JPH024390B2 - - Google Patents

Info

Publication number
JPH024390B2
JPH024390B2 JP59220149A JP22014984A JPH024390B2 JP H024390 B2 JPH024390 B2 JP H024390B2 JP 59220149 A JP59220149 A JP 59220149A JP 22014984 A JP22014984 A JP 22014984A JP H024390 B2 JPH024390 B2 JP H024390B2
Authority
JP
Japan
Prior art keywords
solder
flux
soldering
soldered
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59220149A
Other languages
Japanese (ja)
Other versions
JPS6199565A (en
Inventor
Masao Masuzawa
Harutoshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TARUCHIN KK
Original Assignee
TARUCHIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TARUCHIN KK filed Critical TARUCHIN KK
Priority to JP22014984A priority Critical patent/JPS6199565A/en
Publication of JPS6199565A publication Critical patent/JPS6199565A/en
Publication of JPH024390B2 publication Critical patent/JPH024390B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明の目的と従来技術 本発明は適正な量のハンダを正確にハンダ付部
位に適用してハンダ付を行う方法に関する。 ハンダは電子機器の組立に広く使用されて来た
が、近年電子機器の小型化、高密度化が著しく進
みハンダを必要とする部位に適正量のハンダを適
用する事がつよく要求されるようになつた。この
ため種々の試みがなされて来た。例えば予じめハ
ンダをほどこす部位以外をマスクしてハンダ浴に
浸漬し、ハンダの予備メツキを行うことが考えら
れた。しかしこの方法は適用される電子機器のパ
ターンがあまりにも多種多様であるため結局実用
上実施不可能であることと、ハンダの付着量の制
御が十分行えないことが欠点であつた。 又粉末状のハンダを適当なフラツクス、粘着
剤、溶剤等を用いて混練しクリーム状としたもの
をハンダ付部位にほどこすことも試みられている
が、このクリーム状のハンダは粘度変化が大きく
しかもライフサイクルが短いため輸送、保管に際
しては冷凍輸送、冷蔵保管等の処置を行う必要が
ある上更にハンダ付時にハンダが飛散しボール状
の飛散物が周辺に付着する等の欠点を有するため
必ずしも満足できるものとは言えない。 この他予じめハンダの溶融温度以上に加熱した
ハンダ付部品を粉末ハンダに接触させてハンダを
熔解して被覆し、このハンダ被覆部品を相手の部
品に接触させて加熱しハンダ付することも提案さ
れた。ところがこの方法はハンダ付部品をハンダ
の融点以上に加熱しなければならないが、部品は
通常薄い、細い等の小型のものであるためハンダ
粉末に接触するまでに温度が低下する傾向が大き
く、更にハンダの熱容量が大きいためハンダによ
り更に冷却される事から、ハンダ付部品をハンダ
の融点よりかなり高い温度に加熱しなければなら
ず、事実、ハンダの融点183℃より少くとも150℃
高い330℃以上に加熱しなければならない。しか
しハンダ付部品の各要素殊に半導体など熱による
悪影響を受け易い部品を通常のハンダ付温度以上
の高温にさらす事は本来極力避けなければならな
かつた事である。またこの方法ではハンダを一旦
溶解して被覆するためハンダが溶解する温度まで
ハンダを昇温させるのに時間がかかり、さらにハ
ンダ付部位にメツキされるのに時間がかかる。つ
まりこの段階がハンダ付の律速段階となる。メツ
キ速度をあげるためハンダ付部品の温度を高くし
てもメツキ工程の速度は他の工程よりははるかに
遅くハンダ付速度を律速してしまうのである。又
温度を上げれば部品に対する熱の悪影響は更に大
になる。更にハンダの付着量を制御して適正量の
ハンダを被覆させる事は極めて困難である。更に
ハンダ付部位にハンダを被覆するためにはフラツ
クスを必要とするがフラツクスはハンダより融点
ははるかに低く100℃前後であるため300℃以上の
高温度のハンダ付部品が接触するとフラツクスが
とけて飛散しハンダ粒子を大きな団子に固めてし
まいハンダ被覆が行えなくなる欠点がある。 本発明者はこの様な問題を解決するため種々の
研究を行つたが、適正量のハンダをハンダ付部位
に均一に担持させるには熔融状態のハンダを接触
させる事では不可能であるとの結論に達した。 つまり予じめ溶融したハンダに接触させる場合
でも、粉末ハンダを溶融させながら接触させる場
合でも、ハンダ付部位の溶融ハンダとの接触時
間、接触角度、接触速度、部位の温度、接触時の
進行方向前面部と後面部のハンダ付着量の差異な
どのフアクターの影響を受け所期の目的を達し得
ないためである。 本発明者はハンダ付部位に接着剤を塗布して粉
末ハンダを接着させることを行つてみたが、この
方法は熱の影響を除くことが出来、しかも接着剤
塗布面は粉末ハンダに覆れるとそれ以上ハンダが
付着せず接着剤の塗布面積により付着量の制御が
容易に行われる好結果が得られたが、ハンダ付時
に接着剤がハンダの広がりの障害となる欠点があ
る。 本発明の構成 本発明者はさらに研究した結果フラツクスを用
いて粉末ハンダをハンダ付部位に結着させる事に
依り従来の欠点を解決し本発明を完成した。 本発明はハンダ付けを行う金属部材のハンダ付
部位をフラツクスの融着温度に加熱し、加熱した
部位に表面をフラツクスで被覆した粉末ハンダを
接触させてフラツクスを融着し付着させ、このフ
ラツクス被覆粉末ハンダで覆つたハンダ部位をハ
ンダ付する相手側の金属部位に当接して加熱しハ
ンダ付を行う事及びハンダ付を行う複数の金属部
材を予じめハンダ付を行う状態に組合わせてセツ
トし、ハンダ付部位をフラツクスの融着温度に加
熱し、加熱した部位に表面をフラツクスで被覆し
た粉末ハンダを接触させてフラツクスを融着し付
着させ、このフラツクス被覆粉末ハンダで覆つた
ハンダ付部位を加熱してハンダ付を行う方法であ
る。 本発明において用いるハンダは表面にフラツク
スを被覆した粉末状のハンダである。このハンダ
に接触させるハンダ付部品のハンダ付部位は、フ
ラツクスが軟化乃至溶融して粘着性を生ずる温度
(以下融着温度という)に加熱すれば充分であり、
この温度以上に加熱する事は好ましい結果を求め
えない。フラツクスがハンダ付部位に付着すると
ハンダ粒子はフラツクスによつてハンダ付部位に
結合される。従つてフラツクスの粘着付着部は粘
