JPH0244111A - Pulverized coal combustion method - Google Patents

Pulverized coal combustion method

Info

Publication number
JPH0244111A
JPH0244111A JP19092589A JP19092589A JPH0244111A JP H0244111 A JPH0244111 A JP H0244111A JP 19092589 A JP19092589 A JP 19092589A JP 19092589 A JP19092589 A JP 19092589A JP H0244111 A JPH0244111 A JP H0244111A
Authority
JP
Japan
Prior art keywords
air
pulverized coal
combustion
nozzle
mixed flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19092589A
Other languages
Japanese (ja)
Inventor
Kiyoshi Narato
清 楢戸
Yoshinobu Kobayashi
啓信 小林
Toru Inada
徹 稲田
Norio Arashi
紀夫 嵐
Kenichi Soma
憲一 相馬
Kazuhisa Higashiyama
和寿 東山
Keizo Otsuka
大塚 馨象
Takao Hishinuma
孝夫 菱沼
Tadahisa Masai
政井 忠久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP19092589A priority Critical patent/JPH0244111A/en
Publication of JPH0244111A publication Critical patent/JPH0244111A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the generation amount of NOX and to improve combustibility of pulverized coal by a method wherein combustion in a low air ratio in which NH3 is produced from a nitrogen compound in pulverized coal is effected at the former stage, and combustion in an air ratio of at least 1 is effected at the latter stage. CONSTITUTION:An auxiliary fuel injection nozzle 9 is arranged, and a flame stabilizer 4 is positioned along the tip of a pulverized coal injection nozzle 1. Pulverized coal is injected in a state, in which pulverized coal is spread in a furnace by means of primary air G1, through a flame stabilizer 4. In this case, the inner side of the flame stabilizer 4 is brought into a negative pressure state, and a part of secondary air G2 injected through a nozzle 2 is drawn in a position inside the pulverized coal and primary air G1 injection nozzle 1. By means of warp plates 5 and 6 positioned at the tips of the nozzles 2 and 3 and inclined at a given angle with the injection directions of the secondary air G2 and tertiary air G3, mixture of most of airs G2 and G3 with a mixture flow of pulverized coal and the primary air G1 at a central part is delayed. Combustion in a low air ratio is effected at the former stage by means of a mixture flow of the primary air and pulverized coal. At the latter stage, the secondary air and tertiary air are mixed together to perform combustion in an air ratio of at least 1.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は微粉炭燃焼方法に係り、特に低NOx燃焼を実
現するのに好適な微粉炭燃焼方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a pulverized coal combustion method, and particularly to a pulverized coal combustion method suitable for achieving low NOx combustion.

〔発明の背景〕[Background of the invention]

微粉炭燃焼においては、石炭中N分含有量が多いことか
ら、大量のフューエルNoχが生成される。このため、
環境対策が必要である。たとえば、火力発電所等の汚染
物質の固定排出源では、微粉炭の燃焼不完全により発生
する未燃カーボンやNOxは総量規制の対象となり、ま
た緊急時にはNOx発生量を制御することが必要となる
。現在では燃焼法を改善してNOXの発生を抑制しよう
とする低NOx燃焼技術の開発が推進されている。
In pulverized coal combustion, a large amount of fuel Nox is generated because the N content in the coal is high. For this reason,
Environmental measures are necessary. For example, at fixed emission sources of pollutants such as thermal power plants, unburned carbon and NOx generated due to incomplete combustion of pulverized coal are subject to total volume regulations, and in the event of an emergency, it is necessary to control the amount of NOx generated. . Currently, the development of low NOx combustion technology is being promoted to improve combustion methods and suppress the generation of NOx.

具体的には低N Oxバーナの開発、多段燃焼法の組合
せ等によって実用化への検討が進められている。
Specifically, studies are underway to put this into practical use through the development of low NOx burners and the combination of multistage combustion methods.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、N Oxの発生量を低減できしかも微
粉炭の燃焼性を高めることができる微粉炭燃焼方法を提
供することにある。
An object of the present invention is to provide a pulverized coal combustion method that can reduce the amount of NOx generated and improve the combustibility of pulverized coal.

