JPH024440A - Manufacture of capsule - Google Patents

Manufacture of capsule

Info

Publication number
JPH024440A
JPH024440A JP63150231A JP15023188A JPH024440A JP H024440 A JPH024440 A JP H024440A JP 63150231 A JP63150231 A JP 63150231A JP 15023188 A JP15023188 A JP 15023188A JP H024440 A JPH024440 A JP H024440A
Authority
JP
Japan
Prior art keywords
resin
hydrophobic substance
prepolymer
capsule
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63150231A
Other languages
Japanese (ja)
Inventor
Yasushi Isobe
磯部 安司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP63150231A priority Critical patent/JPH024440A/en
Publication of JPH024440A publication Critical patent/JPH024440A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Color Printing (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To increase heat resistance and the like by dispersing a hydrophobic substance into water solution of a prepolymer of urea resin or melamine resin, starting formation of a resin film around the hydrophobic substance and then adding a thermoplastic high molecular material therein. CONSTITUTION:Molar ratio of formaldehyde to urea is set as 1:0-2.5 in urea resin, while molar ratio of formaldehyde to melamine is set as 2.5-7 in melamine resin, and both are prepared as water solution and reacted tor 1-3 hours at pH7.5-9, 60-80 deg.C to prepare a transparent liquid prepolymer. A hydrophobic substance is dispersed in said water solution of the prepolymer and the formation of a urea resin wall film or a melamine resin wall film is started to form around the hydrophobic substance, and then a capsule is formed by a thermoplastic high molecular water dispersion being added into the water solution. As the hydrophobic substance of core, alkylnaphthalene organic peroxide or the like is used.

Description

【発明の詳細な説明】 (イ)発明の目的 〔産業上の利用分野] 本発明は、各種の疎水性物質、例えば過酸化物、アミン
化合物、ポリイソシアネート等を芯物質とし、熱可塑性
高分子を含有した尿素樹脂又はメラミン樹脂(以下「尿
素樹脂等Jと称する。)を壁膜とするカプセル体の製造
法に関するものである。
Detailed Description of the Invention (a) Purpose of the Invention [Field of Industrial Application] The present invention uses various hydrophobic substances, such as peroxides, amine compounds, polyisocyanates, etc. as core materials, to form thermoplastic polymers. The present invention relates to a method for producing a capsule body whose wall is made of a urea resin or melamine resin (hereinafter referred to as "urea resin etc. J") containing the following.

本発明により得られるカプセル体は、圧力によって破壊
されて芯物質を放出するのみでなく、加熱によって壁膜
が部分的に破壊されて芯物質を徐々に放出し得るもので
′、接着剤や成形材料等に応用できる。
The capsule body obtained by the present invention not only ruptures under pressure and releases the core substance, but also partially ruptures the wall membrane by heating and gradually releases the core substance. Can be applied to materials, etc.

〔従来の技術〕[Conventional technology]

尿素樹脂又はメラミン樹脂のプレポリマー(以下単に「
プレポリマー」と称する。)を用いて疎水性物質をカプ
セル化する方法は公知であり、得られたカプセル体は感
圧記録紙等、圧力でカプセルを破壊する用途で広く採用
されてきた。
Prepolymer of urea resin or melamine resin (hereinafter simply referred to as “
called "prepolymer". ) is a well-known method for encapsulating hydrophobic substances, and the resulting capsule bodies have been widely used in applications where the capsule is destroyed by pressure, such as in pressure-sensitive recording paper.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしこの方法により形成された壁膜は架橋度が極めて
高い樹脂からなり、従って加熱によりカプセルを破壊す
ることは困難であり、カプセル体の利用に制限があった
However, the wall membrane formed by this method is made of resin with an extremely high degree of crosslinking, and therefore it is difficult to destroy the capsule by heating, which limits the use of the capsule body.

これに対して熱可塑性を有するゼラチン、エチルセルロ
ース或いはポリスチレン等の壁膜によってカプセル化す
る方法も検討されてきたが、前述の尿素樹脂又はメラミ
ン樹脂を壁膜とするカプセル体に比し生産性が悪く、コ
スト的に不利であった。
On the other hand, methods of encapsulation using a thermoplastic wall such as gelatin, ethyl cellulose, or polystyrene have been considered, but these methods are less productive than the aforementioned capsules whose walls are made of urea resin or melamine resin. , which was disadvantageous in terms of cost.

更にゼラチン皮膜は耐水性や耐油性が悪く、従って生成
したカプセル体は安定性に欠けるという欠点を有してい
た。
Furthermore, the gelatin film has poor water resistance and oil resistance, and therefore the produced capsule bodies have the disadvantage of lacking stability.

(ロ)発明の構成 〔課題を解決するためのための手段〕 本発明は、尿素樹脂又はメラミン樹脂のプレポリマーの
水溶液中に疎水性物質を分散させ、該疎水性物質の周囲
に尿素樹脂壁膜又はメラミン樹脂壁膜の形成を開始させ
た後、該水溶液中に熱可塑性高分子水分散物を添加する
ことを特徴とするカプセル体の製造法である。
(B) Structure of the invention [Means for solving the problem] The present invention involves dispersing a hydrophobic substance in an aqueous solution of a prepolymer of urea resin or melamine resin, and surrounding the hydrophobic substance with a urea resin wall. This method of manufacturing a capsule body is characterized in that after starting the formation of a membrane or a melamine resin wall membrane, an aqueous thermoplastic polymer dispersion is added to the aqueous solution.

