/Aβ203 ratio and 347M
Table 1 shows the results of examining the ratio and the results of a NOx decomposition test after firing this catalyst at 500° C. for 2 hours.

以下余白 実施例2.3 実施例1で、硫酸アルミニウムを15g、2.6g1硫
酸を0.72 g、 4.8 gに変える以外は同様の
操作で合成した。反応溶液の酸化物組成は、■]20/
5io2=5LSio2/Aβ203比は各々10.3
.60、Si/M=15.1.有効なNaOH1度=0
.55mof/1”??あ6゜生成物はいずれもモルデ
ナイトであったが、SiO2 /A1203 =60の
ものは、微量のZSM−5が副生じていた。またいずれ
も金属化合物に基づくピークは確認されなかった。BE
T比表面積・は各々345m/g、37Or&/gであ
った。
Example 2.3 Synthesis was performed in the same manner as in Example 1 except that aluminum sulfate was changed to 15 g, 2.6 g/1 sulfuric acid was changed to 0.72 g, and 4.8 g. The oxide composition of the reaction solution is ■]20/
5io2=5LSio2/Aβ203 ratio is each 10.3
.. 60, Si/M=15.1. Effective NaOH 1 degree = 0
.. 55mof/1"??A6° All of the products were mordenite, but in the case of SiO2 /A1203 = 60, a trace amount of ZSM-5 was produced as a by-product. In addition, peaks based on metal compounds were confirmed in both cases. Not done.BE
The T specific surface areas were 345 m/g and 37 Or&/g, respectively.

また、螢光X線装置を使用してSiO2/AA203比
および347M比を調べた結果と、この触媒を500℃
で2時間焼成した後NOxの分解試験を行なった結果を
第1表に示す。
In addition, the results of examining the SiO2/AA203 ratio and 347M ratio using a fluorescent X-ray device and the results of testing this catalyst at 500℃
Table 1 shows the results of a NOx decomposition test conducted after firing for 2 hours.

実施例4.5 実施例1で、硫酸アルミニウムをLog、2.5g、1
号水ガラスを各々90g、22.5 g、硫酸を各々1
2.3 g、1.09gに変える以外は同様の操作で合
成した。
Example 4.5 In Example 1, aluminum sulfate was added to Log, 2.5 g, 1
90g and 22.5g of No. 1 water glass, 1 each of sulfuric acid
Synthesis was carried out in the same manner except that the amounts were changed to 2.3 g and 1.09 g.

この反応溶液の酸化物組成は、H20/SiO2比は各
々25.100、S i 02 /A j< 03=3
1、Si/M=15.1、有効なNaOH濃度は各々0
.69 m o Il/ 7!、0.33 m o 1
 / lである。
The oxide composition of this reaction solution is as follows: H20/SiO2 ratio is 25.100, S i 02 /A j < 03=3
1, Si/M=15.1, effective NaOH concentration is 0 respectively
.. 69 mo Il/7! , 0.33 m o 1
/ l.

生成物はモルデナイトであり、いずれも金属化合物に基
づくピークは確認されなかった。BET比表面積は各々
、336rrr/g、 354i/gであった。また、
螢光X線装置を使用してSiO2/Aj22 o3比お
よび347M比を調べた結果と、この触媒を500 ’
Cで2時間焼成した後NOxの分解試験を行なった結果
を第1表に示す。
The product was mordenite, and no peaks based on metal compounds were observed. The BET specific surface areas were 336rrr/g and 354i/g, respectively. Also,
The results of examining the SiO2/Aj22 o3 ratio and 347M ratio using a fluorescent X-ray device, and the
Table 1 shows the results of a NOx decomposition test conducted after firing at C for 2 hours.

実施例6.7 実施例1で、硫酸を6.31g、1.81gに変える以
外は同様の操作で合成した。
Example 6.7 Synthesis was carried out in the same manner as in Example 1 except that sulfuric acid was changed to 6.31 g and 1.81 g.

この反応溶液の酸化物組成は、H20/5iO2=51
、S to2/Ajiz 03 =31、Si/M=1
5.L有効なNaOH1/1度は各々0.33 mo 
1 / l 、 0.69 m o n / E T:
ある。
The oxide composition of this reaction solution is H20/5iO2=51
, S to2/Ajiz 03 =31, Si/M=1
5. L effective NaOH 1/1 degree is each 0.33 mo
1/l, 0.69 m on/ET:
be.