〔発明の概要〕 本発明の目的は、微粉炭と空気との混合流をバーナより
噴出させて燃焼する方法において、前段で微粉炭中の窒
素化合物からNH,を生成する低空気比の燃焼を行わせ
、後段で空気比1以上の燃焼を行わせることにより達成
される。
[Summary of the Invention] An object of the present invention is to provide a method of combustion in which a mixed flow of pulverized coal and air is ejected from a burner, in which combustion is performed at a low air ratio to generate NH from nitrogen compounds in pulverized coal in the first stage. This is achieved by causing combustion to occur at an air ratio of 1 or more in the subsequent stage.

本発明で用いるバーナは、1次空気と微粉炭との混合流
を噴出するノズル、2次空気を噴出するノズル及び3次
空気を噴出するノズルを備えることが望ましい。
It is preferable that the burner used in the present invention includes a nozzle for ejecting a mixed flow of primary air and pulverized coal, a nozzle for ejecting secondary air, and a nozzle for ejecting tertiary air.

特に1次空気と微粉炭との混合流噴出ノズルの外周囲に
2次空気噴出ノズルを備え、2次空気噴出ノズルの外周
囲に3次空気噴出ノズルを備えることが望ましい、2次
空気及び3次空気は、旋回流として発生させるようにす
ることが望ましい。
In particular, it is desirable to provide a secondary air jet nozzle around the outer periphery of the mixed flow jet nozzle of primary air and pulverized coal, and a tertiary air jet nozzle around the outer periphery of the secondary air jet nozzle. It is desirable that the secondary air be generated as a swirling flow.

このような構造のバーナを用い、1次空気と微粉炭との
混合流で前段の低空気比の燃焼を行い、後段で二次空気
と3次空気を混入させて空気比1以上の燃焼を行わせる
ことが望ましい。
Using a burner with this structure, combustion is performed at a low air ratio in the first stage using a mixed flow of primary air and pulverized coal, and combustion is performed at a low air ratio in the latter stage by mixing secondary air and tertiary air. It is desirable to have this done.

2次空気と3次空気の分配率を変え、又両者の混合する
位置を調整することによって微粉炭の燃焼性をより高め
ると同時にNOxの発生量を抑制すうろことができる。
By changing the distribution ratio of secondary air and tertiary air and adjusting the position where the two are mixed, it is possible to further improve the combustibility of pulverized coal and at the same time suppress the amount of NOx generated.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の方法に使用するバーナの一実施例を示
す。本実施例では同心円筒型の微粉炭燃焼バーナである
が、同心円筒型に限らず他の筒型でもよい。
FIG. 1 shows an embodiment of a burner used in the method of the invention. In this embodiment, the pulverized coal combustion burner is of a concentric cylindrical type, but it is not limited to the concentric cylindrical type, and other cylindrical types may be used.

第1図において、バーナ中心部には、補助燃料(例えば
予熱用の重油、あるいはプロパン)噴出ノズル9が配置
され、これに隣接して同心円上の微粉炭噴出ノズル1が
設けられる。微粉炭噴出ノズル1の先端に沿って保炎器
4が設けである。この保炎器4はノズル1の口径に対し
湾曲状に広がる構造体とし、微粉炭が1次空気G1によ
って保炎器4を介して火炉内に噴出される際、保炎器4
に沿って拡がった状態で噴出する。保炎器4の内側(微
粉炭と1次空気G1の混合流と接する側)はこのとき負
圧になり、微粉炭と1水空気Gi噴出ノズル1の内側に
ノズル2から噴出される2次空気G2の一部が巻き込ま
れる。これにより微粉炭は保炎器4の部分から安定した
火炎を形成して燃焼が行なわれる。また、2次空気噴出
ノズル2の先端には2次空気G2の噴出方向(ノズルの
軸方向)に対して所定の角度で傾斜するそらせ板5を配
置している。このそらせ板5によって、2次空気G2の
大部分は、中心部の微粉炭と1次空気G1との混合流に
対する混合が遅れるようになる。また3次空気G、の噴
出ノズル3の先端には3次空気G3の噴出方向(ノズル
の軸方向)に対して所定の角度で傾斜するそらせ板6を
配置している。
In FIG. 1, an auxiliary fuel (for example, heavy oil for preheating or propane) injection nozzle 9 is arranged in the center of the burner, and a concentric pulverized coal injection nozzle 1 is provided adjacent to this. A flame stabilizer 4 is provided along the tip of the pulverized coal injection nozzle 1. This flame stabilizer 4 has a structure that expands in a curved shape with respect to the diameter of the nozzle 1, and when the pulverized coal is ejected into the furnace through the flame stabilizer 4 by the primary air G1, the flame stabilizer 4
It erupts in a state that spreads along the . At this time, the inside of the flame stabilizer 4 (the side in contact with the mixed flow of pulverized coal and primary air G1) becomes negative pressure, and the secondary air jetted from the nozzle 2 flows into the pulverized coal and the inside of the jetting nozzle 1. A part of the air G2 is drawn in. As a result, the pulverized coal forms a stable flame from the flame stabilizer 4 and is combusted. Further, at the tip of the secondary air jetting nozzle 2, a deflecting plate 5 is arranged which is inclined at a predetermined angle with respect to the jetting direction of the secondary air G2 (the axial direction of the nozzle). The baffle plate 5 delays the mixing of most of the secondary air G2 with the mixed flow of the pulverized coal and the primary air G1 in the center. Further, at the tip of the nozzle 3 for ejecting the tertiary air G, a deflector plate 6 is arranged which is inclined at a predetermined angle with respect to the ejecting direction of the tertiary air G3 (the axial direction of the nozzle).