本発明で得られるカプセル体の壁膜は、熱可塑性を有し
ていると共に、本来尿素樹脂等が持つ耐熱性、耐水性或
い耐油性等を保持するものであり、本発明はこのカプセ
ル体を簡単な方法で商業的に優位に生産することを可能
としたものである。
The wall membrane of the capsule body obtained by the present invention has thermoplasticity and retains the heat resistance, water resistance, oil resistance, etc. originally possessed by urea resin, etc., and the present invention is directed to this capsule body. This makes it possible to produce commercially advantageously using a simple method.

本発明で得られるカプセル体は、圧力によって破壊され
て芯物質を放出するのみでなく、加熱によって壁膜が部
分的に破壊されて芯物質を徐々に放出し得るため、従来
のカプセル体に比べて用途が大幅に拡大させることがで
き、具体的には接着剤、成形材料、感熱記録紙等に利用
される。
The capsule body obtained by the present invention not only ruptures under pressure and releases the core substance, but also partially ruptures the wall membrane by heating and gradually releases the core substance, compared to conventional capsule bodies. It can be used in a wide range of applications, including adhesives, molding materials, heat-sensitive recording paper, etc.

接着剤、特にエポキシ系接着剤やポリウレタン系接着剤
等の反応性の大きな熱硬化型接着剤の場合は、過酸化物
等の硬化剤又はアミン化合物やイソシアネート化合物等
の硬化成分を本発明の方法でカプセル化することにより
、遅効性のあるポットライフの長い一液型又は二液型の
接着剤を得ることができる。
In the case of adhesives, especially highly reactive thermosetting adhesives such as epoxy adhesives and polyurethane adhesives, curing agents such as peroxides or curing components such as amine compounds and isocyanate compounds are used in the method of the present invention. By encapsulating the adhesive, it is possible to obtain a one-component or two-component adhesive with slow-acting properties and a long pot life.

又FRP用ポリエステル樹脂や鋳型形成用エポキシ樹脂
等の成形材料にも、本発明のカプセル体を応用すること
ができる。
The capsule body of the present invention can also be applied to molding materials such as polyester resin for FRP and epoxy resin for mold formation.

例えば、従来FRPの製造は、スチレンモノマー、不飽
和ポリエステル及び過酸化物からなる混合液をガラスフ
ァイバー製基材に塗布・重合反応させることにより得て
いたが、反応によって生じる熱により過酸化物の分解が
急激に促進し、これが更に反応を加速させる結果、生じ
るFRP成形品が着色されるという問題があった。
For example, in the past, FRP was produced by applying a mixture of styrene monomer, unsaturated polyester, and peroxide to a glass fiber base material and polymerizing it. There was a problem in that the decomposition was rapidly accelerated, which further accelerated the reaction, resulting in coloring of the resulting FRP molded product.

ここで、過酸化物の一部を本発明の方法によりカプセル
化したものを用いると、反応熱によりカプセル壁膜中の
熱可塑性成分が破壊されてから初めてカプセル中の過酸
化物が分解を開始するため、全体として反応に遅効性を
もたらすことができる。
Here, when a part of peroxide is encapsulated by the method of the present invention, the peroxide in the capsule starts to decompose only after the thermoplastic component in the capsule wall is destroyed by the heat of reaction. Therefore, the reaction as a whole can have a delayed effect.

又熱可塑性高分子は、スチレンにより膨潤するため、過
酸化物をすべてカプセル化させた場合でも、反応に遅効
性をもたらすことができる。
In addition, since the thermoplastic polymer is swollen by styrene, even if all the peroxide is encapsulated, the reaction can be delayed.

本発明のカプセル体の製造法は、次の段階的諸工程及び
技術的要素から構成されている。
The method for manufacturing a capsule body of the present invention is comprised of the following stepwise steps and technical elements.

(1)プレポリマーの合成 尿素樹脂の場合には、ホルムアルデヒドの尿素に対する
モル比を1.0〜2.5にし、一方メラミン樹脂の場合
はホルムアルデヒドのメラミンに対する比を2.5〜7
にして、両者を水溶液となし回転機を付帯する容器に仕
込み、p H7,5〜9.60〜80°Cにて、1〜3
時間反応させて、透明な水溶液状をなすプレポリマーを
得ることができる。
(1) For prepolymer synthetic urea resins, the molar ratio of formaldehyde to urea is between 1.0 and 2.5, while for melamine resins, the molar ratio of formaldehyde to melamine is between 2.5 and 7.
Make an aqueous solution of both, place it in a container equipped with a rotating machine, and incubate at pH 7.5-9.60-80°C for 1-3.
By reacting for a period of time, a prepolymer in the form of a transparent aqueous solution can be obtained.

この際、尿素又はメラミンの一部を相互に代替すること
が可能であり、更に30重量%以下程度を他の縮合反応
をなす化合物、例えばグアナミジン或いはp−)ルエン
スルホンアミド等で置き換えることにより皮膜の耐水性
を改良することができる。
In this case, it is possible to replace a part of urea or melamine with each other, and further replace up to 30% by weight with other compounds that perform condensation reactions, such as guanamidine or p-)luenesulfonamide, to form a film. water resistance can be improved.