生成物はモルデナイトであり、いずれも金属化合物に基
づ(ピークは確認されなかった。BET比表面積は各々
378rd/g、365rrf/gであった。また、螢
光X線装置を使用してSiO2//1203比および3
47M比を調べた結果と、この触媒を500℃で2時間
焼成した後NOxの分解試験を行なった結果を第1表に
示す。
The products were mordenite, and both were based on metal compounds (no peaks were observed. The BET specific surface areas were 378rd/g and 365rrf/g, respectively. //1203 ratio and 3
Table 1 shows the results of examining the 47M ratio and the results of a NOx decomposition test after firing this catalyst at 500° C. for 2 hours.

実施例8.9.10.11 実施例1で、硫酸銅5水和物を2.26 g、9.09
g、1.51g、12.4gに変える以外は同様の操作
で合成した。
Example 8.9.10.11 In Example 1, 2.26 g of copper sulfate pentahydrate, 9.09
Synthesis was carried out in the same manner except that the amounts were changed to 1.51 g, 1.51 g, and 12.4 g.

この反応溶液の酸化物組成は、H20/5iO2=51
、S i02 /A1203 =31.S i/M比は
各々30.2.7.5.45.5.5、有効なNaOH
濃度−0,55m o l / lである。
The oxide composition of this reaction solution is H20/5iO2=51
, S i02 /A1203 =31. Si/M ratio is 30.2.7.5.45.5.5 respectively, effective NaOH
Concentration - 0,55 mol/l.

生成物はモルデナイトであり、いずれも金属化合物に基
づくピークは確認されなかった。BET比表面積は36
6m/g、325rrr/g、369rrr/g、33
1rrr/gであった。また、螢光X線装置を使用して
SiO2/A#203比および347M比を調べた結果
と、この触媒を500℃で2時間焼成した後NOxの分
解試験を行なった結果を第1表に示す。
The product was mordenite, and no peaks based on metal compounds were observed. BET specific surface area is 36
6m/g, 325rrr/g, 369rrr/g, 33
It was 1rrr/g. Table 1 also shows the results of examining the SiO2/A#203 ratio and 347M ratio using a fluorescent X-ray device, and the results of a NOx decomposition test after firing this catalyst at 500°C for 2 hours. show.

実施例12 実施例1で、硫酸を7.81gに変える以外は同様の操
作で合成した。
Example 12 Synthesis was performed in the same manner as in Example 1 except that 7.81 g of sulfuric acid was used.

この反応溶液の酸化物組成は、H20/5iO2=51
、S i02 /A1203 =31.S i/M=1
5.1、有効なNa0Hi、55度=0.21moI!
/1である。
The oxide composition of this reaction solution is H20/5iO2=51
, S i02 /A1203 =31. Si/M=1
5.1, effective Na0Hi, 55 degrees = 0.21 moI!
/1.

この生成物のXRDパターンを調べた結果を第2図に示
すが、生成物はZSM−5であることが確認された。ま
た、金属化合物に基づくピークは確認されなかった。B
ET比表面積は356 rrr/gであった。また、螢
光X線装置を使用してSiO2/Af203比および3
47M比を調べた結果と、この触媒を500℃で2時間
焼成した後NOxの分解試験を行なった結果を第1表に
示す。
The results of examining the XRD pattern of this product are shown in FIG. 2, and it was confirmed that the product was ZSM-5. Furthermore, no peaks due to metal compounds were observed. B
The ET specific surface area was 356 rrr/g. In addition, the SiO2/Af203 ratio and 3
Table 1 shows the results of examining the 47M ratio and the results of a NOx decomposition test after firing this catalyst at 500° C. for 2 hours.

実施例13.14.15 実施例1で、硫酸アルミニウムを2.5g、1.25g
、0.772g、硫酸を各々9.13g、9.80g、
10.05 gに変える以外は同様の操作で合成した。
Example 13.14.15 In Example 1, 2.5 g and 1.25 g of aluminum sulfate
, 0.772g, sulfuric acid 9.13g and 9.80g respectively,
Synthesis was carried out in the same manner except that the amount was changed to 10.05 g.