ここで第2図は3次空気噴出ノズル3のそらせ板6の角
度θ3=10度と一定の条件で、2次空気噴出ノズル2
のそらせ板5の角度θ2の影響を検討したデータである
。実験条件は次の通りである。
Here, FIG. 2 shows the secondary air jet nozzle 2 under a constant condition that the angle θ3 of the deflector plate 6 of the tertiary air jet nozzle 3 is 10 degrees.
This is data obtained by examining the influence of the angle θ2 of the deflecting plate 5. The experimental conditions are as follows.

Δ微粉炭燃焼炉寸法;φ600m、長さ5000mmΔ
供試石炭;太平洋炭、200メツシュ篩い下80%に粉
砕した微粉を使用した。
ΔPulverized coal combustion furnace dimensions: φ600m, length 5000mmΔ
Coal to be tested: Taiheiyo coal, a fine powder pulverized to 80% through a 200 mesh sieve was used.

Δ石炭供給量;20kg/h ΔJ′eX空% ml (J 1 ; 30 N m 
/ hΔ3次空気ノズルロ径I)、;φ300側1−次
空気と微粉炭との混合流で空気Jtl末謂の低空気比の
燃焼を行わ−U−1J二の混合流に2次空気と3次空気
を混入するごどL4−よっで空気比1以上の燃焼を行A
′)ぜるようにしている。
ΔCoal supply amount; 20 kg/h ΔJ′eX empty% ml (J 1 ; 30 N m
/hΔThird air nozzle diameter I); φ300 side A mixed flow of primary air and pulverized coal performs combustion at a low air ratio called air Jtl-U-1J2 mixed flow with secondary air and pulverized coal. Next, air is mixed in L4-, so combustion with an air ratio of 1 or more is performed A
')

第2図において、縦軸X/D3中のXはバーナ面f)y
 r、の噴出方向距離Cあり、D、l:i:3法空気噴
出ノズル3σ月−1径であり、したがってX、 / D
 、133次空気中心部分(燃焼火炎)1,1−拡散し
−Cくるときの値を示す、ずなわぢ、  (+2” 1
0−=65度の条件でr−t、 a次空勺、の中心部分
への拡散IJ: X / D 、ξ3.2の位置で起こ
っ1.いることを示す、。
In Figure 2, X in the vertical axis X/D3 is the burner surface f) y
There is a distance C in the ejection direction of r, D, l: i: 3 method air ejection nozzle 3σ month-1 diameter, therefore X, / D
, 133rd air center part (combustion flame) 1,1-diffuses and shows the value when -C comes, Zunawaji, (+2" 1
Under the condition of 0-=65 degrees, diffusion IJ to the central part of rt, a-dimensional space: X/D, occurs at the position of ξ3.2 1. It shows that there is.