反応系のPHを高めるために、苛性ソーダ水溶液、アン
モニア水或いはトリエタノールアミン等を使用できるが
、副反応を制御し易い点から、トリエタノールアミンの
使用が好ましい。
In order to increase the pH of the reaction system, an aqueous solution of caustic soda, aqueous ammonia, triethanolamine, etc. can be used, but triethanolamine is preferably used from the viewpoint of easy control of side reactions.

(2)プレポリマー中への疎水性物質の分散衣に(1)
で得たプレポリマー水溶液中へ疎水性物質を分散させる
(2) For dispersion of hydrophobic substances in prepolymers (1)
A hydrophobic substance is dispersed into the aqueous prepolymer solution obtained in step 1.

疎水性物質が粉末状又は液状の場合は、該水溶液中に直
接投入して分散させることができる。
When the hydrophobic substance is in powder or liquid form, it can be directly added to the aqueous solution and dispersed.

疎水性物質が粗い粒子状の場合は疎水性溶剤で溶液とな
し投入する方法がある。
If the hydrophobic substance is in the form of coarse particles, there is a method in which it is dissolved in a hydrophobic solvent and then added.

又粗い粒子状の過酸化物に対しては、プレポリマー水溶
液中に親水性有機溶剤を加えてお(か、過酸化物に親水
性有機溶剤を直接添加して懸濁状態にしてから一緒にプ
レポリマー水溶液に添加し分散させると容易に微粉末状
にすることができる。
For coarse peroxide particles, add a hydrophilic organic solvent to the aqueous prepolymer solution (or add the hydrophilic organic solvent directly to the peroxide to form a suspension and then mix together. When added to an aqueous prepolymer solution and dispersed, it can be easily made into a fine powder.

使用する親水性有機溶剤はプレポリマー水溶液に溶解す
るもので、具体例としては、メタノール、エタノール、
イソプロパツール等のアルコール類;酢酸メチル、酢酸
エチル等のエステル頚;アセトン、メチルエチルケトン
、ジエチルケトン等のケトン類;アセトニトリル及びジ
メチルホルムアミド等が挙げられ、これらの内特にアル
コール類の使用が均一な粒径を持つカプセル体を得るこ
とができ好ましい。
The hydrophilic organic solvent used is one that dissolves in the prepolymer aqueous solution, and specific examples include methanol, ethanol,
Examples include alcohols such as isopropanol; ester necks such as methyl acetate and ethyl acetate; ketones such as acetone, methyl ethyl ketone, and diethyl ketone; acetonitrile and dimethyl formamide; It is preferable that a capsule body having a diameter can be obtained.

これら親水性有機溶剤の使用量は反応媒体(水溶液)中
に存在している固形分換算で100重量部のプレポリマ
ーに対して、20〜300重量部が好ましい。20重量
部に満たない場合は充分な効果が得られず、又300重
量部を超える場合はメチレン化反応速度、即ちカプセル
化反応速度が低下し、いずれも好ましくない。
The amount of these hydrophilic organic solvents used is preferably 20 to 300 parts by weight based on 100 parts by weight of the prepolymer in terms of solid content present in the reaction medium (aqueous solution). If it is less than 20 parts by weight, sufficient effects cannot be obtained, and if it exceeds 300 parts by weight, the methylenation reaction rate, that is, the encapsulation reaction rate decreases, and both are not preferred.

なお反応媒体に溶解しない有機溶剤が存在するとカプセ
ル体が著しく粗い粒子となるため避けねばならない。
Note that the presence of an organic solvent that does not dissolve in the reaction medium must be avoided since the capsules will become extremely coarse particles.

又、この段階において当該分散を容易にするために、ノ
ニオン系或いはアニオン系の界面活性剤或いは懸濁剤を
反応系に添加してもよい。
Furthermore, in order to facilitate the dispersion at this stage, a nonionic or anionic surfactant or suspending agent may be added to the reaction system.

プレポリマーに対する疎水性物質の仕込み割合は、固形
分換算で100重量部のプレポリマーに対して、疎水性
物質10〜200重量部が好ましい。200重量部を超
えるとできたカブ゛セル体の皮膜の強度が低く、又10
重量部未満では、皮膜が厚過ぎると共に生産性が悪く、
いずれも好ましくない。
The ratio of the hydrophobic substance to the prepolymer is preferably 10 to 200 parts by weight per 100 parts by weight of the prepolymer in terms of solid content. If it exceeds 200 parts by weight, the strength of the resulting capsule film will be low;
If it is less than parts by weight, the film will be too thick and productivity will be poor.
Neither is preferable.

更に、水溶液中のプレポリマーの一部を縮合させて、メ
チレン基を有する尿素樹脂又はメラミン樹脂(以下「メ
チレン態樹脂」と称する。)を若干量生成せしめてから
、疎水性物質を投入して分散させる方が、メチレン態樹
脂の生成開始前に分散させるよりも、稠密な皮膜を形成
し易く好ましい。
Furthermore, a portion of the prepolymer in the aqueous solution is condensed to produce a small amount of urea resin or melamine resin having methylene groups (hereinafter referred to as "methylene resin"), and then a hydrophobic substance is added. Dispersing is preferable than dispersing before the start of production of methylene resin because it is easier to form a dense film.