この反応溶液の酸化物組成は、H20/5iO2=51
、S i 02 /Al2O3比は62.124.20
0.3 i / M = 15.1 、有効なNaOH
濃度=0.21moff/#である。
The oxide composition of this reaction solution is H20/5iO2=51
, S i 02 /Al2O3 ratio is 62.124.20
0.3 i/M = 15.1, effective NaOH
Concentration = 0.21 moff/#.

生成物はZSM−5であり、いずれも金属化合物に基づ
くピークは確認されなかった。BET比表面積は各々3
81イ/g、370m/g、359n(/gであった。
The product was ZSM-5, and no peaks based on metal compounds were observed. BET specific surface area is 3 each
They were 81 i/g, 370 m/g, and 359 n(/g).

また、螢光X線装置を使用してSiO2/Aβ203比
およびSi/M比を調べた結果と、この触媒を500℃
で2時間焼成した後NOxの分解試験を行なった結果を
第1表に示す。
In addition, the results of examining the SiO2/Aβ203 ratio and Si/M ratio using a fluorescent X-ray device and the results of testing this catalyst at 500℃
Table 1 shows the results of a NOx decomposition test conducted after firing for 2 hours.

実施例16 実施例13で、硫酸を10.26gに変える以外は同様
の操作で合成した。
Example 16 Synthesis was performed in the same manner as in Example 13 except that 10.26 g of sulfuric acid was used.

この反応溶液の酸化物組成は、H20/5iO2=51
、S ioz /A42203 =62、Si/M=1
5.L有効なNaOH濃度−0,12m o R/βで
ある。
The oxide composition of this reaction solution is H20/5iO2=51
, S ioz /A42203 =62, Si/M=1
5. L effective NaOH concentration - 0,12m o R/β.

生成物はZSM−5であり、金属化合物に基づくピーク
は確認されなかった。BET比表面積は390m/gで
あった。また、螢光X線装置を使用してS io2/A
1203比およびSi/M比を調べた結果と、この触媒
を500℃で2時間焼成した後NOxの分解試験を行な
った結果を第1表に示す。
The product was ZSM-5, and no peaks due to metal compounds were observed. The BET specific surface area was 390 m/g. In addition, using a fluorescent X-ray device, S io2/A
Table 1 shows the results of examining the 1203 ratio and Si/M ratio, and the results of a NOx decomposition test after firing this catalyst at 500° C. for 2 hours.

実施例17 実施例13で、硫酸を8.38 gに変える以外は同様
の操作で合成した。
Example 17 Synthesis was performed in the same manner as in Example 13 except that 8.38 g of sulfuric acid was used.

この反応溶液の酸化物組成は、H20/5iO2−51
、S io2/Aj!203 =62、Si/M=15
.1、有効なNaOH21m度= 0.27 m o 
E/1である。
The oxide composition of this reaction solution is H20/5iO2-51
, S io2/Aj! 203 =62, Si/M=15
.. 1. Effective NaOH21m degree = 0.27 m o
It is E/1.

生成物はZSM−5と微量のモルデナイトであり、金属
化合物に基づくピークは確認されなかった。BET比表
面積は381m/gであった。また、螢光X線装置を使
用してSiO2/Aj!203比およびSi/M比を調
べた結果と、この触媒を500°Cで2時間焼成した後
NOxの分解試験を行なった結果を第1表に示す。
The products were ZSM-5 and a trace amount of mordenite, and no peaks due to metal compounds were observed. The BET specific surface area was 381 m/g. In addition, SiO2/Aj! using a fluorescent X-ray device! Table 1 shows the results of examining the 203 ratio and Si/M ratio, and the results of a NOx decomposition test after firing this catalyst at 500°C for 2 hours.

実施例18.19 実施例13で、硫酸銅5水和物を2.26g、9゜09
gに変える以外は同様の操作で合成した。
Example 18.19 In Example 13, 2.26 g of copper sulfate pentahydrate, 9°09
It was synthesized in the same manner except for changing to g.

