【発明の詳細な説明】[Detailed description of the invention]
産業上の利用分野
本発明は合成樹脂の固体押出成形方法に関する
ものである。さらに詳しくいえば、本発明は、特
に従来方法では固体押出成形が困難であつた難加
工性の合成樹脂を、簡単な押出装置を用いて極め
て容易に固体押出成形する方法に関するものであ
る。
従来の技術
従来、合成樹脂の固体押出成形方法としては、
合成樹脂素材を融点以下の温度に加熱し、プラン
ジヤーで直接又は静水圧で加圧して、ダイス孔か
ら押出す方法が知られている。このような固体押
出成形法は、寸法安定性や寸法精度の優れた配向
物を固体状態のままで与えることができるので、
近年特に注目されており、この方法を応用したも
のとして、例えば固体プラスチツクの成形方法
(特公昭52−13230号公報)やフツ素樹脂の静水圧
押出成形方法(特公昭52−26789号公報)などが
知られている。
しかしながら、前記の静水圧による固体押出成
形方法においては、加工性が悪く、かつ融点の高
い合成樹脂では高い押出温度を必要とすることか
ら、(1)合成樹脂の押出完了後に、高温の圧力媒体
がダイス孔から流出して危険である、(2)高温の液
状圧力媒体により、合成樹脂が膨潤したり、合成
樹脂素材の表面にクラツクが生じて押出成形が困
難になるなど、特に非晶性の合成樹脂ではソルベ
ントクラツクの問題が大きい、(3)高温度では、静
水圧力を保持するためにプランジヤー部やダイス
部に圧力シールとして通常用いられている合成ゴ
ムやフツ素樹脂が使用できない、などの問題があ
る。
一方、このような問題を回避するために、圧力
媒体を用いず、プランジヤーで直接加圧するラム
押出法を適用すると、押出容器と素材ビレツトの
間の摩擦が大きくなり、押出荷重が増大するとい
う問題があり、さらに、素材ビレツトの径は押出
容器内径によつて規定されるため、押出比(素材
ビレツトの断面積を押出成形品の断面積で除した
値)及び押出成形品の径を所望の値に設定するに
は、それに対応したシリンダー内径を有する押出
容器と、対応したダイス孔を有するダイスをそれ
ぞれ用意しなければならないという問題がある。
発明が解決しようとする問題点
本発明の目的は、このような従来の固体押出成
形方法がもつ問題点を解決し、従来の方法では固
体押出成形が不可能であつた難加工性の合成樹脂
を特殊な押出装置を用いずに極めて容易に固体押
出成形することができ、しかも、素材ビレツトの
径を押出容器のシリンダー部内径未満で、かつダ
イス孔径を超える範囲内で自由に選ぶことがで
き、その結果押出成形品の製品設計、装置の設
計、押出条件の設定などの自由度が大きくなるよ
うな、安価な合成樹脂の固体押出成形方法を提供
することにある。
問題点を解決するための手段
本発明者らは鋭意研究を重ねた結果、合成樹脂
素材に直接接触する圧力媒体として、超高分子量
ポリエチレンの溶融物を用いることにより、前記
目的を達成しうることを見出し、この知見に基づ
いて本発明を完成するに至つた。
すなわち、本発明は、合成樹脂の固体押出成形
に際し、合成樹脂素材に直接接触する圧力媒体と
して超高分子量ポリエチレンの溶融物を用いるこ
とを特徴とする合成樹脂の固体押出成形方法を提
供するものである。
本発明方法の特徴は、合成樹脂素材に直接接触
する圧力媒体として超高分子量ポリエチレンの溶
融物を用い、プランジヤーなどにより間接的に荷
重を加えることにより、合成樹脂素材を高温でダ
イス孔から固体のままで押出成形することにあ
る。
前記超高分子量ポリエチレンの溶融物は、分子
鎖同士のからみ合いが多くて溶融粘度が高く、ゴ
ム状の弾性体であるので、プランジヤーにより荷
重を加えると、この溶融物を介して、合成樹脂素
材全体に静水圧に近い圧力が加わり、該素材がダ
イス孔から押出される。本発明方法においては、
このように、合成樹脂素材全体に圧力が加わるた
めに、押出変形時に合成樹脂中にポイド(空隙)
を生じることなく、長手方向に均一な構造をもつ
押出成形品が得られる。
また、合成樹脂素材に直接荷重を加えるラム押
出方法と異なり、超高分子量ポリエチレンの溶融
物を圧力媒体として使用するため、押出容器と素
材との間の摩擦が低下して、余剰の押出荷重を加
える必要がなく、また、該溶融物が押出容器と素
材との間に介在することから、素材の径を押出容
器のシリンダー部内径未満で、かつダイス孔径を
超える範囲内で自由に選ぶことができる。
さらに、室温で液状の低分子量の圧力媒体、例
えばひまし油、グリセリンなどを用いる静水圧押
出法においては、該圧力媒体が高温において合成
樹脂素材を膨潤、溶解したり、素材の表面にクラ
ツクを生じさせたりするが本発明方法で用いる超
高分子量ポリエチレンの溶融物は、合成樹脂素材
に対して、このような悪影響を及ぼすことがな
い。
本発明方法において用いる超高分子量ポリエチ
レンとしては、ASTM1238に基づいて、190℃の
温度で21.6Kgのピストン荷重をかけて測定したメ
ルトインデツクスが0.05g/10分以下もの、換言
すれば粘度平均分子量で70万以上のものが好まし
い。特にメルトインデツクスが0.01g/10分以下
で粘度平均分子量190万以上のものを用いると、
その溶融粘度が高くなるので、プランジヤー部や
ダイス部に特に圧力シールを使用しなくとも、プ
ランジヤーと押出容器のシリンダー部とのクリア
ランスや、押出容器とダイスとの接触部のクリア
ランスを小さくとつておけば、その間隙から、超
高分子量ポリエチレンの溶融物が流出することが
なく有利である。
この超高分子量ポリエチレンの溶融物には、高
温での分解を防ぐために、安定剤や酸化防止剤を
加えてもよいし、また合成樹脂素材とダイス部と
の摩擦を低下させるために、該溶融物に二硫化モ
リブデンなどの潤滑剤を併用させてもよい。さら
に、一度使用した超高分子量ポリエチレンの溶融
物が固化したものは、粉砕又は切断して再使用す
ることが可能である。
本発明方法において用いられる合成樹脂として
は、特に制限はないが、例えばポリエステル樹
脂、芳香族ポリエステル樹脂、ポリアミド、芳香
族ポリアミド、その他ポリエーテルエーテルケト
ン、ポリエーテルサルホン、ポリフエニレンサル
フアイド、ポリイミドのような耐熱性樹脂など、
従来、固体押出成形が困難とされていた材料も、
その他の成形容易なものと同様に用いることがで
きる。
さらに、本発明方法において用いるダイスの出
口径は、所望の押出成形品の径によつて決められ
る。また出口の形状についても所望の押出成形品
の断面の形状によつて決められ、例えば円、長
円、矩形、多角形、L形、H形、円環及びこれら
の組合せの異形断面などが挙げられる。ダイスの
断面形状などについては、特に制限はなく、通常
使用されている形状のものを用いることができ
る。
本発明方法における押出温度は、圧力媒体に用
いる超高分子量ポリエチレンの融点(約132℃)
以上、素材合成樹脂の融点又は熱分解温度までの
範囲で適宜選ばれるが、該合成樹脂として難加工
性のものを用いる場合は、前記範囲内で高い温度
に設定する必要がある。
次に、添付図面に従つて、本発明の好適な実施
態様の1例について説明すると、図は本発明方法
で用いる固体押出装置の1例の側方断面略解図で
あり、図において、1はシリンダー部2を有した
押出容器である。この押出容器1にダイス3がダ
イス支持金4で取り付けられており、また押出容