具体的にはプレポリマー水溶液をホモジナイザーで回転
数3000〜8000rpmにて撹拌を行い、p H1
,5〜4に調整する。このpH調整には、IN程度の塩
酸又は硫酸或いは10〜30重量%水溶液のクエン酸等
を用いることができる。
Specifically, the prepolymer aqueous solution was stirred with a homogenizer at a rotation speed of 3000 to 8000 rpm, and the pH was adjusted to 1.
, adjust to 5-4. For this pH adjustment, hydrochloric acid or sulfuric acid of about IN concentration, citric acid of a 10 to 30% by weight aqueous solution, or the like can be used.

プレポリマーは水溶性であるのに対してメチレン態樹脂
は不溶性であり、該樹脂が生成し始めると系が白濁し、
次第にコロイド状になるので、その生成が確認できる。
While the prepolymer is water-soluble, the methylene resin is insoluble, and when the resin begins to form, the system becomes cloudy.
Its formation can be confirmed as it gradually becomes colloidal.

更にこれを濾過することで生成量を確認することができ
る。
Furthermore, by filtering this, the amount produced can be confirmed.

反応系の白濁化によりメチレン態樹脂の生成が確認され
たら、微粉末状又は液状の疎水性物質を仕込み、撹拌し
て30分〜1時間程度分散を行う。
When the production of methylene resin is confirmed by clouding of the reaction system, a fine powder or liquid hydrophobic substance is charged and dispersed by stirring for about 30 minutes to 1 hour.

本発明において芯物質とすることができる疎水性物質と
しては、次のようなものがある。
Hydrophobic substances that can be used as core substances in the present invention include the following.

常温で液状のものとしては、アルキルナフタリン、塩素
化パラフィン、大豆油又は香料油環;アクリル酸エステ
ル、メタアクリル酸エステル、アジピン酸エステル又は
リン酸エステル等のエステル類;脂肪族又は芳香族のア
ミン化合物或いはポリイソシアネート等が挙げられる。
Those that are liquid at room temperature include alkylnaphthalene, chlorinated paraffin, soybean oil, or fragrance oil rings; esters such as acrylic esters, methacrylic esters, adipic esters, or phosphoric esters; aliphatic or aromatic amines. Compounds, polyisocyanates, etc. may be mentioned.

一方常温で固体状のものとしては、有機過酸化物、過酸
化鉛、アミン類、エポキシ樹脂、磁性粉、顔料或いは微
粉末状の医薬品等が挙げられる。
On the other hand, examples of substances that are solid at room temperature include organic peroxides, lead peroxide, amines, epoxy resins, magnetic powders, pigments, and finely powdered pharmaceuticals.

疎水正物質の仕込みがなされる前のメチレン態樹脂の存
在量は極少量であればよいが、当該疎水性物質の仕込量
を100重量部とすると、0.1〜20重量部が好まし
い。メチレン態樹脂が存在しない状態ないし0.1重量
部未満で系に疎水性物質を投入すると、疎水性物質間で
凝集が起こり、液面上に空気を巻き込んだ状態で浮遊す
るか又は塊状に凝集し、均一なカプセル化反応が不可能
となる恐れがある。更に従ってメチレン態樹脂は疎水性
物質を投入する前に水性媒体中に存在していることが好
ましい。
The amount of methylene resin present before the addition of the hydrophobic substance may be extremely small, but when the amount of the hydrophobic substance added is 100 parts by weight, it is preferably 0.1 to 20 parts by weight. If a hydrophobic substance is added to the system in the absence of methylene resin or in an amount less than 0.1 part by weight, agglomeration will occur between the hydrophobic substances, and they will either float on the liquid surface with air entrained or aggregate into lumps. However, a uniform encapsulation reaction may become impossible. Furthermore, it is preferable that the methylene resin is present in the aqueous medium before adding the hydrophobic substance.

一方20重量部を超える多量のメチレン態樹脂の存在下
で疎水性物質を投入した場合は、芯物質を含まないカプ
セル体が生成し易く、且つコストの上昇をきたし好まし
くない。
On the other hand, if a hydrophobic substance is added in the presence of a large amount of methylene resin exceeding 20 parts by weight, it is not preferable because a capsule body containing no core substance is likely to be produced and the cost increases.

(3)疎水性物質のカプセル化反応 上記の工程の後、反応系の温度を30〜60゛Cに調整
して攪拌を続けると、尿素樹脂等の皮膜が疎水性物質の
周囲に形成する。
(3) Encapsulation reaction of hydrophobic substance After the above steps, when the temperature of the reaction system is adjusted to 30-60°C and stirring is continued, a film of urea resin or the like is formed around the hydrophobic substance.

以後3〜30時間撹拌を続けると、カプセル体における
皮膜含有率が増大していくが、最終的なカプセル体の皮
膜含有率は30〜95重量%が好ましい。
If the stirring is continued for 3 to 30 hours thereafter, the coating content in the capsule increases, but the final coating content in the capsule is preferably 30 to 95% by weight.

30重量%未満では、カプセル体の保管時の安定性が低
下し、95重量%を超えると使用時においても低い圧力
又は低い温度でカプセルが破壊し難く且つカプセル体製
造の際の効率が悪く、いずれも好ましくない。
If it is less than 30% by weight, the stability of the capsule during storage will decrease, and if it exceeds 95% by weight, the capsule will be difficult to break even at low pressure or temperature during use, and the efficiency in manufacturing the capsule will be poor. Neither is preferable.