この反応溶液の酸化物組成は、H20/SiO2=51
.S ioz /Al2O3=62、Si/M比は各々
30.2.7.5、有効なNaOH1度=0、21 m
 o 1 / 1である。
The oxide composition of this reaction solution is H20/SiO2=51
.. S ioz /Al2O3=62, Si/M ratio is 30.2.7.5 respectively, effective NaOH1 degree=0, 21 m
o 1/1.

生成物はZSM−5であり、いずれも金属化合物に基づ
くピークは確認されなかった。BET比表面積は各々3
30n?/g、350rd/gであった。また、螢光X
線装置を使用して3i02/Az2 o3比およびS 
i / M比を調べた結果と、この触媒を500℃で2
時間焼成した後NOxの分解試験を行なった結果を第1
表に示す。
The product was ZSM-5, and no peaks based on metal compounds were observed. BET specific surface area is 3 each
30n? /g, 350rd/g. Also, fluorescent X
3i02/Az2 o3 ratio and S
The results of examining the i/M ratio and the results of this catalyst at 500℃
The results of a NOx decomposition test after being fired for an hour are shown in the first
Shown in the table.

実施例20.21.22.23 実施例1で、硫酸銅5水和物を硝酸コバルト6水和物5
.26 g、三塩化バナジウム2.84 g、酢酸ニッ
ケル4水和物4.5g、硫酸鉄7水和物5.03gに変
える以外は同様の操作で合成した。
Example 20.21.22.23 In Example 1, copper sulfate pentahydrate was replaced with cobalt nitrate hexahydrate 5
.. 26 g, vanadium trichloride 2.84 g, nickel acetate tetrahydrate 4.5 g, and iron sulfate heptahydrate 5.03 g.

この反応溶液の酸化物組成は、H20/5iO2=51
、S ioz /Aj?203 =31、Si/M=1
5.1、有効なNaOH濃度−0,55moff/1で
ある。
The oxide composition of this reaction solution is H20/5iO2=51
,S ioz /Aj? 203 =31, Si/M=1
5.1, effective NaOH concentration -0.55 moff/1.

生成物は各々モルデナイトであり、いずれも金属化合物
に基づくピークは確認されなかった。BET比表面積は
各々371r+(/g、355n?/g、360rrf
/g、332n(/gであった。また、螢光X線装置を
使用してS i 02 /A1203比およびSi/M
比を調べた結果と、この触媒を500℃で2時間焼成し
た後NOxの分解試験を行なった結果を第2表に示す。
The products were each mordenite, and no peaks based on metal compounds were observed in any of them. BET specific surface area is 371r+(/g, 355n?/g, 360rrf
/g, 332n (/g. Also, using a fluorescent X-ray device, the S i 02 /A1203 ratio and Si/M
Table 2 shows the results of examining the ratio and the results of a NOx decomposition test after firing this catalyst at 500° C. for 2 hours.

実施例24.25.26 実施例1で、水熱処理温度を90.140.200℃に
変える以外は同様の操作で合成した。
Examples 24, 25, 26 Synthesis was carried out in the same manner as in Example 1 except that the hydrothermal treatment temperature was changed to 90.140.200°C.

この反応溶液の酸化物組成は、H20/5iO2=51
、S ioz /Al2O3=31、Si/M=15.
1、有効なNaOH濃度は各々0.55 mo l /
 j!である。
The oxide composition of this reaction solution is H20/5iO2=51
, S ioz /Al2O3=31, Si/M=15.
1.Effective NaOH concentration is 0.55 mol/each
j! It is.

生成物はモルデナイトであるが、90°Cで水熱処理を
したものは結晶化の程度が低かった。また、いずれも金
属化合物に基づくピークは確認されなかった。BET比
表面積はそれぞれ331n(/g。
The product was mordenite, but the degree of crystallization was low when hydrothermally treated at 90°C. In addition, no peaks based on metal compounds were observed in any of the samples. The BET specific surface area is 331n (/g).

393m/g、411m/gであった。また、螢光X線
装置を使用してSiO+/Af203比およびSi/M
比を調べた結果と、この触媒を500℃で2時間焼成し
た後NOxの分解試験を行なった結果を第2表に示す。
They were 393 m/g and 411 m/g. In addition, the SiO+/Af203 ratio and Si/M
Table 2 shows the results of examining the ratio and the results of a NOx decomposition test after firing this catalyst at 500° C. for 2 hours.