器1の周囲にはヒーター5が配置されている。ま
ず、合成樹脂の素材ビレツト6をダイス3に押し
つけたのち、粉末状の超高分子量ポリエチレンを
該素材ビレツトと押出容器との間に注ぎ込み、次
いでヒーター5で所望の温度に加熱して、該ポリ
エチレンを溶融する。次にプランジヤー8に所定
の荷重を加えて、超高分子量ポリエチレンの溶融
物7に圧力を伝幡し、ダイス3を通して素材ビレ
ツト6を押出すことにより、押出成形品9が得ら
れる。
発明の効果
本発明方法は、圧力媒体として超高分子量ポリ
エチレンの溶融物を用いて、合成樹脂を固体押出
成形する方法であつて、従来の液状低分子量の圧
力媒体を用いる静水圧押出方法と異なり、高温度
においても合成樹脂素材を膨潤、溶解したり、合
成樹脂素材の表面にクラツクを生じさせたりする
ことがないので、この方法を用いることにより、
従来方法では固体押出成形が困難であつた難加工
性の合成樹脂の固体押出成形が可能となり、しか
も、従来必要であつたプランジヤー部やダイス部
の圧力シールの必要がなく、押出装置の構成が極
めて簡単となつて、装置費を節減できる。
さらに、本発明方法においては、従来のラム押
出方法と異なり、押出容器と素材ビレツトとの間
の摩擦は低下するので、余剰の押出荷重を加える
必要がなく、また、素材ビレツトの径を押出容器
のシリンダー部内径未満で、かつダイス孔径を超
える範囲内で自由に選ぶことができることから、
押出製品の製品設計、装置の設計、押出条件の設
定などの自由度が極めて大きくなるなど、前記の
装置費の節減と相俟てコスト的に有利である。
実施例
次に実施例により本発明をさらに詳細に説明す
る。
実施例
合成樹脂素材ビレツトとして、非晶性のポリア
リレート樹脂〔ユニチカ(株)製、商品名「Uポリマ
ー」U−100〕の丸棒を使用し、また超高分子量
ポリエチレンとして、190℃で21.6Kgのピストン
荷重で測定したメルトインデツクスが0.01g/10
分以下である、粉末状の「ハイゼツクスミリオン
340M」〔登録商品名、三井石油化学(株)製〕を用
い、添付図面に示した装置を使用して成形を行つ
た。使用した装置のダイス孔径は12mmで、ダイス
角度2αは20゜である。押出温度を140〜180℃の範
囲で選び、直径が14〜19mmの素材ビレツトの固体
押出成形を行つた結果、超高分子量ポリエチレン
の溶融物が、押出容器のシリンダー部とプランジ
ヤー部とのクリアランスや、押出容器とダイス部
との接続部から流出することもなく、素材ビレツ
トに対して圧力を伝幡し、ポリアリレート樹脂の
押出成形品を得ることができた。
各押出し温度における押出比Rと押出圧力Pと
の関係を次表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for solid extrusion molding of synthetic resins. More specifically, the present invention particularly relates to a method for extremely easily solid-state extrusion-molding a difficult-to-process synthetic resin, which has been difficult to solid-extrude using conventional methods, using a simple extrusion device. Conventional technology Conventionally, solid extrusion molding methods for synthetic resins include:
A known method is to heat a synthetic resin material to a temperature below its melting point, pressurize it directly with a plunger or with hydrostatic pressure, and extrude it from a die hole. This solid extrusion molding method can provide oriented products with excellent dimensional stability and dimensional accuracy in a solid state.
This method has attracted particular attention in recent years, and applications of this method include, for example, a method for molding solid plastics (Japanese Patent Publication No. 52-13230) and a method for hydrostatic extrusion molding of fluorine resins (Japanese Patent Publication No. 52-26789). It has been known. However, in the solid extrusion molding method using hydrostatic pressure, processability is poor and synthetic resins with high melting points require high extrusion temperatures. (2) The high temperature liquid pressure medium may cause the synthetic resin to swell or cause cracks on the surface of the synthetic resin material, making extrusion difficult. (3) At high temperatures, synthetic rubber and fluorocarbon resin, which are normally used as pressure seals in the plunger and die parts, cannot be used to maintain hydrostatic pressure. There are other problems. On the other hand, if a ram extrusion method is applied in which pressure is applied directly by a plunger without using a pressure medium in order to avoid such problems, the problem arises that the friction between the extrusion container and the material billet becomes large and the extrusion load increases. Furthermore, since the diameter of the material