第3図は、2次空気噴出ノズル2のそらぜ板5の角度0
2を10度と一定どし、3次空気噴出ノズル3の(′l
らゼ・耘j6の角度0.の影響を桧割したデ・−・夕で
ある。第:3図から3次空気の燃焼大炎・中心部への拡
散位置X / D ’iが;う以【−1となイy 03
1t=y〕0度以上であるこ二とがオ)かる。
FIG. 3 shows the angle of the baffle plate 5 of the secondary air jet nozzle 2 being 0.
2 is constant at 10 degrees, and the ('l) of the tertiary air jet nozzle 3 is
The angle of raze・耘j6 is 0. It is a day that is influenced by cypress. Figure 3: From Figure 3, the diffusion position of tertiary air to the center of the large combustion flame, X/D'i, is -1.03
1t=y] must be 0 degrees or more.

吹に1吹空気G、と微粉炭の混合流噴出ノズル1、先端
にぞら片板を有する2次空気噴出ノズル2及び先端にそ
らせ板3紮有する3次空気噴出ノズル3から構成され、
J′1つ、2次空気噴出ノズル2と3次空気噴出ノズル
3にはf泡回器7.L3を設けた微粉炭燃焼バーナでの
微粉炭の燃焼試験結果を第4図jEよび第5図し1示ず
、 実験条件は、0.=20度、θつを30度とした他は、
第2図および第3図1こおUる実験条件と同じである、
2 第4図は微粉炭燃焼バーナでの燃ツ9′!火炎中心軸方
向の酸素濃度の変化も・示し、第5図Lj、同様1.1
″火炎中心輔上流れ方向のNoxi度の変化を示す。
Consisting of a mixed flow jetting nozzle 1 of one blow of air G and pulverized coal, a secondary air jetting nozzle 2 having a diagonal plate at its tip, and a tertiary air jetting nozzle 3 having a deflecting plate 3 at its tip,
J′ one, and F bubble generator 7 for the secondary air jet nozzle 2 and the tertiary air jet nozzle 3. The results of the combustion test of pulverized coal in a pulverized coal combustion burner equipped with L3 are shown in Figures 4jE and 5 (not shown), and the experimental conditions were 0. = 20 degrees, and θ is 30 degrees.
Figures 2 and 3 are the same as the experimental conditions.
2 Figure 4 shows 9' combustion in a pulverized coal combustion burner! Changes in oxygen concentration in the direction of the flame center axis are also shown, as in Figure 5 Lj, 1.1
” shows the change in Noxi degree in the flow direction above the flame center.

第4図、第5図ともに横軸は流わ、方向)拒1xと3次
空気ノズル[1径りの比とL5で整理し)−o第4図。
In both FIGS. 4 and 5, the horizontal axes represent the flow direction (direction) and the tertiary air nozzle (organized using the ratio of 1 radius and L5)-o.

第5図中に示すA−Cまでの特性は、同条件での燃焼試
験時の結果を示し対応している。図中Aは:3次空気量
G、と2次空気景(j2の配分比がC;□/G、?2、
BはGa/G、:3、にIJ、(ハ/G、 = 4にな
ろよう15.−設定し7−条件での結果を示す。この燃
焼試験゛Cは1次空気成Giと微粉炭供給量は一定にし
1変動させず、G 、): G 、のみを変化さゼ”た
The characteristics A to C shown in FIG. 5 correspond to the results of a combustion test under the same conditions. A in the figure is: tertiary air volume G, and secondary airscape (the distribution ratio of j2 is C; □/G, ?2,
B shows the results under Ga/G, :3, IJ, (Ha/G, = 4) under 15.-setting and 7-conditions.This combustion test The supply amount was kept constant and did not vary; only G was changed.

まゾ!−11−a次窄気狐の総量GT(−二〇 x 4
− G Z 十G] ) lj;微粉t;2を燃焼させ
るの11、−必要な理論窄気敗G (11対し、(]−
17()o=1.2になる条件と111、C−旨は一定
としゾセ。この結果、A(a s / a 27:2 
)の条1,4eはバー=−す面から燃焼が進み、バーナ
面からに11.るに従い、0.が消費され、低08領域
が形成、−′5.4’Lる。この傾向1’、i n 、
 (:、の条件eも同様となる。
Masochist! -11-a Total amount of Kouki foxes GT (-20 x 4
- G Z 10 G] ) lj; fine powder t; 11 to burn 2, - necessary theory constriction G (for 11, (]-
17() The conditions for o = 1.2 and 111, C- are assumed to be constant. As a result, A(a s / a 27:2
), combustion progresses from the bar = - side, and from the burner side 11.). 0. is consumed and a low 08 region is formed, -'5.4'L. This tendency 1', i n ,
The same applies to the condition e of (:).