着性がなく余分のハンダは付着しない。更にハン
ダ付部位の温度をハンダ粒子表面のフラツクス層
の接合面の反対側も粘着性を有するように加温す
ればそこに他のハンダ粉末が付着するのでハンダ
付着量の制御は温度を抑制する事に依り簡単に行
える。このことはフラツクスの融着温度は50〜
100℃程度でハンダの溶融温度よりはるかに低く
ハンダ付部品に与える温度影響が極めて少いため
必要温度の設定が自由に行えることによりもたら
されるのである。 更にフラツクスの粘着化は低温でしかも即時に
行われるためハンダ付工程の速度を律する律速工
程にならず全工程に影響を与えない。 本発明の特徴はハンダ付部位にハンダ粒子が被
覆されているが、ここではハンダの溶解は行われ
てなく、ハンダは粒状のままであり、ハンダ付に
必要なフラツクスがこの部分に存在していること
である。このため粉末ハンダを被覆した部位を他
のハンダ付部品のハンダ付部位に当接して加熱す
ればそのままハンダ付が行えることである。 この特徴により、予じめハンダ付を行う複数の
部品をハンダ付を行う位置にセツトしこの状態で
ハンダ付部位をフラツクスの融着温度に加熱しフ
ラツクス被覆ハンダ粉末と接触させて付着させそ
のまま加熱工程(リフロー炉等)で加熱すればセ
ツトした状態でハンダ付を行う事も可能である。
勿論必要に応じ加熱時にさらにフラツクスを追加
することも自由である。 本発明で使用するフラツクス被覆粉末ハンダは
粉末ハンダの製造工程中で同時噴出による方法、
又はフラツクス槽中に落下させる方法、あるいは
少量の場合予じめ製造されたフラツクスとハンダ
粉末を混合し後にこれを粉砕する方法等で製造す
る事が出来る。 又ハンダ付部位の加熱方法にはリフロー炉に於
ける空気加熱、赤外線炉等の熱線加熱、ラインに
電流を流して行う抵抗加熱など適宜目的に応じて
加熱方法を選択すれば良い。 又フラツクス被覆粉末ハンダを加熱したハンダ
付部位を接触させるには粉末ハンダをふりかける
ふりかけ法や静電塗布なども行えるが流動浸漬法
が好適である。これは導入した気体により粉末ハ
ンダが高濃度状態でしかも流動しているためハン
ダ付部位が低抵抗でしかも濃密度の接触が出来、
被覆速度を大きくできる利点があるからである。
又この方法を用いればハンダ部位の加熱時間も短
かくでき効果は大である。 以上ではハンダ付を行う金属部材にフラツクス
被覆した粉ハンダを付着させてそのほぼ直後にハ
ンダ付する方法を説明したがハンダ付に先立ち金
属部材のハンダ付部位にあらかじめハンダを付着
させておき必要時に相手側部材をハンダ付するこ
ともできる。この場合にはまずフラツクスの融着
温度以上に粉ハンダを加熱し、ついでハンダの融
点以上に加熱する必要がある。このようにした時
はハンダメツキする行程とハンダ付する行程を時
間をおいて或は又別の場所で行うことができる。
ただハンダ付に際しては当接部材のいづれか一方
又は相方のハンダ付部位に必要に応じフラツクス
を施こさなければならない。 本発明で用いるフラツクスを例示すると以下の
様なものがある。 米国産ガムロジンWW 95wt% シクロヘキシルアミン塩酸塩 5wt% 米国産ガムロジンWW 45wt% 重合ロジン(ポリペール)WW 50wt% シクロヘキシルアミン塩酸塩 2% シクロヘキシルアミン臭素酸塩 3% 米国産ガムロジンWW 50wt% 水素添加ロジン(ステヘライト)WW 45% グルタミン酸塩酸塩 5% 又粉末ハンダの粒度は100〜400メツシユのもの
が用いられ好ましくは250〜300メツシユのものが
用いられる。 更に粉末ハンダに被覆するフラツクスの量は5
〜25wt%の間で用途に依り選択されるが好まし
くは10%前後である。 本発明の効果と実施例 本発明はフラツクスの軟化乃至融解による粘着
により粉末ハンダの被覆を行うので処理速度が速
く、フラツクスの飛散、ハンダの塊状化もない。
又粉末ハンダのポツトライフも永く取扱は簡単か
つ容易である。 次に実施例を示す。
OBJECTS OF THE INVENTION AND PRIOR ART The present invention relates to a method for performing soldering by accurately applying the appropriate amount of solder to the soldering site. Solder has been widely used in the assembly of electronic devices, but in recent years electronic devices have become significantly smaller and more dense, and it has become increasingly necessary to apply the appropriate amount of solder to the parts that require solder. Summer. Various attempts have been made for this purpose. For example, it has been considered to perform preliminary solder plating by masking the area other than the area to be soldered and immersing it in a solder bath. However, this method has disadvantages in that it is practically impossible to implement because the patterns of electronic devices to which it is applied are too diverse, and that the amount of solder adhesion cannot be adequately controlled. Also, attempts have been made to knead powdered solder with appropriate flux, adhesive, solvent, etc. and apply it to the soldering area, but this creamy solder has a large viscosity change. Moreover, because the life cycle is short, it is necessary to take measures such as frozen transportation and refrigerated storage when transporting and storing, and there are also drawbacks such as solder scattering during soldering and ball-shaped scattered objects adhering to the surrounding area. I can't say I'm satisfied. In addition, it is also possible