なお皮膜含有率は、芯物質の溶解性の大きい溶剤をカプ
セル体に加え、ソックスレーで長時間芯物質を抽出させ
、残留不溶解分を測定することで求めることかできる。
The film content can be determined by adding a solvent in which the core substance is highly soluble to the capsule body, extracting the core substance for a long time using a Soxhlet, and measuring the remaining insoluble matter.

本発明の特徴は、カプセル体の壁膜形成の途中でプレポ
リマー水溶液に熱可塑性高分子水分散体を投入する点で
ある。
A feature of the present invention is that an aqueous thermoplastic polymer dispersion is added to an aqueous prepolymer solution during the formation of a capsule wall.

この際、熱可塑性高分子水分散体の投入時期、投入量は
、得られるカプセル体の使用目的により、尿素樹脂等に
よる熱硬化性と新たに与える熱可塑性のバランスを考慮
し適宜定めることができるが、一般的には尿素樹脂等の
皮膜が、最純的な皮膜の全形成量100重量部に対して
、10〜60ffift部生成した時点で、熱可塑性高
分子水分散体を固形分換算で10〜1000重量部投入
する条件が好ましい。
At this time, the timing and amount of addition of the thermoplastic polymer aqueous dispersion can be determined as appropriate depending on the purpose of use of the resulting capsule body, taking into consideration the balance between thermosetting properties due to urea resin etc. and newly imparted thermoplasticity. However, generally, when a film of urea resin or the like is formed in an amount of 10 to 60 parts by weight based on 100 parts by weight of the purest film, the thermoplastic polymer aqueous dispersion is converted into solid content. It is preferable to add 10 to 1000 parts by weight.

本発明に使用する熱可塑性高分子の具体例としては、ア
クリル酸エステル樹脂、メタクリル酸エステル樹脂、塩
化ビニリデン樹脂、ウレタン樹脂、クロロブレン重合体
、ブタジェン−アクリロニトリル共重合体、ブタジェン
−スチレン共重合体、ポリオレフィン、カルボキシル基
変性ポリオレフィン、オレフィン−酢ビ共重合体或いは
塩ビー酢ビ共重合体等のエマルジョンが挙げられる。
Specific examples of thermoplastic polymers used in the present invention include acrylic ester resins, methacrylic ester resins, vinylidene chloride resins, urethane resins, chloroprene polymers, butadiene-acrylonitrile copolymers, butadiene-styrene copolymers, Examples include emulsions of polyolefins, carboxyl-modified polyolefins, olefin-vinyl acetate copolymers, vinyl chloride-vinyl acetate copolymers, and the like.

これらの中でも、酸性水性媒体中で凝固し難く、かつ加
水分解等の変性を受けない熱可塑性高分子のエマルジョ
ンの使用が好ましく、具体的には塩化ビニリデン樹脂、
クロロプレン重合体、ポリオレフィン或いはカルボキシ
ル基変性ポリオレフィンのエマルジョンが挙げられる。
Among these, it is preferable to use an emulsion of a thermoplastic polymer that is difficult to coagulate in an acidic aqueous medium and is not subject to modification such as hydrolysis, and specifically, vinylidene chloride resin,
Examples include emulsions of chloroprene polymers, polyolefins, and carboxyl group-modified polyolefins.

(4)カプセル体の回収と乾燥 生成したスラリーをIN苛性ソーダ水溶液で中和後、純
水で充分に洗浄し、次いで遠心分離機で脱水し、更に流
動乾燥機又は棚段乾燥機に通すことによって、微粉末状
のカプセル体を得ることができる。
(4) Collection and drying of the capsule body After neutralizing the produced slurry with an IN aqueous solution of caustic soda, washing it thoroughly with pure water, dehydrating it with a centrifuge, and passing it through a fluidized fluid dryer or tray dryer. , a finely powdered capsule body can be obtained.

このカプセル体の皮膜は部分的に熱可塑性を有している
ために、乾燥温度を該熱可塑性高分子の融点近くまで上
昇させると、強固で緻密な皮膜を好ましく形成させるこ
とができる。
Since the capsule film partially has thermoplasticity, a strong and dense film can be preferably formed by increasing the drying temperature to near the melting point of the thermoplastic polymer.

〔作用〕[Effect]

本発明においては、疎水性物質に壁膜がある程度形成さ
れた後に、熱可塑性高分子水分散物をプレポリマー水溶
液中に存在させる必要がある。これは最初からプレポリ
マー水溶液中に加えると、疎水性物質粒子同士で凝集が
起こり易くなり、カプセル化が困難となるためである。
In the present invention, the thermoplastic polymer aqueous dispersion needs to be present in the prepolymer aqueous solution after a wall film has been formed on the hydrophobic substance to some extent. This is because if added to the prepolymer aqueous solution from the beginning, particles of the hydrophobic substance tend to aggregate with each other, making encapsulation difficult.

〔実施例及び比較例〕[Examples and comparative examples]

以下に実施例及び比較例を挙げて本発明をさらに詳しく
説明する。
The present invention will be explained in more detail by giving examples and comparative examples below.

尚、落つい感度試験はJIS  K  4810の試験
方法を準用し、ビカット軟化点の測定はASTM  D
  1525−70に従った。
In addition, the test method of JIS K 4810 is applied mutatis mutandis for the sensitivity test, and the measurement of Vicat softening point is according to ASTM D.
1525-70.