この(−)、濃I¥r4′一対応したNoに濃度の変化
を第4図に示す。第4図中のAの結果力口)、バーナ面
で燃焼が起こるとEi炭中N分がN Oxとして放出t
Cれ、N Ox謡度(3、増加−5る傾向を示tが、0
.濃度が低下し/″:領嗟目プ1、N Oxは減少する
1、′れは、低02領域では石炭中N化合物からN H
わが生成さJ’i、l、NOxど共存”づることによっ
てN OxをN、に還元する脱硝反応が起、−っている
ためである1、シかし、第4図のAの特性″(では低0
.領域が短い。、′−:、わ、1j1.2次空気G、及
び3吹空気G、が混合し下くるためで、 G s / 
G 2−2の本条件℃は;=4−tら空気の混合が早く
なる。−と口、で表わしている。、二の結果、第5図に
示すとどく、NOx濃度はO7増加と共ξ、J二高くな
る傾向を示す。これは低0.領域で存在し八NH3のN
OX/\の酸化反応が進む1−ど、また、チャー中に含
まれるN化合物がNOXに転換ブに、11、イ)ためで
ある。従って、J″′、のG、!G、=2の条件では、
炉出D N Ox ”” 200 pp mとIcす、
N Ox ’fr低減する効y、は少ない。、二九に対
し、第4−・第5図中のBの特性はG i / G Z
 ” 3どI・へ条件での試験結果を示し、3次空気”
スG、を増加さぜることによって、第4図に示すごとく
5低01.領域を長く保つ2二とができる。これb;よ
っr、第5図に示すとと<、NOxのNH,による)気
元反応もイたみ、N Ox?!IA 度は八〇G 17
 G 2 ” 2の条件番:対し、大幅に低下する8ま
た、第4、図1.:′、示ずようj:二、2次。
FIG. 4 shows the change in density between (-), dark I\r4' and the corresponding No. As a result of A in Figure 4), when combustion occurs on the burner surface, N in the coal is released as NOx.
C, NOx singing degree (3, shows a tendency to increase -5 t, 0
.. Concentration decreases /'': In the low 02 region, N H from N compounds in coal decreases.
This is because the denitrification reaction that reduces NOx to N occurs due to the coexistence of J'i, l, NOx, etc. 1. However, the characteristics of A in Figure 4 (Then low 0
.. The area is short. ,'-:,1j1.This is because the secondary air G and the 3-blown air G are mixed together, and G s /
G 2-2 under the present conditions ℃; = 4-t, the mixing of air becomes faster. It is expressed with - and mouth. As shown in FIG. 5, the NOx concentration tends to increase by ξ, J2 as O7 increases. This is low 0. N of 8NH3 exists in the area
This is because the oxidation reaction of OX/\ progresses (1) and the N compounds contained in the char are converted to NOx (11, a). Therefore, under the condition that G,!G,=2 of J″′,
Furnace D NOx ”” 200 ppm and Ic,
The effect of reducing NOx 'fr is small. , 29, the characteristics of B in Figures 4 and 5 are G i / G Z
``Tertiary air''
As shown in FIG. 4, by increasing It is possible to maintain the area for a long time. If this is shown in Figure 5, the gaseous reaction (due to NH of NOx) will also be stimulated, and NOx? ! IA degree is 80G 17
In contrast, the condition number of G 2 '' 2 is significantly reduced.

3次空気の混合によってO2濃度が増加する位置でも、
NOxの増加を少なくづる7”′とが7?きる。
Even at locations where O2 concentration increases due to tertiary air mixing,
7"' means less increase in NOx.

これは、低02領域で共存するl’tT I(、がN0
xO′)芹元に消費されるため、空気の混合する位1−
pはNH3の量が少ないので酸化されてNOxになる量
も減少すること、また低o8領域が長くなったことでチ
ャーの燃焼時間も長くなり、チャー中のN分もガス中に
放出される割合が高くなり、チャー98分からのN O
x発生量も減少することに起因している。
This means that l'tT I(, is N0
xO') Since it is consumed in the first stage, the air is mixed with 1-
Since the amount of NH3 in p is small, the amount that is oxidized to NOx is also reduced, and the longer low o8 region lengthens the combustion time of the char, and the N content in the char is also released into the gas. The ratio becomes higher, and NO from 98 minutes of char
This is due to the fact that the amount of x generation also decreases.