以下余白 実施例27.28.29 実施例■3で、水熱処理時間を48.100.200時
間に変える以外は同様の操作で合成した。
Examples 27, 28, 29 Examples 27, 28, 29 Synthesis was carried out in the same manner as in Example 3 except that the hydrothermal treatment time was changed to 48,100,200 hours.

この反応溶液の酸化物組成は、H20/5iO2−51
、S i 02 /A 1203零31、Si/M=1
5.L有効なNaoHfi度は0.55moz/lであ
る。生成物はモルデナイトであるが、200時間水熱処
理をしたものは石英のピークがわずかに見られた。また
、いずれも金属化合物に基づくピークは確認されなかっ
た。BET比表面積はそれぞれ425rrf/g、39
0rrf/g、311d/gであった。また、螢光X線
装置を使用してS i02 /A/!203比およびS
i/M比を調べた結果と、この触媒を500″Cで2時
間焼成した1iNOxの分解試験を行なった結果を第2
表に示す。
The oxide composition of this reaction solution is H20/5iO2-51
, S i 02 /A 1203 zero 31, Si/M=1
5. L effective NaoHfi degree is 0.55 moz/l. The product is mordenite, but a slight quartz peak was observed in the product subjected to hydrothermal treatment for 200 hours. In addition, no peaks based on metal compounds were observed in any of the samples. BET specific surface area is 425rrf/g and 39, respectively.
It was 0rrf/g and 311d/g. Also, using a fluorescent X-ray device, S i02 /A/! 203 ratio and S
The results of examining the i/M ratio and the results of a 1iNOx decomposition test performed by firing this catalyst at 500"C for 2 hours are summarized in the second section.
Shown in the table.

実施例30 実施例1で、水ガラスを日産化学製シリカゾル(0)(
S i02  : 20.5%)80gに変える以外は
同様の操作で合成した。
Example 30 In Example 1, water glass was mixed with Nissan Chemical's silica sol (0) (
S i02: 20.5%) Synthesis was performed in the same manner except that the amount was changed to 80 g.

この反応溶液の酸化物組成は、H20/5iO2−51
、S i 02 /Alz 03=31、Si/M=1
5.1、有効なNaOH濃度=0.55mol/lであ
る。
The oxide composition of this reaction solution is H20/5iO2-51
, S i 02 /Alz 03=31, Si/M=1
5.1, effective NaOH concentration = 0.55 mol/l.

生成物はモルデナイトであり、金属化合物に基づくピー
クは確認されなかった。BET比表面積は392m/g
であった。また、螢光X線装置を使用してS io2/
AA203比およびS i / M比を調べた結果と、
この触媒を500℃で2時間焼成した後NOxの分解試
験を行なった結果を第2表に示す。
The product was mordenite, and no peaks based on metal compounds were observed. BET specific surface area is 392m/g
Met. In addition, using a fluorescent X-ray device, S io2/
The results of examining the AA203 ratio and S i / M ratio,
This catalyst was calcined at 500° C. for 2 hours and then subjected to a NOx decomposition test. The results are shown in Table 2.

比較例1 実施例1で、水ガラスを90g1硫酸アルミニウムを1
0g、硫酸を3.38 gに変える以外は同様の操作で
合成した。
Comparative Example 1 In Example 1, 90 g of water glass 1 1 aluminum sulfate
Synthesis was carried out in the same manner except that the amount of sulfuric acid was changed to 3.38 g.

この反応溶液の酸化物組成は、H20/5iO2=25
、S i 02 /Aj2z03 =31 S i/M
=15.1.有効なNaOH1度=1.4moff/l
である。
The oxide composition of this reaction solution is H20/5iO2=25
, S i 02 /Aj2z03 =31 S i/M
=15.1. Effective NaOH 1 degree = 1.4 moff/l
It is.

生成物はモルデナイトであり、金属化合物に基づくピー
クは確認されなかった。BET比表面積は3’lOm/
gであった。また、螢光X線装置を使用してS i 0
2 /A12o3比およびSi/M比を調べた結果と、
この触媒を500℃で2時間焼成した後NOxの分解試
験を行なった結果を第2表に示す。
The product was mordenite, and no peaks based on metal compounds were observed. BET specific surface area is 3'lOm/
It was g. Also, using a fluorescent X-ray device, S i 0
2 The results of examining the /A12o3 ratio and Si/M ratio,
This catalyst was calcined at 500° C. for 2 hours and then subjected to a NOx decomposition test. The results are shown in Table 2.