to bring a soldered component that has been heated above the melting temperature of the solder in advance into contact with powdered solder to melt the solder and cover it, and then bring this solder-coated component into contact with a mating component and heat it to solder it. was suggested. However, with this method, the soldered parts must be heated above the melting point of the solder, but since the parts are usually thin, thin, or otherwise small, their temperature tends to drop by the time they come into contact with the solder powder. Due to the large heat capacity of the solder and the additional cooling provided by the solder, the soldered parts must be heated to a temperature well above the melting point of the solder, in fact at least 150°C above the melting point of the solder, 183°C.
It must be heated to a high temperature of 330℃ or higher. However, it was originally necessary to avoid exposing the elements of soldered parts, especially parts such as semiconductors, which are susceptible to adverse effects of heat, to temperatures higher than the normal soldering temperature. Further, in this method, since the solder is once melted and coated, it takes time to raise the temperature of the solder to a temperature at which the solder melts, and furthermore, it takes time to plate the soldered area. In other words, this step is the rate-limiting step for soldering. Even if the temperature of the soldered parts is raised to increase the plating speed, the speed of the plating process is much slower than other processes and limits the soldering speed. Moreover, if the temperature is increased, the adverse effects of heat on the components will be even greater. Furthermore, it is extremely difficult to control the amount of solder to coat the surface with an appropriate amount of solder. Furthermore, flux is required to coat the soldered parts with solder, but flux has a much lower melting point than solder, around 100°C, so if a soldered part with a high temperature of 300°C or higher comes into contact with it, the flux will melt. There is a drawback that the solder particles scatter and harden into large lumps, making it impossible to perform solder coating. The inventor has conducted various studies to solve these problems, but has found that it is impossible to uniformly support an appropriate amount of solder on the soldered area by bringing molten solder into contact with the solder. I've come to a conclusion. In other words, whether the solder is brought into contact with pre-molten solder or the powdered solder is brought into contact while being melted, the contact time, contact angle, contact speed, temperature of the part, and direction of movement at the time of contact with the molten solder. This is because the intended purpose cannot be achieved due to the influence of factors such as the difference in the amount of solder deposited between the front and rear parts. The inventor tried applying adhesive to the soldering area to adhere powdered solder, but found that this method could eliminate the effects of heat and also cover the adhesive-applied surface with powdered solder. Good results were obtained