billet is determined by the inner diameter of the extrusion container, the extrusion ratio (the value obtained by dividing the cross-sectional area of the material billet by the cross-sectional area of the extruded product) and the diameter of the extruded product can be adjusted to the desired value. In order to set this value, there is a problem in that it is necessary to prepare an extrusion container having a corresponding cylinder inner diameter and a die having a corresponding die hole. Problems to be Solved by the Invention The purpose of the present invention is to solve the problems of the conventional solid extrusion molding method, and to solve the problems of the conventional solid extrusion molding method. can be extremely easily extruded into solid form without using special extrusion equipment, and the diameter of the material billet can be freely selected within a range that is less than the inner diameter of the cylinder part of the extrusion container and greater than the diameter of the die hole. An object of the present invention is to provide an inexpensive method for solid extrusion molding of synthetic resins, which allows a greater degree of freedom in product design of extrusion molded products, equipment design, setting of extrusion conditions, etc. Means for Solving the Problems As a result of extensive research, the present inventors have found that the above object can be achieved by using a melt of ultra-high molecular weight polyethylene as a pressure medium that comes into direct contact with a synthetic resin material. The present invention was completed based on this finding. That is, the present invention provides a method for solid extrusion molding of synthetic resins, which is characterized in that a melt of ultra-high molecular weight polyethylene is used as a pressure medium in direct contact with the synthetic resin material during solid extrusion molding of synthetic resins. be. The method of the present invention is characterized by using a molten ultra-high molecular weight polyethylene as a pressure medium that directly contacts the synthetic resin material, and by indirectly applying a load with a plunger etc., the synthetic resin material is released from the die hole at high temperature as a solid. It consists in extrusion molding as it is. The ultra-high molecular weight polyethylene melt has a high melt viscosity due to many entanglements between molecular chains, and is a rubber-like elastic body, so when a load is applied with a plunger, the synthetic resin material is transferred through the melt. A pressure close to hydrostatic pressure is applied to the whole, and the material is extruded from the die hole. In the method of the present invention,
In this way, since pressure is applied to the entire synthetic resin material, voids are created in the synthetic resin during extrusion deformation.