比較例2 実施例1で、水ガラスを135g、硫酸アルミニウムを
15g、硫酸を22.6 gに変える以外は同様の操作
で合成した。
Comparative Example 2 Synthesis was performed in the same manner as in Example 1, except that the amount of water glass was changed to 135 g, the amount of aluminum sulfate was changed to 15 g, and the amount of sulfuric acid was changed to 22.6 g.

この反応溶液の酸化物組成は、H20/5iO2−15
、S i02 /AI!203 =31、Si/M=1
5.1、有効なNaOH濃度= 0.7 m o It
 /lである。生成物は大部分が非晶質物質であった。
The oxide composition of this reaction solution is H20/5iO2-15
, S i02 /AI! 203 =31, Si/M=1
5.1, effective NaOH concentration = 0.7 m o It
/l. The product was mostly amorphous material.

比較例3 実施例1で、水ガラスを15g、硫酸アルミニウムを1
.7g、硫酸を0.33 gに変える以外は同様の操作
で合成した。
Comparative Example 3 In Example 1, 15 g of water glass and 1 g of aluminum sulfate were added.
.. Synthesis was carried out in the same manner except that the amount of sulfuric acid was changed to 0.33 g.

この反応溶液の酸化物組成は、H20/5iO2=15
3、S i 02 /AA’203 =31、Si/M
=15.1、有効なNaOH濃度=0.25m。
The oxide composition of this reaction solution is H20/5iO2=15
3, S i 02 /AA'203 = 31, Si/M
= 15.1, effective NaOH concentration = 0.25m.

1/12である。生成物は大部分が石英とZSM−5で
あった。
It is 1/12. The products were mostly quartz and ZSM-5.

比較例4.5 市販のシリカ・アルミナ触媒粉末(Si20:87重量
%、Al2O2:13重量%)に、硫酸銅5水和物を銅
にして3.6重量%加え、水を添加してスラリ状となっ
たものを1日放置後、110℃で乾燥した。この触媒の
酸化物組成は、SiO2 /Al−203=11.4.
347M比は各々30、9.15.5である。この触媒
を500℃で2時間焼成した後NOxの分解試験を行な
った結果を第2表に示す。
Comparative Example 4.5 3.6% by weight of copper sulfate pentahydrate was added to commercially available silica/alumina catalyst powder (Si20: 87% by weight, Al2O2: 13% by weight), and water was added to form a slurry. The resulting product was left to stand for one day and then dried at 110°C. The oxide composition of this catalyst is SiO2/Al-203=11.4.
The 347M ratios are 30 and 9.15.5, respectively. This catalyst was calcined at 500° C. for 2 hours and then subjected to a NOx decomposition test. The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、遷移金属を担持したゼオライトa硝触
媒を水熱処理による合成操作だけで得ることができる。
According to the present invention, a zeolite a-nitrate catalyst supporting a transition metal can be obtained only by a synthetic operation using hydrothermal treatment.

したがって、従来法による繁雑な操作を必要としなくと
も、優れた耐毒性を持つ遷移金属担持ゼオライト脱硝触
媒を製造可能であり、触媒製造プロセスの簡略化や製造
コストの低減が可能になる。
Therefore, it is possible to produce a transition metal-supported zeolite denitrification catalyst with excellent toxicity resistance without requiring complicated operations using conventional methods, and it is possible to simplify the catalyst production process and reduce production costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1方法により合成した遷移全屈担持モ
ルデナイトのXRDパターンを示す図、第2図は、実施
例13方法により合成した遷移全屈担持ZSM−5のX
RDパターンを示す図である。 代理人 弁理士 川 北 武 長
FIG. 1 shows the XRD pattern of transition fully supported mordenite synthesized by the method of Example 1, and FIG. 2 shows the XRD pattern of transition fully supported mordenite synthesized by the method of Example 13.
It is a figure showing an RD pattern. Agent Patent Attorney Takeshi Kawakita

Claims (4)