in that no further solder adhered and the amount of adhesion was easily controlled by adjusting the adhesive application area, but there was a drawback that the adhesive became an obstacle to the spread of the solder during soldering. Structure of the Present Invention As a result of further research, the present inventor solved the drawbacks of the conventional technique by using flux to bind powdered solder to the soldering area, thereby completing the present invention. The present invention heats the soldering area of a metal member to be soldered to the melting temperature of the flux, contacts the heated area with powdered solder whose surface is coated with flux, and fuses and adheres the flux. Soldering is carried out by heating the soldering part covered with powdered solder by bringing it into contact with the other metal part to be soldered, and by combining and setting the plurality of metal parts to be soldered in advance in a state for soldering. Then, the soldering area is heated to the melting temperature of the flux, and the heated area is brought into contact with powdered solder whose surface is coated with flux to fuse and adhere the flux, and the soldering area is covered with this flux-coated powdered solder. This is a method of soldering by heating. The solder used in the present invention is a powdered solder whose surface is coated with flux. It is sufficient to heat the soldering parts of the soldered parts that come into contact with the solder to a temperature at which the flux softens or melts and becomes sticky (hereinafter referred to as the fusion temperature).
Heating above this temperature will not yield favorable results. When the flux adheres to the soldering site, the solder particles are bonded to the soldering site by the flux. Therefore, the sticky adhesive part of the flux is not sticky and excess solder does not adhere. Furthermore, if the temperature of the soldering area is heated so that the opposite side of the bonding surface of the flux layer on the surface of the solder particles also becomes sticky, other solder powder will adhere there, so controlling the amount of solder adhesion will suppress the temperature. It can be done easily depending on the situation. This means that the flux fusion temperature is 50~
This is achieved by being able to freely set the required temperature, as it is around 100°C, which is much lower than the melting temperature of solder, and has very little effect on the soldered parts. Furthermore, since the flux is made to stick at a low temperature and instantaneously, it does not become a rate-limiting process that governs the speed of the soldering process and does not affect the entire process. The feature of the present invention is that the soldering area is coated with solder particles, but the solder is not melted here and the solder remains in granular form, and the flux necessary for soldering is present in this area. It is that you are. Therefore, if the part covered with powdered solder is brought into contact with the soldering part of another soldered part and heated, soldering can be performed as is. Due to this feature, multiple parts to be soldered are set in advance at the position to be soldered, and in this state, the soldering area is heated to the melting temperature of the flux, brought into contact with the flux-coated solder powder, adhered, and heated as it is. If it is heated during the process (reflow oven, etc.), it is possible to solder it in the set state.