An extrusion molded product with a uniform structure in the longitudinal direction can be obtained without causing any cracks. In addition, unlike the ram extrusion method, which applies a load directly to the synthetic resin material, a melt of ultra-high molecular weight polyethylene is used as the pressure medium, which reduces the friction between the extrusion container and the material, reducing excess extrusion load. Moreover, since the melt is present between the extrusion container and the material, the diameter of the material can be freely selected within a range that is less than the inner diameter of the cylinder part of the extrusion container and exceeds the diameter of the die hole. can. Furthermore, in the isostatic extrusion method using a low molecular weight pressure medium that is liquid at room temperature, such as castor oil or glycerin, the pressure medium may swell or dissolve the synthetic resin material at high temperatures or cause cracks on the surface of the material. However, the melt of ultra-high molecular weight polyethylene used in the method of the present invention does not have such an adverse effect on synthetic resin materials. The ultra-high molecular weight polyethylene used in the method of the present invention must have a melt index of 0.05 g/10 minutes or less when measured at a temperature of 190°C and a piston load of 21.6 kg based on ASTM 1238, in other words, a viscosity average molecular weight 700,000 or more is preferable. Especially when using a material with a melt index of 0.01 g/10 minutes or less and a viscosity average molecular weight of 1.9 million or more,
Because its melt viscosity increases, it is necessary to keep a small clearance between the plunger and the cylinder of the extrusion container and the contact area between the extrusion container and the die, even if no pressure seal is used in the plunger or die. For example, it is advantageous that the melt of ultra-high molecular weight polyethylene does not flow out from the gap. Stabilizers and antioxidants may be added to this melt of ultra-high molecular weight polyethylene to prevent it from decomposing at high temperatures. A lubricant such as molybdenum disulfide may also be used in combination with the product. Furthermore, a solidified ultra-high molecular weight polyethylene melt that has been used once can be reused by being crushed or cut. The synthetic resin used in the method of the present invention is not particularly limited, but includes, for example, polyester resin, aromatic polyester resin, polyamide, aromatic polyamide, other polyether ether ketone, polyether sulfone, polyphenylene sulfide, and polyimide. heat-resistant resins such as
Materials that were traditionally considered difficult to extrude
It can be used in the same way as other easily molded materials. Furthermore, the exit diameter of the die used in the method of the present invention is determined by the desired diameter of the extrudate. The shape of the outlet is also determined depending on the cross-sectional shape of the desired extruded product, such as a circle, an ellipse, a rectangle, a polygon, an L-shape, an H-shape, a ring, and irregular cross-sections of combinations thereof. It will be done. There is no particular restriction on the cross-sectional shape of the die, and any commonly used shape can be used. The extrusion temperature in the method of the present invention is the melting point of ultra-high molecular weight polyethylene used as the pressure medium (approximately 132°C).