実施例1 還流冷却器付き11フラスコに37重重景濃度のホルマ
リン水溶液700g、尿素262g及びトリエタノール
アミン3.4gを仕込み、300rpm、70°Cにて
2時間撹拌して反応させ、p H8,1である尿素−ホ
ルムアルデヒド樹脂のプレポリマー水溶液(プレポリマ
ーの濃度54.3重量%)を得た。
Example 1 700 g of a formalin aqueous solution with a concentration of 37, 262 g of urea, and 3.4 g of triethanolamine were placed in a flask equipped with a reflux condenser, and stirred at 300 rpm and 70°C for 2 hours to react. An aqueous prepolymer solution of urea-formaldehyde resin (prepolymer concentration 54.3% by weight) was obtained.

次いで室温において22ビーカーに前記のプレポリマー
水溶液368gと純水368gを仕込んだ。ホモジナイ
ザーにて400Orpmの撹拌下で、INの硫酸水溶液
7ccの添加により、pHを3.0とし、且つ反応温度
を37°Cにしたところ白濁が生じた。1分後に、ジク
ミルパーオキサイドの微粉末(平均粒径100μm)1
2、8 gを仕込み1時間撹拌を続けた後、40°Cに
昇温し5000rpm撹拌下にて、4時間反応を維持し
た。
Next, 368 g of the prepolymer aqueous solution and 368 g of pure water were charged into 22 beakers at room temperature. While stirring at 400 rpm with a homogenizer, 7 cc of an aqueous IN sulfuric acid solution was added to adjust the pH to 3.0 and the reaction temperature to 37° C., resulting in white turbidity. After 1 minute, dicumyl peroxide fine powder (average particle size 100 μm) 1
After adding 2.8 g and continuing stirring for 1 hour, the temperature was raised to 40°C and the reaction was maintained for 4 hours under stirring at 5000 rpm.

ここに更に純水300gを添加して、ホモジナイザーを
外し種型撹拌機に切り換えて300rpmに低下させて
から、低密度ポリオレフィンエマルジョンM−200(
固形分40重量%、成膜温度105°C、ビカット軟化
点76°C1三井石油化学■製)212gを仕込み更に
15時間反応を続けてスラリーを得た。
Add 300g of pure water to this, remove the homogenizer, switch to a seed type stirrer, lower the rpm to 300rpm, and add low density polyolefin emulsion M-200 (
Solid content: 40% by weight, film forming temperature: 105°C, Vicat softening point: 76°C (manufactured by Mitsui Petrochemicals Ltd.) (212g) was charged and the reaction continued for an additional 15 hours to obtain a slurry.

なお、低密度ポリオレフィン添加時の皮膜含有率は24
重量%であった。
In addition, the film content when low density polyolefin is added is 24
% by weight.

このスラリーをIN苛性ソーダ水溶液で中和後、純水及
びメタノールで洗浄し、遠心分離を行い、入口の熱風温
度110″C1内部の熱風温度80〜90’Cの流動乾
燥機で10分間乾燥した結果、粒径分布中の狭い平均粒
径的150μmのカプセル体微粒子80gを得た。
This slurry was neutralized with IN aqueous sodium hydroxide solution, washed with pure water and methanol, centrifuged, and dried for 10 minutes in a fluidized fluidized dryer with a hot air temperature of 110"C1 at the inlet and a hot air temperature of 80 to 90"C. , 80 g of capsule fine particles having a narrow average particle size of 150 μm in the particle size distribution were obtained.

このカプセル体は皮膜含有率が84重量%であり、皮膜
中のポリオレフィン含有率は88重量%であった。又こ
のカプセル体は落つい感度試験で1mの高さより5kg
の重りを落として感度が見られなかった。
This capsule body had a film content of 84% by weight, and a polyolefin content in the film of 88% by weight. In addition, this capsule body can withstand 5kg from a height of 1m in a calm sensitivity test.
I dropped the weight and could not see the sensitivity.

このカプセル体の溶融流動状態を顕微鏡法で観察したと
ころ、110°C付近でカプセル体皮膜が破壊されるの
が見られた。なお、顕微鏡法とは、サンプルの下部にヒ
ーターをセットして、一定の昇温時間で加熱していく過
程で、サンプルの溶融流動を顕微鏡下で観察し、その温
度を測定する方法である。
When the melt-flowing state of this capsule was observed using a microscope, it was found that the capsule film was destroyed at around 110°C. Note that the microscopy method is a method in which a heater is set under the sample and the sample is heated for a certain temperature increase time, and the melt flow of the sample is observed under a microscope and its temperature is measured.

これらの結果を表1に記す。These results are shown in Table 1.

実施例2〜4、比較例1〜2 実施例1における低密度ポリオレフィンエマルジョンの
代わりの熱可望性高分子水分散体の種類や使用量、芯物
質の種類或いは流動乾燥の入口熱風温度や乾燥時間を表
1のように変更した以外は、実施例1と全く同様に製造
及び試験を行った場合の結果を表1に記す。
Examples 2 to 4, Comparative Examples 1 to 2 The type and amount of thermoplastic polymer aqueous dispersion used instead of the low density polyolefin emulsion in Example 1, the type of core material, or the inlet hot air temperature and drying of fluidized drying Table 1 shows the results obtained when manufacturing and testing were carried out in exactly the same manner as in Example 1, except that the times were changed as shown in Table 1.