このG、/G、=3の条件での炉出口N Ox値は11
00ppとなりG3/G、=2の条件に対し、1/2に
NOx低減が可能となった。さらにG、/G、=4の条
件で測定した結果を第4〜第5図中のCの曲線で0□濃
度、NOx濃度の変化を示したが、G3を増加させるほ
どG、の噴出速度が高くなり、G、は運動量が増えるの
で、中心部の燃料に対し、aれ、混合はより遅くなり、
中心軸上の低o2領域はさらに長く保つことができるか
ら、NOx還元反応を促進でき、炉出口NOxは70p
pmとなった。
Under this condition of G, /G, = 3, the furnace outlet NOx value is 11
00 pp, making it possible to reduce NOx to 1/2 compared to the condition of G3/G=2. Furthermore, the results of measurement under the condition of G, /G, = 4 are shown in curves C in Figures 4 and 5 showing changes in 0□ concentration and NOx concentration, and as G3 increases, the ejection speed of G. As G becomes higher and the momentum of G increases, the agitation and mixing becomes slower for the fuel in the center.
Since the low O2 area on the central axis can be maintained for a longer period of time, the NOx reduction reaction can be promoted, and the NOx at the furnace outlet can be reduced to 70p.
It became pm.

すなわち、G 3/ G * > 2の領域になる範囲
でG、とG2を制御すれば低N Ox化を図ることがで
き、これらの操作は、2次空気及び3次空気レジスタの
角度を変えるだけで容易に達成することができる。
In other words, low NOx can be achieved by controlling G and G2 within the range of G 3 / G * > 2, and these operations change the angles of the secondary air and tertiary air registers. It can be easily achieved by just

次に、これらA−Cの各条件での結果から、中心軸上流
れ方向距離Xに対し、2次、3次空気の混合する位置(
第4図中Jl −W Qの位置)を3次空気ノズル3の
スロードロ径D3との関係で整理すると次のように表わ
せる。先ずAの条件ではX/D。
Next, from the results under each of these conditions A-C, the position where secondary and tertiary air mixes (
When the position Jl-WQ in FIG. 4 is rearranged in relation to the slow draw diameter D3 of the tertiary air nozzle 3, it can be expressed as follows. First, under condition A, X/D.

弁2、Bの条件ではX/D343及びCの条件ではX/
D、幻4であった。従ってG、/G、を大きくすること
はX/D、を大きくすることであり、本発明者らの検討
結果ではG、/G、>3以上にし、X/D、〉3の条件
にすることが低N Ox燃焼を実現するのに有効である
Valve 2, X/D343 under conditions B and X/D under conditions C.
D. It was illusion 4. Therefore, increasing G, /G, means increasing X/D, and the inventors' study results set G, /G, > 3 and the condition that X/D, > 3. This is effective in achieving low NOx combustion.

また第2図および第3図からX/Dffとする条件は、
2次空気噴出ノズル2のそらせ板5の角度が10〜65
度であり、3次空気噴出ノズル3のそらせ板6の角度が
10度以上であり、したがってこれらの角度を有するそ
らせ板のときに低NOx燃焼を効率よく実現できる。
Also, from Figures 2 and 3, the conditions for setting X/Dff are:
The angle of the deflector plate 5 of the secondary air jet nozzle 2 is 10 to 65.
The angle of the baffle plate 6 of the tertiary air jet nozzle 3 is 10 degrees or more. Therefore, when the baffle plate has these angles, low NOx combustion can be efficiently achieved.