【特許請求の範囲】[Claims] (1)遷移金属を担持したゼオライトを用い、排煙中の
窒素酸化物をアンモニアの存在下に接触還元する脱硝触
媒の製造方法において、アルミニウム、珪素、アルカリ
金属またはアルカリ土類金属の化合物および遷移金属の
塩を原料とし、その酸化物組成のモル比がSiO_2/
Al_2O_3=10〜200、H_2O/SiO_2
=20〜120で、遷移金属塩がSiO_2に対してS
i/M=5〜50(Mは遷移金属元素)であり、有効ア
ルカリ濃度が0.1〜0.7mol/lであるように調
整されたゲル溶液を水熱処理することにより、遷移金属
を担持しゼオライト触媒を製造することを特徴とする窒
素酸化物接触還元用触媒の製造方法。
(1) A method for producing a denitrification catalyst in which nitrogen oxides in flue gas are catalytically reduced in the presence of ammonia using zeolite supporting a transition metal. A metal salt is used as a raw material, and the molar ratio of its oxide composition is SiO_2/
Al_2O_3=10~200, H_2O/SiO_2
= 20 to 120, and the transition metal salt is S with respect to SiO_2
i/M = 5 to 50 (M is a transition metal element), and the transition metal is supported by hydrothermally treating a gel solution adjusted so that the effective alkali concentration is 0.1 to 0.7 mol/l. A method for producing a catalyst for catalytic reduction of nitrogen oxides, the method comprising producing a zeolite catalyst.
(2)ゼオライトが、モルデナイトおよびペンタシル型
ゼオライトの1種あるいは1種以上であることを特徴と
する請求項(1)記載の窒素酸化物接触還元用触媒の製
造方法。
(2) The method for producing a catalyst for catalytic reduction of nitrogen oxides according to claim (1), wherein the zeolite is one or more of mordenite and pentasil type zeolite.
(3)遷移金属が、銅、鉄、ニッケル、コバルトおよび
バナジウムのうちから選ばれた1種あるいは2種以上の
元素であり、それらは硝酸、酢酸、塩酸および硫酸のう
ちのいずれかの塩であることを特徴とする請求項(1)
記載の窒素酸化物接触還元用触媒の製造方法。
(3) The transition metal is one or more elements selected from copper, iron, nickel, cobalt, and vanadium, and these are salts of nitric acid, acetic acid, hydrochloric acid, and sulfuric acid. Claim (1) characterized in that
The method for producing the catalyst for catalytic reduction of nitrogen oxides described above.
(4)有効アルカリ濃度(Ceff)が下式で表わされ
ることを特徴とする請求項(1)記載の窒素酸化物接触
還元用触媒の製造方法。 Ceff=Σ(m×C_B_m_+)−Σ(n×C_A
_n_−)式中、C_B_m_+はアルカリイオンの濃
度、C_A_n_−は酸イオンの濃度、m、nはそれぞ
れ1または2、B^m^+はアルカリ金属イオンおよび
アルカリ土類金属イオンの1種以上、A^n^−は硫酸
イオン、塩素イオン、臭素イオンおよび硝酸イオンの1
種以上を表わす。
(4) The method for producing a catalyst for catalytic reduction of nitrogen oxides according to claim (1), wherein the effective alkali concentration (Ceff) is expressed by the following formula. Ceff=Σ(m×C_B_m_+)−Σ(n×C_A
_n_-) where C_B_m_+ is the concentration of alkali ions, C_A_n_- is the concentration of acid ions, m and n are each 1 or 2, B^m^+ is one or more of alkali metal ions and alkaline earth metal ions, A^n^- is one of sulfate ion, chloride ion, bromide ion, and nitrate ion
Represents more than one species.
JP63153177A 1988-06-21 1988-06-21 Preparation of catalyst for nitrogen oxide contact reduction Pending JPH024453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63153177A JPH024453A (en) 1988-06-21 1988-06-21 Preparation of catalyst for nitrogen oxide contact reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63153177A JPH024453A (en) 1988-06-21 1988-06-21 Preparation of catalyst for nitrogen oxide contact reduction

Publications (1)

Publication Number Publication Date
JPH024453A true JPH024453A (en) 1990-01-09

Family

ID=15556735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63153177A Pending JPH024453A (en) 1988-06-21 1988-06-21 Preparation of catalyst for nitrogen oxide contact reduction