実施例5 還流冷却器付き11フラスコに37重量%濃度のホルマ
リン水溶液700g、メラミン132g及びトリエタノ
ールアミン3.4gを仕込み、300rpm、70”C
にて2時間撹拌して反応させ、P H8,5であるメラ
ミン−ホルムアルデヒド樹脂のプレポリマー水溶液(プ
レポリマーの固形分濃度47.2重量%)を得た。
Example 5 700 g of a 37% by weight aqueous formalin solution, 132 g of melamine, and 3.4 g of triethanolamine were placed in a flask No. 11 equipped with a reflux condenser, and the mixture was heated at 300 rpm and 70"C.
The mixture was stirred for 2 hours to react, and an aqueous prepolymer solution of melamine-formaldehyde resin having a pH of 8.5 (prepolymer solid content concentration: 47.2% by weight) was obtained.

次いで室温において22ビーカーに前記のプレポリマー
水溶液426gと純水309gを仕込んだ。ホモジナイ
ザーにて500Orpmの撹拌下で、INの塩酸水溶液
3ccの添加により、pHを4.0とし、且つ反応温度
を40°Cに加温したところ、白濁が生じた。1分後に
、トリエチルテトラミン29.8 gを仕込み、1時間
撹拌を続けた後、60°Cに昇温し5000rpm撹拌
下にて、1時間反応を維持した。
Next, 426 g of the prepolymer aqueous solution and 309 g of pure water were charged into 22 beakers at room temperature. While stirring at 500 rpm with a homogenizer, the pH was adjusted to 4.0 by adding 3 cc of an IN aqueous solution of hydrochloric acid, and the reaction temperature was heated to 40°C, resulting in white turbidity. After 1 minute, 29.8 g of triethyltetramine was charged, and stirring was continued for 1 hour, then the temperature was raised to 60°C, and the reaction was maintained for 1 hour while stirring at 5000 rpm.

ここに更に純水300gを仕込み、ホモジナイザーを外
し種型撹拌機に切り換えて、300rpmに低下させて
から、スチレン−ブタジェン共重合体エマルジョンN1
polLX416(固形分48重量%、成膜形成温度5
0″C、ガラス転移温度39°C、ゼオン■製)178
gを仕込み更に2時間反応を続けてスラリーを得た。
Add 300g of pure water to this, remove the homogenizer, switch to a seed stirrer, lower the rpm to 300rpm, and add styrene-butadiene copolymer emulsion N1.
polLX416 (solid content 48% by weight, film formation temperature 5
0″C, glass transition temperature 39°C, manufactured by Zeon ■) 178
The reaction was continued for an additional 2 hours to obtain a slurry.

このスラリーをIN苛性ソーダ水溶液で中和後、純水及
びメタノールで洗浄し、遠心分離を行い、入口の熱風温
度60°C1内部の熱風温度40〜50℃の流動乾燥機
で30分間乾燥した結果、平均粒径的30μmのカプセ
ル体微粒子130gを得た。又このカプセル体は皮膜含
有率が77重量%であった。
This slurry was neutralized with IN aqueous sodium hydroxide solution, washed with pure water and methanol, centrifuged, and dried for 30 minutes in a fluidized fluid dryer with a hot air temperature of 60°C at the inlet and a hot air temperature of 40 to 50°C. 130 g of capsule fine particles having an average particle size of 30 μm were obtained. Further, this capsule body had a film content of 77% by weight.

このカプセル体50gとビスフェノール型エポキシ樹脂
 エピコート82B (シェル化学■製)50gを混合
し、30″Cで2が月間放置したが、エポキシ樹脂の硬
化は見られなかった。
50 g of this capsule body and 50 g of bisphenol type epoxy resin Epicoat 82B (manufactured by Shell Kagaku ■) were mixed and left at 30''C for 2 months, but no hardening of the epoxy resin was observed.

又、顕微鏡法で溶融流動状態を観察したところ、70゛
C付近でカプセル体皮膜が破壊されるのが見られた。こ
れらの結果を表1に記す。
Furthermore, when the melt-flow state was observed using a microscope, it was found that the capsule film was destroyed at around 70°C. These results are shown in Table 1.

実施例6〜7 実施例2における低密度ポリエチレンエマルジョンの代
わりの熱可塑性高分子水分散体の種類や使用量、芯材の
種類或いは流動乾燥の入口熱風温度や乾燥時間を表1の
ように変更した以外は、実施例2と全く同様に製造及び
試験を行った場合の結果を表1に記す。
Examples 6 to 7 The type and amount of thermoplastic polymer aqueous dispersion used instead of the low-density polyethylene emulsion in Example 2, the type of core material, or the inlet hot air temperature and drying time of fluidized drying were changed as shown in Table 1. Table 1 shows the results obtained when manufacturing and testing were carried out in exactly the same manner as in Example 2, except for the following.

(ハ)発明の効果 本発明で得られるカプセル体の壁膜は、熱可塑性を有し
ていると共に、本来尿素樹脂等が持つ耐熱性、耐水性或
い耐油性等を保持するものであり、本発明はこのカプセ
ル体を筒車な方法で商業的に優位に生産することを可能
としたものである。
(c) Effects of the invention The wall membrane of the capsule body obtained by the present invention has thermoplasticity and retains the heat resistance, water resistance, oil resistance, etc. originally possessed by urea resin, etc. The present invention has made it possible to commercially advantageously produce this capsule body by an hour wheel method.