更に、前記した2次空気ノズル2と3次空気ノズル3に
旋回器7,8を設ける理由としては、1次空気によって
微粉炭を低空気比条件で燃焼させ、その火炎と2次、3
次空気の混合を適度に進めるために有効であり、旋回器
7,8がなく、旋回流として噴出させないときには、2
次空気、3次空気の混合が早くなる。従って旋回器も、
そらせ板間様に2次、3次空気と微粉炭燃焼の火炎との
混合を遅くする効果を有する6 〔発明の効果〕 本発明によれば、微粉炭の着火性を良くし、保炎効果を
高くすると共に、1oopp m以下のNOx発生量と
なる低N Ox効果がある。2次空気、3次空気を制御
するだけで、NOx発生量を制御できるから、信頼性向
上にも大きく貢献できる。
Furthermore, the reason why the swirlers 7 and 8 are provided in the secondary air nozzle 2 and the tertiary air nozzle 3 is that the primary air burns the pulverized coal under low air ratio conditions, and the flame and the secondary and tertiary air nozzles are
This is effective for promoting proper mixing of the next air, and when there are no swirlers 7 and 8 and the swirling flow is not ejected, the second
Mixing of secondary air and tertiary air becomes faster. Therefore, the swivel
The space between the deflecting plates has the effect of slowing down the mixing of secondary and tertiary air with the flame of pulverized coal combustion.6 [Effects of the Invention] According to the present invention, the ignitability of pulverized coal is improved and the flame holding effect is achieved. It has a low NOx effect, which increases the amount of NOx generated and the amount of NOx generated is less than 1 oopp m. The amount of NOx generated can be controlled simply by controlling the secondary air and tertiary air, which can greatly contribute to improved reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃焼方法を説明するための微粉炭バー
ナ略図、第2図および第3図はそらせ板の角度と3次空
気の燃焼火炎中心部への拡散位置との関係を示す特性図
、第4図および第5図は3次空気量と2次空気量の配分
による燃焼特性を示す特性図である。 1・・・1次空気と微粉炭混合流体の噴出ノズル。 2・・・2次空気噴出ノズル、 3・・・3次空気噴出ノズル、4・・・保炎器、5.6
・・・そらせ板、7,8・・・旋回器、9・・・補助燃
料ノズル。
Figure 1 is a schematic diagram of a pulverized coal burner for explaining the combustion method of the present invention, and Figures 2 and 3 are characteristics showing the relationship between the angle of the baffle plate and the diffusion position of tertiary air to the center of the combustion flame. 4 and 5 are characteristic diagrams showing combustion characteristics depending on the distribution of the tertiary air amount and the secondary air amount. 1... A nozzle that ejects a mixed fluid of primary air and pulverized coal. 2... Secondary air jet nozzle, 3... Tertiary air jet nozzle, 4... Flame stabilizer, 5.6
... deflection plate, 7, 8 ... swirler, 9 ... auxiliary fuel nozzle.

Claims (1)