Country Status (1)

Country Link
JP (1) JPH024453A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336651A (en) * 1990-05-03 1994-08-09 Sakai Chemical Industry Co., Ltd. Catalysts and methods for denitrization
US5516497A (en) * 1989-04-20 1996-05-14 Engelhard Corporation Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same
US5543125A (en) * 1994-02-15 1996-08-06 Tokyo Gas Co., Ltd. Method of purifying non-containing exhaust gases using iron containing mordenite
JP2002052379A (en) * 2000-08-09 2002-02-19 Babcock Hitachi Kk Method and apparatus for cleaning ammonia-containing wastewater
US7094722B2 (en) * 2002-12-20 2006-08-22 Caterpillar Inc. NOx catalyst and method of suppressing sulfate formation in an exhaust purification system
JP2008104914A (en) * 2006-10-24 2008-05-08 Tosoh Corp Nitrogen oxide purification catalyst and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516497A (en) * 1989-04-20 1996-05-14 Engelhard Corporation Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same
US5336651A (en) * 1990-05-03 1994-08-09 Sakai Chemical Industry Co., Ltd. Catalysts and methods for denitrization
US5543125A (en) * 1994-02-15 1996-08-06 Tokyo Gas Co., Ltd. Method of purifying non-containing exhaust gases using iron containing mordenite
JP2002052379A (en) * 2000-08-09 2002-02-19 Babcock Hitachi Kk Method and apparatus for cleaning ammonia-containing wastewater
US7094722B2 (en) * 2002-12-20 2006-08-22 Caterpillar Inc. NOx catalyst and method of suppressing sulfate formation in an exhaust purification system
US7235221B2 (en) 2002-12-20 2007-06-26 Caterpillar Inc. NOx catalyst and method of suppressing sulfate formation in an exhaust purification system
JP2008104914A (en) * 2006-10-24 2008-05-08 Tosoh Corp Nitrogen oxide purification catalyst and method

Similar Documents

Publication Publication Date Title
CN112429746B (en) CHA molecular sieve, synthesis method thereof, catalyst synthesized by CHA molecular sieve and application of CHA molecular sieve
EP2746223B1 (en) B-type iron silicate composition and method for reducing nitrogen oxides
JP6394601B2 (en) Zeolite and production method and use thereof
CN111960434A (en) CHA-type chabazite molecular sieve and synthesis method and application thereof
JP4992214B2 (en) Nitrogen oxide purification catalyst comprising β-type zeolite and nitrogen oxide purification method using the same
CN112429749B (en) Small-grain high-pore-volume CHA zeolite molecular sieve, and synthesis method and catalyst application thereof
JP4957176B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
CN111871455A (en) Preparation method and application of CHA-type aluminum-silicon molecular sieve and SCR (Selective catalytic reduction) catalyst
CN111871452A (en) CHA-type molecular sieve and catalyst for diesel vehicle exhaust purification, and preparation method and application thereof
CN111871451A (en) CHA molecular sieve synthesized by novel structure template agent, SCR catalyst and application thereof
JP2023501862A (en) Denitration catalyst and denitration method using the catalyst
CN111871454A (en) CHA zeolite molecular sieve for purifying nitrogen oxides and preparation method and application of catalyst thereof
CN111886202A (en) Process for synthesizing zeolite SSZ-13
JP7251471B2 (en) Transition metal-supported zeolite, method for producing the same, catalyst for purifying nitrogen oxides, and method for using the same
JPH024453A (en) Preparation of catalyst for nitrogen oxide contact reduction
JPH05505790A (en) MFI type zeolite and its preparation method
CN111871453A (en) CHA structure molecular sieve, synthesis method, nitrogen oxide selective reduction catalyst and application
US5254515A (en) Catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
JP2659840B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP2555637B2 (en) Method for producing copper-containing zeolite
JPH0889758A (en) Decomposing method of ammonia
JP3482661B2 (en) Nitrogen oxide removal method
JP2512959B2 (en) Highly active nitrogen oxide decomposition catalyst and catalytic decomposition method of nitrogen oxide
JP2695668B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH03127629A (en) Direct catalytic cracking catalyst for nitrogen oxides