本発明により得られるカプセル体は、圧力によって破壊
されて芯物質を放出するのみでなく、加熱によって壁膜
が部分的に破壊されて芯物質を徐々に放出し得るもので
、接着剤、特にエポキシ系接着剤やポリウレタン系接着
剤等の反応性の大きな熱硬化型接着剤に使用して、遅効
性のあるポットライフの長い一液型又は二液型の接着剤
とすることができる。
The capsule body obtained by the present invention not only ruptures under pressure and releases the core substance, but also partially ruptures the wall membrane by heating and gradually releases the core substance. It can be used in highly reactive thermosetting adhesives such as polyurethane adhesives and polyurethane adhesives to produce one-component or two-component adhesives with slow-acting properties and a long pot life.

又FRP用ポリエステル樹脂や、鋳型成形用エポキシ樹
脂に使用して、着色等のない成形材料を得ることができ
る。
Furthermore, it can be used in polyester resins for FRP and epoxy resins for mold molding to obtain molding materials without coloring.

Claims (1)

【特許請求の範囲】[Claims] 1、尿素樹脂又はメラミン樹脂のプレポリマーの水溶液
中に疎水性物質を分散させ、該疎水性物質の周囲に尿素
樹脂壁膜又はメラミン樹脂壁膜の形成を開始させた後、
該水溶液中に熱可塑性高分子水分散物を添加することを
特徴とするカプセル体の製造法。
1. After dispersing a hydrophobic substance in an aqueous solution of a urea resin or melamine resin prepolymer and starting the formation of a urea resin wall film or a melamine resin wall film around the hydrophobic substance,
A method for producing a capsule body, which comprises adding an aqueous thermoplastic polymer dispersion to the aqueous solution.
JP63150231A 1988-06-20 1988-06-20 Manufacture of capsule Pending JPH024440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63150231A JPH024440A (en) 1988-06-20 1988-06-20 Manufacture of capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63150231A JPH024440A (en) 1988-06-20 1988-06-20 Manufacture of capsule

Publications (1)

Publication Number Publication Date
JPH024440A true JPH024440A (en) 1990-01-09

Family

ID=15492416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63150231A Pending JPH024440A (en) 1988-06-20 1988-06-20 Manufacture of capsule

Country Status (1)

Country Link
JP (1) JPH024440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000342956A (en) * 1999-04-01 2000-12-12 Dai Ichi Kogyo Seiyaku Co Ltd Microcapsule production method and microcapsule obtained thereby

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618808A (en) * 1979-07-24 1981-02-23 Yukio Ishida Moving shelf type article preserving apparatus
JPS62250943A (en) * 1986-04-24 1987-10-31 Kanzaki Paper Mfg Co Ltd Preparation of microcapsule
JPS6415131A (en) * 1987-07-07 1989-01-19 Nippon Petrochemicals Co Ltd Microcapsule

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618808A (en) * 1979-07-24 1981-02-23 Yukio Ishida Moving shelf type article preserving apparatus
JPS62250943A (en) * 1986-04-24 1987-10-31 Kanzaki Paper Mfg Co Ltd Preparation of microcapsule
JPS6415131A (en) * 1987-07-07 1989-01-19 Nippon Petrochemicals Co Ltd Microcapsule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000342956A (en) * 1999-04-01 2000-12-12 Dai Ichi Kogyo Seiyaku Co Ltd Microcapsule production method and microcapsule obtained thereby

Similar Documents

Publication Publication Date Title
US4402856A (en) Microcapsules with a defined opening temperature, a process for their production and their use
US5248550A (en) Encapsulation of thermoplastic particles for production of composites
US5180637A (en) Double-walled microcapsules and a process for preparation of same
US3781230A (en) Microcapsular opacifier system
US3585149A (en) Microcapsular opacifier system
JP2545370B2 (en) Continuous production method of microcapsules with capsule wall from melamine-formaldehyde condensate
GB2094257A (en) Removing residual formaldehyde from microcapsules
JP2003519724A (en) Low viscosity dispersion of microcapsules comprising melamine-formaldehyde resin with reduced formaldehyde
US4089834A (en) Water-resistant micro-capsular opacifier system and products
KR100337025B1 (en) Process for Microencapsulat ed Phase Change Material Slurry
EP0339803B1 (en) Method for microencapsulating a compound of a platinum group metal
JPH024440A (en) Manufacture of capsule
JPH0226636A (en) Capsule and its preparation method
US3712867A (en) Process for the production of microcapsules with the aid of synthetic coacervates and microcapsules produced thereby
CN110013805B (en) Method for preparing amino resin hollow microcapsule
Arshady Review Preparation of nano-and microspheres by polycondensation techniques
JPS5833492A (en) Microcapsule for pressure sensitive recording material and preparation thereof
KR20030019181A (en) Amino resin composite and method of producing same
JPS63166430A (en) Production of high-density microcapsule
US4000345A (en) Substrate having coating thereon comprising microcapsular opacifying agents, and method of preparing same
JPH05154375A (en) Microcapsule and production thereof
US6528582B2 (en) Method of preparing co-polymer particles
JP2649796B2 (en) Method for producing sustained-release microcapsules
JPS5855812B2 (en) Manufacturing method of microcapsules
JPH0534053B2 (en)