【特許請求の範囲】 1、微粉炭と空気との混合流をバーナより噴出させて燃
焼する方法において、前段で微粉炭中の窒素化合物から
NH_3を生成する低空気比の燃焼を行い、後段で空気
比1以上の燃焼を行うようにしたことを特徴とする微粉
炭燃焼方法。 2、特許請求の範囲第1項において、前記バーナが1次
空気と微粉炭との混合流を噴出する混合流噴出ノズルと
、該混合流噴出ノズルより噴出した混合流に2次空気を
混入させる2次空気噴出ノズルと、前記混合流に3次空
気を混入させる3次空気噴出ノズルとを備え、前記混合
流噴出ノズルから噴出する混合流によって前記低空気比
の燃焼を行い、該混合流に前記2次空気と前記3次空気
を混入することによって後段で空気比1以上の燃焼を行
うようにしたことを特徴とする微粉炭燃焼方法。 3、特許請求の範囲第2項において、前記バーナが1次
空気と微粉炭との混合流を噴出する混合流噴出ノズルと
、この混合流噴出ノズルの外周囲に設けられ2次空気の
旋回流を噴出する2次空気噴出ノズルと、この2次空気
用噴出ノズルの外周囲に設けられ3次空気の旋回流を噴
出する3次空気噴出ノズルとを備えたことを特徴とする
微粉炭燃焼方法。 4、特許請求の範囲第2項において、前記3次空気量G
_3と2次空気量G_2の配分(G_3/G_2)を3
以上の条件に制御したことを特徴とする微粉燃焼方法。 5、特許請求の範囲第2項において、前記3次空気用噴
出ノズルの口径D_3とバーナ面からの噴出方向距離X
との関係で示されるX/D_3が3以上となる領域で3
次空気を他のノズルから噴出される燃焼火炎と混合させ
ることを特徴とする微粉炭燃焼方法。
[Scope of Claims] 1. In a method in which a mixed flow of pulverized coal and air is ejected from a burner and combusted, combustion is performed at a low air ratio to generate NH_3 from nitrogen compounds in pulverized coal in the first stage, and in the second stage, A pulverized coal combustion method characterized by performing combustion at an air ratio of 1 or more. 2. In claim 1, the burner includes a mixed flow jetting nozzle that jets out a mixed flow of primary air and pulverized coal, and mixing secondary air into the mixed flow jetted from the mixed flow jetting nozzle. A secondary air jetting nozzle and a tertiary air jetting nozzle for mixing tertiary air into the mixed flow are provided, and the mixed flow jetted from the mixed flow jetting nozzle performs the combustion at the low air ratio, and the mixed flow is A pulverized coal combustion method characterized in that combustion is performed at a later stage with an air ratio of 1 or more by mixing the secondary air and the tertiary air. 3. Claim 2, wherein the burner includes a mixed flow jet nozzle that spouts a mixed flow of primary air and pulverized coal, and a swirling flow of secondary air provided around the outer periphery of the mixed flow jet nozzle. A pulverized coal combustion method comprising: a secondary air jetting nozzle that jets out a secondary air jetting nozzle; and a tertiary air jetting nozzle that is provided around the outer periphery of the secondary air jetting nozzle and jetting out a swirling flow of tertiary air. . 4. In claim 2, the tertiary air amount G
_3 and the distribution of secondary air amount G_2 (G_3/G_2) to 3
A method of combustion of fine powder characterized by controlling the above conditions. 5. In claim 2, the diameter D_3 of the tertiary air jet nozzle and the distance in the jet direction from the burner surface X
3 in the area where X/D_3 shown by the relationship with is 3 or more
A pulverized coal combustion method characterized by mixing air with combustion flame ejected from another nozzle.
JP19092589A 1989-07-24 1989-07-24 Pulverized coal combustion method Pending JPH0244111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19092589A JPH0244111A (en) 1989-07-24 1989-07-24 Pulverized coal combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19092589A JPH0244111A (en) 1989-07-24 1989-07-24 Pulverized coal combustion method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5913084A Division JPS60202204A (en) 1984-03-27 1984-03-27 Pulverized coal firing burner and operating method thereof

Publications (1)

Publication Number Publication Date
JPH0244111A true JPH0244111A (en) 1990-02-14

Family

ID=16265973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19092589A Pending JPH0244111A (en) 1989-07-24 1989-07-24 Pulverized coal combustion method

Country Status (1)

Country Link
JP (1) JPH0244111A (en)

Similar Documents

Publication Publication Date Title
US5569020A (en) Method and device for operating a premixing burner
US6189464B1 (en) Pulverized coal combustion burner and combustion method thereby
US4907962A (en) Low NOx burner
JP2009079893A (en) Gas turbine combustor and operating method of gas turbine combustor
JPH0765731B2 (en) Method for burning a fuel containing bound nitrogen
US6196831B1 (en) Combustion process for burning a fuel
US6298796B1 (en) Fine coal powder combustion method for a fine coal powder combustion burner
JP2006189252A (en) Gas turbine combustor and method for operating gas turbine combustor
JP2006517021A (en) Method and apparatus for oxygen enrichment in fuel carrier gas
JPS62172105A (en) Combustion method and device for preventing production of nox
US4162890A (en) Combustion apparatus
JPH049511A (en) Pulverized coal firing method, pulverized coal boiler and pulverized coal burner
JPH0244111A (en) Pulverized coal combustion method
JPH07310903A (en) Combustion for pulverized coal and pulverized coal burner
JPH08121711A (en) Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner
KR102645081B1 (en) Burner and boiler equipment including the same
JPS60202204A (en) Pulverized coal firing burner and operating method thereof
JP2526272B2 (en) Burner for low NOx combustion of pulverized coal
KR20010108672A (en) Low Nox Burner
JPS6219645B2 (en)
JPH086901B2 (en) Pulverized coal low nitrogen oxide burner
JPS62158906A (en) Low nox combustion burner for coal and water slurry
JPS6218804Y2 (en)
ES2354877T3 (en) PROCEDURE AND APPARATUS FOR THE ENRICHMENT IN OXYGEN OF GASES THAT TRANSPORT FUEL.
JPS60129504A (en) Burner