As mentioned above, the temperature is appropriately selected within the range up to the melting point or thermal decomposition temperature of the synthetic resin material, but when using a synthetic resin that is difficult to process, it is necessary to set the temperature to a high temperature within the above range. Next, one example of a preferred embodiment of the present invention will be described with reference to the accompanying drawings. This is an extrusion container having a cylinder part 2. A die 3 is attached to the extrusion container 1 with a die support 4, and a heater 5 is arranged around the extrusion container 1. First, a synthetic resin material billet 6 is pressed against the die 3, and then powdered ultra-high molecular weight polyethylene is poured between the material billet and the extrusion container, and then heated to a desired temperature with a heater 5, and the polyethylene to melt. Next, a predetermined load is applied to the plunger 8, pressure is transmitted to the melt 7 of ultra-high molecular weight polyethylene, and the billet material 6 is extruded through the die 3, thereby obtaining an extruded product 9. Effects of the Invention The method of the present invention is a method for solid extrusion molding of synthetic resin using a melt of ultra-high molecular weight polyethylene as a pressure medium, and is different from the conventional hydrostatic extrusion method using a liquid low molecular weight pressure medium. By using this method, the synthetic resin material will not swell or dissolve, nor will it cause cracks on the surface of the synthetic resin material, even at high temperatures.
Solid extrusion molding of difficult-to-process synthetic resins, which was difficult to extrude using conventional methods, is now possible.Moreover, there is no need for pressure seals on the plunger or die parts, which were required in the past, and the structure of the extrusion equipment has been improved. It is extremely simple and can save equipment costs. Furthermore, in the method of the present invention, unlike the conventional ram extrusion method, the friction between the extrusion container and the billet material is reduced, so there is no need to apply excess extrusion load, and the diameter of the billet material is Since it can be freely selected within a range that is less than the inner diameter of the cylinder part and greater than the die hole diameter,
The degree of freedom in product design of extruded products, equipment design, setting of extrusion conditions, etc. becomes extremely large, which, together with the above-mentioned reduction in equipment costs, is advantageous in terms of cost. Examples Next, the present invention will be explained in more detail with reference to Examples. Example A round bar of amorphous polyarylate resin (manufactured by Unitika Co., Ltd., trade name "U Polymer" U-100) was used as a synthetic resin material billet, and ultra-high molecular weight polyethylene was used as a billet of 21.6 at 190°C. Melt index measured with Kg piston load is 0.01g/10
Powdered "Hi-Zex Million" that takes less than 1 minute
340M" [registered trade name, manufactured by Mitsui Petrochemicals Co., Ltd.], and molding was performed using the equipment shown in the attached drawings. The die hole diameter of the device used was 12 mm, and the die angle 2α was 20°. As a result of solid extrusion molding of a material billet with a diameter of 14 to 19 mm by selecting an extrusion temperature in the range of 140 to 180 degrees Celsius, the molten ultra-high molecular weight polyethylene was able to maintain the clearance between the cylinder part and the plunger part of the extrusion container. The pressure was transmitted to the material billet without flowing out from the joint between the extrusion container and the die part, and an extrusion molded product of polyarylate resin could be obtained. The relationship between extrusion ratio R and extrusion pressure P at each extrusion temperature is shown in the following table.
【表】【table】
【表】【table】
【図面の簡単な説明】[Brief explanation of drawings]
図は本発明方法において用いる固体押出装置の
1例の側方断面略解図であり、図中符号1は押出
容器、2はシリンダー部、3はダイス部、4はダ
イス支持金、5はヒーター、6は素材ビレツト、
7は超高分子量ポリエチレンの溶融物、8はプラ
ンジヤー、9は押出成形品である。
The figure is a schematic side cross-sectional view of one example of a solid extrusion device used in the method of the present invention, in which reference numeral 1 is an extrusion container, 2 is a cylinder part, 3 is a die part, 4 is a die support, 5 is a heater, 6 is billet material,
7 is a melt of ultra-high molecular weight polyethylene, 8 is a plunger, and 9 is an extruded product.