Of course, you are free to add more flux during heating if necessary. The flux-coated powder solder used in the present invention can be produced by simultaneous injection during the powder solder manufacturing process.
Alternatively, it can be produced by dropping it into a flux tank, or in the case of a small amount, by mixing pre-produced flux and solder powder and then pulverizing it. The heating method for the soldering area may be selected depending on the purpose, such as air heating in a reflow oven, hot wire heating in an infrared oven, or resistance heating by passing an electric current through the line. Further, in order to bring the flux-coated powder solder into contact with the heated soldering area, a sprinkling method of sprinkling powder solder or electrostatic coating may be used, but a fluidized dipping method is preferred. This is because the powder solder is highly concentrated and fluid due to the introduced gas, so the soldering area can have low resistance and dense contact.
This is because there is an advantage that the coating speed can be increased.
Moreover, if this method is used, the heating time of the soldering area can be shortened, which is very effective. Above, we explained the method of applying flux-coated powder solder to the metal parts to be soldered and soldering almost immediately after that. It is also possible to solder the mating member. In this case, it is necessary to first heat the powdered solder to a temperature higher than the melting temperature of the flux, and then to heat the powder to a temperature higher than the melting point of the solder. In this case, the soldering process and the soldering process can be performed at different times or at different locations.
However, when soldering, it is necessary to apply flux to the soldering portion of one or the other of the abutting members, as necessary. Examples of fluxes used in the present invention include the following. American gum rosin WW 95wt% Cyclohexylamine hydrochloride 5wt% American gum rosin WW 45wt% Polymerized rosin (Polypale) WW 50wt% Cyclohexylamine hydrochloride 2% Cyclohexylamine bromate 3% American gum rosin WW 50wt% Hydrogenated rosin (stehelite) ) WW 45% Glutamate hydrochloride 5% The powder solder has a particle size of 100 to 400 mesh, preferably 250 to 300 mesh. Furthermore, the amount of flux coated on the powder solder is 5
The content is selected between ~25wt% depending on the application, but is preferably around 10%. Effects and Embodiments of the Present Invention The present invention coats the powdered solder by adhesion due to softening or melting of the flux, so the processing speed is fast and there is no scattering of the flux or clumping of the solder.
Powdered solder also has a long pot life and is simple and easy to handle. Next, examples will be shown.

【表】【table】

【表】 (注) 比較例の場合はいずれもハンダは粒状乃至ブ
ロツク状である。
[Table] (Note) In all comparative examples, the solder is in the form of granules or blocks.

Claims (1)

【特許請求の範囲】[Claims] 1 ハンダ付けを行う金属部材のハンダ付部位を
フラツクスの融着温度に加熱し、加熱した部位に
表面をフラツクスで被覆した粉末ハンダを接触さ
せてフラツクスを融着し付着させ、このフラツク
ス被覆粉末ハンダで覆つたハンダ部位をハンダ付
する相手側の金属部位に当接して加熱しハンダ付
を行うことを特徴とするハンダ付方法。
1. Heat the soldering area of the metal component to be soldered to the melting temperature of the flux, and bring the powdered solder whose surface is coated with flux into contact with the heated area to fuse and adhere the flux, and this flux-coated powdered solder A soldering method characterized by carrying out soldering by heating and heating a soldering part covered with a metal part to be soldered.
JP22014984A 1984-10-19 1984-10-19 Soldering method Granted JPS6199565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22014984A JPS6199565A (en) 1984-10-19 1984-10-19 Soldering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22014984A JPS6199565A (en) 1984-10-19 1984-10-19 Soldering method

Publications (2)

Publication Number Publication Date
JPS6199565A JPS6199565A (en) 1986-05-17
JPH024390B2 true JPH024390B2 (en) 1990-01-29

Family

ID=16746661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22014984A Granted JPS6199565A (en) 1984-10-19 1984-10-19 Soldering method

Country Status (1)

Country Link
JP (1) JPS6199565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542460A (en) * 1991-08-09 1993-02-23 Mitsubishi Motors Corp Display panel for production line operation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568826B2 (en) * 2011-10-21 2013-10-29 General Electric Company Method of brazing a component, a brazed power generation system component, and a braze

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153A (en) * 1978-06-19 1980-01-05 Matsushita Electric Ind Co Ltd Suction port for electric vacuum cleaner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153A (en) * 1978-06-19 1980-01-05 Matsushita Electric Ind Co Ltd Suction port for electric vacuum cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542460A (en) * 1991-08-09 1993-02-23 Mitsubishi Motors Corp Display panel for production line operation

Also Published As

Publication number Publication date
JPS6199565A (en) 1986-05-17

Similar Documents

Publication Publication Date Title
US7201304B2 (en) Multi-functional solder and articles made therewith, such as microelectronic components
US5597110A (en) Method for forming a solder bump by solder-jetting or the like
KR100253527B1 (en) Soldering process
US3736653A (en) Process for soldering using pre-fluxed solder powder
US6173887B1 (en) Method of making electrically conductive contacts on substrates
JP2002321083A (en) Soldered joint forming method
US6575352B2 (en) Apparatus and method for soldering electronic components to printed circuit boards
TWI352563B (en) Production method of solder circuit board
JP2557268B2 (en) Device mounting method
RU2716176C2 (en) Soldering connection structure and film forming method
KR101733023B1 (en) Curing agent, heat-curable resin composition containing said curing agent, joining method using said composition, and method for controlling curing temperature of heat-curable resin
JPH024390B2 (en)
JPH03281088A (en) Solder and production thereof
JP2006122913A (en) Soldering paste and soldering method
JPS63248567A (en) Soldering method
JPS6199566A (en) Soldering method
KR102297961B1 (en) Thermal and conductive path-forming adhesive including low melting point filler and high melting point filler and soldering method using same
JPH0417994A (en) Solder composition
JP7073701B2 (en) Bonding method using Au-Sn alloy solder paste and Au-Sn alloy solder paste
JPH0646637Y2 (en) Paste solder
JP3691972B2 (en) How to attach solder to pads
JPS58190013A (en) Chip part and method of soldering chip part
CN108581267A (en) A kind of Lead-Free Solder in Electronic Packaging ball and its preparation method and application
CN112004337A (en) Solder ball with coating, ball mounting method and packaging method
JPH11152598A (en) Conductive fine particle and conductive connection structure